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Abstract. Shape information is crucial for human perception and cog-
nition, and should therefore also play a role in cognitive AI systems.
We employ the interdisciplinary framework of conceptual spaces, which
proposes a geometric representation of conceptual knowledge through
low-dimensional interpretable similarity spaces. These similarity spaces
are often based on psychological dissimilarity ratings for a small set of
stimuli, which are then transformed into a spatial representation by a
technique called multidimensional scaling. Unfortunately, this approach
is incapable of generalizing to novel stimuli. In this paper, we use convo-
lutional neural networks to learn a generalizable mapping between per-
ceptual inputs (pixels of grayscale line drawings) and a recently proposed
psychological similarity space for the shape domain. We investigate dif-
ferent network architectures (classification network vs. autoencoder) and
different training regimes (transfer learning vs. multi-task learning). Our
results indicate that a classification-based multi-task learning scenario
yields the best results, but that its performance is relatively sensitive to
the dimensionality of the similarity space.

Keywords: Psychological Similarity Spaces · Conceptual Spaces · Shape
Perception · Convolutional Neural Networks

1 Introduction

Shape information plays an important role in human perception and cognition,
and can be viewed as a bootstrapping device for constructing concepts [17, 30,
37]. Based on the principle of cognitive AI [39, 40], also artificial agents should
be equipped with a human-like representation of shapes.

In this paper, we employ the cognitive framework of conceptual spaces [23],
which proposes a geometric representation of conceptual knowledge based on
psychological similarity spaces. It offers a way of neurosymbolic integration
[22, 42] by using an intermediate level of representation between the connection-
ist and the symbolic approach. The overall conceptual space is structured into
different cognitive domains (such as color and shape), which are represented
by low-dimensional psychological similarity spaces with cognitively meaningful
dimensions. Conceptual spaces have seen a wide variety of applications in arti-
ficial intelligence, linguistics, psychology, and philosophy [31, 65]. Typically, the
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structure of a conceptual space is obtained based on dissimilarity ratings from
psychological experiments, which are then translated into a spatial representa-
tion through multidimensional scaling [13]. In this paper, we consider a recently
proposed similarity space for the cognitive domain of shapes [9, 10].

The similarity spaces obtained by multidimensional scaling are not able to
generalize to unseen inputs – a novel stimulus can only be mapped into the sim-
ilarity space after eliciting further dissimilarity ratings [6]. In order to generalize
beyond the initial stimulus set (which is necessary in practical AI applications),
we have recently proposed a hybrid approach [8]: Psychological dissimilarity rat-
ings are used to initialize the similarity space, and a mapping from image stimuli
to coordinates in this similarity space is then learned with convolutional neural
networks. Both our own prior study [8] and related studies by Sanders and Nosof-
sky [53, 54] used a classification-based transfer learning approach on relatively
unstructured similarity spaces involving multiple cognitive domains. In contrast
to that, the present study focuses on the single cognitive domain of shapes and
investigates a larger variety of machine learning setups, comparing two network
types (classification network vs. autoencoder) and two learning regimes (transfer
learning vs. multi-task learning).

The remainder of this article is structured as follows: In Section 2, we provide
some general background on convolutional neural networks, conceptual spaces,
and the cognitive domain of shapes. We then describe our general experimental
setup in Section 3, before presenting the results of our machine learning experi-
ments in Section 4. Finally, Section 5 summarizes the main contributions of this
article and provides an outlook towards future work. All of our results as well
as source code for reproducing them are publicly available on GitHub [7].1

2 Background

Our work combines the cognitive framework of conceptual spaces [23] with mod-
ern machine learning techniques in the form of convolutional neural networks.
In Section 2.1, we briefly introduce convolutional neural networks, before giving
an overview of the conceptual spaces framework in Section 2.2. Section 2.3 then
discusses the cognitive domain of shapes.

2.1 Convolutional Neural Networks

Artificial neural networks (ANNs) consist of a large number of interconnected
units. Each unit computes a weighted sum of its inputs, which is then trans-
formed with a nonlinear activation function. The trainable parameters of an
ANN correspond to the weights of these connections and are typically optimized
through gradient descent, minimizing the prediction error of the network on a
given data set.

1 See https://github.com/lbechberger/LearningPsychologicalSpaces/.

https://github.com/lbechberger/LearningPsychologicalSpaces/
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Fig. 1. (a) Two-dimensional convolution with a 3× 3 kernel. (b) Combination of con-
volution and max pooling. (c) Combination of unpooling and convolution.

With respect to computer vision tasks such as image classification, convolu-
tional neural networks (CNNs) are considered to be the most successful ANN
variant [25, Chapter 9]. They make use of so called convolutional layers which
apply the same set of weights (represented as kernel K) at all locations (see Fig-
ure 1a). This and the relatively small size of the kernel (and thus the receptive
field of each unit) drastically reduces the number of connections between sub-
sequent layers. CNNs furthermore use so called max pooling layers (see Figure
1b) to reduce the size of the image by replacing the output at a certain location
by the maximum of its local neighborhood. For a max pooling layer, one has to
specify both the pool width (i.e., the size of the area to aggregate over) and the
so called “stride” (i.e., the step size between two neighboring centers of pooling).

Typical convolutional networks start from a very high-dimensional input
(namely, images) and reduce the representation size in multiple steps until a
fairly small representation is reached which can then be used for classification
through a softmax layer. However, in some settings one is also interested in the
opposite direction: Creating a high-dimensional image from a low-dimensional
hidden representation. For instance, autoencoders [25, Chapter 14] are an impor-
tant unsupervised neural network architecture and are commonly used for dimen-
sionality reduction and feature extraction. Autoencoders are typically trained on
the task of reconstructing their input at the output layer, using only a relatively
low-dimensional internal representation. They consist of an encoder (which com-
presses information) and a decoder (which reconstructs the original input).

For the encoder, a regular CNN can be used, whose max pooling layers how-
ever create a loss of information [25, Section 20.10.6]: In Figure 1b, we only keep
the maximum value for each 2×2 patch of the feature map. Since three out of the
four values are discarded completely, it is impossible to accurately reconstruct
them. In the decoder, one therefore needs to approximate the inverted pooling
function with so called unpooling steps. In most cases, one simply replaces each
entry of the feature map by a block of size s × s, where the original value is
copied to the top left corner and all other entries of the block are set to zero [19]
(cf. Figure 1c). Using such an unpooling step followed by a convolution (which
is together often called an upconvolutional layer) can be seen as an approximate
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inverse of computing a convolution and a subsequent pooling [19]. This allows
us to increase the representation size inside the decoder in order to reconstruct
the original input image.

2.2 Conceptual Spaces

A conceptual space as proposed by Gärdenfors [23] is a similarity space spanned
by a small number of interpretable, cognitively relevant quality dimensions (e.g.,
temperature, time, hue, pitch). One can measure the difference between two
observations with respect to each of these dimensions and aggregate them into
a global notion of semantic distance. Semantic similarity is then defined as an
exponentially decaying function of distance.

The overall conceptual space can be structured into so called domains, which
represent, for example, different perceptual modalities such as color, shape,
taste, and sound. The color domain, for instance, can be represented by the
three dimensions hue, saturation, and lightness, while the sound domain
is spanned by the dimensions pitch and loudness. Based on psychological
evidence [2, 57], distance within a domain is measured with the Euclidean metric,
while the Manhattan metric is used to aggregate distances across domains.

Gärdenfors defines properties like red, round, and sweet as convex regions
within a single domain (namely, color, shape, and taste, respectively). Con-
cept hierarchies are an emergent property of this spatial representation, such
as the sky blue region being a subset of the blue region. Based on proper-
ties, Gärdenfors now defines full-fleshed concepts like apple or dog by using
one convex region per domain, a set of salience weights (which represent the
relevance of the given domain to the given concept), and information about
cross-domain correlations. The apple concept may thus be represented by re-
gions for red, round, and sweet in the domains of color, shape, and taste,
respectively. This geometric representation of knowledge enables a straightfor-
ward implementation of common-sense reasoning strategies such as interpolative
and extrapolative reasoning [16, 56]. Moreover, it can be liked to the prototype
theory of concepts from psychology [51] by relating typicality to the distance
from the center of a conceptual region.

A popular way of obtaining a conceptual similarity space is based on psycho-
logical dissimilarity ratings [23]. These dissimilarity ratings are collected for a
fixed set of stimuli in a psychological experiment. They are then converted into
an n-dimensional geometric representation of the stimulus set by using a tech-
nique called “multidimensional scaling” (MDS), which ensures that geometric
distances between pairs of stimuli reflect their psychological dissimilarity [13].
The similarity spaces produced by MDS do not readily generalize to unseen
stimuli: Mapping a novel input into the similarity space requires one to col-
lect additional similarity ratings and then to re-run the MDS algorithm on the
enlarged dissimilarity matrix [6].

Artificial neural networks (ANNs) on the other hand are capable of gener-
alizing beyond the training examples, but often use relatively high-dimensional
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internal representations which are hard to interpret and not necessarily psycho-
logically grounded. In our proposed hybrid approach [8], we therefore use MDS
on human dissimilarity ratings to “initialize” the similarity space and ANNs
to learn a mapping from stimuli into this similarity space, where the stimulus-
point mappings are treated as labeled training instances for a regression task.
In general, ANNs require large amounts of data to optimize their weights, but
the number of stimuli in a psychological study is necessarily small. We propose
to resolve this dilemma not only through data augmentation (i.e., by creating
additional inputs through minor distortions), but also by introducing an addi-
tional training objective (e.g., correctly classifying the given images into their
respective classes). This additional training objective can also be optimized on
additional stimuli that have not been used in the psychological experiment. Using
a secondary task with additional training data constrains the network’s weights
and can be seen as a form of regularization: These additional constraints are
expected to counteract overfitting tendencies, i.e., tendencies to memorize all
given mapping examples without being able to generalize. This approach has,
for instance, successfully been used by Sanders and Nosofsky [53, 54], who have
fine tuned pretrained CNNs to predict the MDS coordinates on a data set of
360 rocks. In contrast to their work, we focus on the single cognitive domain
of shapes and use a considerably smaller set of annotated inputs. Moreover, we
consider a larger variety of machine learning setups.

2.3 The Cognitive Domain of Shapes

Over the past decades, there has been ample research on shape perception in
different fields such as (neuro-)psychology [4, 11, 12, 21, 27, 28, 38, 41, 45, 49, 61],
computer vision [14, 43, 44, 66], and deep learning [3, 24, 35, 58]. Although so far
no complete understanding of the shape domain has emerged, there exist some
common themes that appear in multiple approaches, such as the distinction
between global structure and local surface properties [3, 4, 11, 27], or candidate
features such as aspect ratio [4, 11, 14, 41, 43, 45, 61, 66], curvature [11,
12, 14, 43, 45, 61, 66], or orientation [4, 14, 41, 28, 49, 61, 66].

In the context of conceptual spaces, Gärdenfors [23] mainly refers to the
model proposed by Marr and Nishihara [41], which uses configurations of cylin-
ders to describe shapes on varying levels of granularity. This cylinder-based rep-
resentation can be transformed into a coordinate system by representing each
cylinder with its length, diameter, and relative location and rotation. If the num-
ber of cylinders is fixed, one can thus derive a conceptual space for the shape
domain with a fixed number of dimensions. A related proposal for representing
the shape domain within conceptual spaces has been made by Chella et al. [14],
who use the more powerful class of superquadrics as elementary shape primi-
tives, allowing them to express many simple geometric objects such as boxes,
cylinders, and spheres as convex regions in their similarity space.

Both existing models of the shape domain within the conceptual spaces
framework define complex shapes as a configuration of simple shape primitives
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and follow therefore a structural approach [21]. The number of primitives neces-
sary to represent a complex object may however differ between categories. Since
two stimuli can therefore not necessarily be represented as two points in the
same similarity space, this approach causes problems when computing distances
between stimuli. Also the psychological plausibility of these approaches has so
far not been established.

In order to provide a conceptual space representing the holistic similarity of
complex shapes, Bechberger and Scheibel [9, 10] therefore followed a different
approach: As stimuli, they used sixty line drawings of everyday objects from
twelve different semantic categories (such as appliance, bird, building, and
insect), taken from different sources and adjusted such that they match in rel-
ative object size as well as object position and object orientation. Six categories
contained visually similar items, while the other six categories were based on vi-
sually variable items. Bechberger and Scheibel conducted a psychological study
with 62 participants, where an explicit rating of the visual similarity for all pairs
of items was collected. Using the averaged ratings over all participants, they then
applied MDS to obtain psychological similarity spaces of different dimensionality.

Their investigations showed that the resulting shape spaces fulfilled the pre-
dictions of the conceptual spaces framework: Distances had a high correlation to
the original dissimilarities and visually coherent categories (such as appliance
and bird) were represented as small and non-overlapping convex regions. Hu-
man ratings of the objects with respect to three psychologically motivated shape
features – namely, aspect ratio, line curvature, and orientation – could
be interpreted as linear directions in these spaces. Overall, their analysis indi-
cated that similarity spaces with three to five dimensions strike a good balance
between compactness and expressiveness. We will use their four-dimensional sim-
ilarity space as a target for our machine learning experiments in Section 4.

Recently, Morgenstern et al. [44] have proposed a 22-dimensional similarity
space for shapes obtained via MDS from 109 computer vision features on a data
set of 25,000 animal silhouettes. Predictions of their similarity space on novel
stimuli were highly correlated with human similarity ratings (r = 0.91), giving
an indirect psychological validation to their approach. Moreover, Morgenstern et
al. trained different shallow CNNs to map from original input images into their
shape space. This relates their work quite strongly to our current study. However,
their similarity space is based on computer vision features on silhouettes, while
we start from psychological data on complex line drawings.

3 General Methods

In this section, we describe both our data augmentation strategy (Section 3.1)
and our general training and evaluation scheme (Section 3.2).
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3.1 Data Augmentation

The data set of line drawings used for the psychological study by Bechberger and
Scheibel [10] is limited to 60 individual stimuli. These stimuli are all annotated
with their respective coordinates in the target similarity space and are thus our
main source of information for learning the mapping task. Moreover, we used
70 additional line drawings which were not part of the psychological study by
Bechberger and Scheibel, but which use a similar drawing style. Most applica-
tions of convolutional neural networks focus on data sets of photographs such
as ImageNet [15]. In contrast to photographs, the line drawings considered in
our experiments do not contain any texture or background, since they only show
a single object using black lines on white ground. Sketches have similar char-
acteristics, so we used the sketch data sets TU Berlin [20] and Sketchy [55] as
additional data sources. From the TU Berlin corpus, we used all 20,000 sketches,
while for the Sketchy corpus we selected a subset of 62,500 images by first keep-
ing only the sketches which had been labeled as correct by the authors and then
randomly selecting 500 sketches from each of the 125 categories. TU Berlin con-
tains 250 classes and Sketchy uses 125 classes, and both data sets overlap on a
subset of 98 common classes. We used the full set of 277 distinct classes when
training the network on its classification objective.

We used the following augmentation procedure to further increase the va-
riety of inputs: For each original image, we first applied a horizontal flip with
probability 0.5 and then rotated and sheared the image by an angle of up to 15
degrees, respectively. In the resulting distorted image, we identified the bounding
box around the object and cropped the overall image to the size of this bound-
ing box. The resulting cropped image was then uniformly rescaled such that its
longer side had a randomly selected size between 168 and 224 pixels. Using a
randomly chosen offset, the rescaled object was then put in a 224× 224 image,
where remaining pixels were filled with white. We used a uniform distribution
over all possible resulting configurations for a given image, which makes smaller
object sizes more likely since they have more translation possibilities than larger
object sizes. Please note that we did not use the augmentation steps of horizontal
flips and random shears and rotations on the line drawings from the psycholog-
ical study, since the similarity space contains an interpretable direction which
reflects the orientation of the object.

For each line drawing (both from the psychological study and additional
ones), we created 2000 augmented versions, while the TU Berlin data set and
Sketchy were augmented with factors of 12 and 4, respectively. Overall, we ob-
tained 120,000 data points for the line drawings from Bechberger and Scheibel,
140,000 data points for the additional line drawings, 240,000 data points for TU
Berlin, and 250,000 data points for Sketchy.

3.2 Training and Evaluation Scheme

Sketch-a-Net [64, 63] was the first CNN specifically designed for the task of
sketch recognition and is essentially a trimmed version of AlexNet [34], the first
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Fig. 2. Structure of our CNNs (“64 conv 15 × 15 s3” = convolutional layer with 64
kernels of size 15 × 15, using a stride of 3, “max pool” = max pooling layer, “FC” =
fully connected layer, “uconv” = upconvolutional layer; output image size shown next
to the layers).

CNN that achieved state of the art results in image classification tasks. For
our encoder network (see Figure 2), we used Sketch-a-Net and treated the size
of its second fully connected layer as a hyperparameter. Moreover, we did not
use dropout2 in this layer and used linear units instead of ReLUs3 to allow the
network to predict the MDS coordinates (which can also be negative) as part
of its learned representation. Classification was realized with a softmax layer
on top of the encoder (not shown in the figure). In the autoencoder setup, we
additionally used a decoder network inspired by the work of Dosovitskiy and
Brox [18], which uses two fully connected layers and 6 upconvolutional layers
(see Figure 2).

We furthermore applied salt and pepper noise to the inputs before feeding
them to our network. This additional noise further increases the variety of the
network’s inputs and can be seen as an additional form of data augmentation.
We chose binary salt and pepper noise (which sets randomly selected pixels to
their minimal or maximal value) rather than Gaussian noise, since the former
is more adequate for our near-binary inputs where most of the pixels are either
black or white.

In our experiments reported below, we trained the overall network to mini-
mize a linear combination of the classification error (measured as softmax cross-
entropy for the 277 classes), the reconstruction error (measured as sigmoid cross-
entropy loss with respect to the uncorrupted images4) and the mapping error
(measured as mean squared error for the target coordinates and the designated
units of the second fully connected layer).

2 Dropout is regularization technique where on each training step, a randomly chosen
subset of neurons is deactivated in order to increase the network’s robustness.

3 Rectified Linear Units (ReLUs) use max(0, x) as activation function and are the
standard in modern CNNs, while linear units use the identity as activation function.

4 Since our autoencoder receives a corrupted image, but needs to reconstruct the
uncorrupted original, it is a so called denoising autoencoder [62].
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When evaluating the network’s overall performance, we used of the following
evaluation metrics: For the classification task, we report separate classification
accuracies for the TU Berlin and the Sketchy data sets. For the reconstruction
task, we report the reconstruction error (i.e., the binary cross-entropy loss) and
for the mapping task, we report the mean squared error (MSE), the coefficient
of determination R2, and the mean Euclidean distance (MED) between the pre-
dicted point and the ground truth. We only use salt and pepper noise during
training, but not during evaluation in order to avoid random fluctuations on the
validation and test set.

Since the target coordinates used for learning and evaluating the mapping
task are based only on 60 original stimuli, we decided to follow a five-fold cross
validation scheme: We divided the original data points from each of the data
sources into five folds of equal size and then applied the augmentation step
for each fold individually. Therefore, all augmented images that were based on
the same original data point are guaranteed to belong to the same fold, thus
preventing potential information leaks between folds. In our overall evaluation
process, we rotated through these folds, always using three folds for training,
one fold for testing, and the remaining fold as a validation set for early stopping
(i.e., choosing the epoch with the lowest loss). We ensured that each fold was
used once for testing, once as validation set, and three times as training set. The
reported numbers are always averaged across all folds. By using this five-fold
cross-validation technique, we implicitly trained five neural networks with the
same hyperparameter settings, but slightly different data. Our averaged results
therefore approximate the expected value of the neural network’s performance
on unseen inputs and hence the generalizability of the learned mapping.

During training, we use the Adam optimizer [33] as a variant of stochastic
gradient descent, with the initial learning rate set to 0.0001, the default param-
eter settings of β1 = 0.9, β2 = 0.999, ε = 10−8, and a batch size5 of 128. We
ensure that each minibatch contains examples from all relevant data sources ac-
cording to their relative proportions: When training only on the classification
task, we take 63 examples from TU Berlin and 65 from Sketchy. When training
on both the classification and the mapping task, we use 25 line drawings, 51
sketches from TU Berlin, and 52 examples from Sketchy. Whenever the recon-
struction task is involved, we use 21 line drawings, 24 additional line drawings,
41 examples from TU Berlin, and 42 data points from Sketchy. We always train
the network for 200 full epochs6 and select the epoch with the lowest validation
set loss (classification loss or reconstruction loss for the pretraining experiments,
and mapping loss for the multi-task learning experiments) in order to compute
performance on the test set.

5 The batch size determines how many training examples are used for computing a
single parameter update.

6 One epoch is one full iteration over the complete training set.
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Table 1. Selected hyperparameter configurations.

Configuration
Encoder Decoder

Weight
Dropout

Noise Rep. Weight
Dropout

Decay Level Size Decay

Cdefault 0.0005 True 10% 512 – –

Csmall 0.0005 True 10% 256 – –

Ccorrelation 0.001 False 10% 512 – –

Rdefault 0.0005 True 10% 512 0.0 False

Rbest 0.0 False 10% 512 0.0 False

4 Experiments

In this section, we report the results of the experiments carried out with our
general setup as described in Section 3. In Section 4.1, we train our network
exclusively on the classification and reconstruction task, respectively. This pro-
vides a starting point for our transfer learning experiments in Section 4.2, where
we apply a linear regression on top of the pretrained CNNs. In Section 4.3, we
then follow a multi-task learning approach, where both the mapping task and
the secondary objective are optimized jointly. Finally, in Section 4.4, we inves-
tigate how well the different approaches generalize to target similarity spaces of
varying dimensionality.

4.1 Pretraining

We first considered a default setup of the hyperparameters based directly on
Sketch-a-Net [64, 63] and AlexNet [34]: We used a weight decay7 of 0.0005,
dropout in the first fully connected layer, and a representation size of 512 neu-
rons in the second fully connected layer. Moreover, we used 10% salt and pepper
noise during training. For the decoder network, we use neither dropout nor
weight decay. As evaluation metrics for the classification task, we considered the
accuracies reached on TU Berlin and Sketchy, while for the autoencoder, the
reconstruction error was used. In both cases, we also computed the monotone
correlation of distances in the feature space to the dissimilarity ratings of Bech-
berger and Scheibel [10], measured with Kendall’s τ [32]. Since a full grid search
on many candidate values per hyperparameter was computationally prohibitive
(especially in the context of a cross validation), we first identified up to two
promising settings for each hyperparameter for both network types, before con-
ducting a small grid search on the remaining combinations. The configurations
selected in this grid search are shown in Table 1.

For the classifier network, the best classification performance (with accura-
cies of 63.2% and 79.3% on TU Berlin and Sketchy, respectively) was obtained by
our default setup Cdefault. This is considerably lower than the 77.9% on TU
Berlin reported for the original Sketch-a-Net [63], which however used a much

7 A weight decay term penalizes the magnitude of the network’s weights.
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more sophisticated data augmentation and pretraining scheme. A considerably
higher correlation of τ ≈ 0.33 (instead of τ ≈ 0.27 for Cdefault) to the dissim-
ilarity ratings could be obtained by disabling dropout and increasing the weight
decay (Ccorrelation), however at the cost of considerably reduced classifi-
cation accuracies of 36.4% and 61.5% on TU Berlin and Sketchy, respectively.
Since reducing the representation size barely affected classification performance,
we also consider Csmall, which uses 256 units and otherwise default parameters.

For the autoencoder, we observed that completely disabling both weight de-
cay and dropout in both the encoder and the decoder let to considerably im-
proved reconstruction performance (reconstruction error of 0.08 for Rbest in
comparison to 0.13 for Rdefault). Also the correlation to the dissimilarities
increased from τ ≈ 0.22 to τ ≈ 0.30. Manipulation of all other hyperparameters
did not lead to further improvements.

4.2 Transfer Learning

For our transfer learning task, we extracted the hidden representation of each
network configuration for each of the augmented line drawings. We trained a
linear regression from these feature spaces to the four-dimensional shape space
by Bechberger and Scheibel [10]. In addition to the linear regression, we also
consider a lasso regression (which introduces an additional L1 penalty on the
model’s weights) with the following settings for the regularization strength β:

β ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}

Table 2 contains the results of these regression experiments. As we can see,
the linear regression performs considerably better than the zero baseline (which
always predicts the origin of the target space) for the classification-based feature
spaces, but not for the reconstruction-based feature spaces. Moreover, regular-
ization helps to improve performance on all feature spaces. A lasso regression
on Csmall slightly outperforms Cdefault, hinting at an advantage of smaller
representation sizes. Ccorrelation does not yield competitive results, indicat-
ing that classification accuracy is a more useful selection criterion in pretraining
than the correlation to human dissimilarity ratings.

Overall, transfer learning based on classification networks seems to be much
more successful than transfer learning based on autoencoders, even when consid-
ering a lasso regressor. The reason for the relatively poor performance of Rbest
and Rdefault can be seen in Table 3, where we analyze how well the different
augmented versions of the shape stimuli from Bechberger and Scheibel [10] are
separated in the different feature spaces. We used the Silhouette coefficient [52],
where larger values indicate a clearer separation of clusters. As we can see, the
different augmented versions of the same original line drawing do not form any
notable clusters in the reconstruction-based feature space. On the other hand, a
relatively strong clustering can be observed for classification-based feature spaces
under both noise conditions, indicating that the network is able to successfully
filter out noise. We assume that this difference is based on the fact that the
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Table 2. Results of our experiments on the four-dimensional target space. The respec-
tive best values for each configuration are shown in boldface.

Configuration Task Regressor β/λ τ MSE MED R2

Any Any Zero Baseline – – 1.0000 0.9940 0.0000

Cdefault
Transfer

Linear – 0.2743 0.5567 0.6879 0.4409
Lasso 0.05 0.2743 0.4775 0.6419 0.5216

Multi-Task CNN 0.0625 0.4141 0.4041 0.5920 0.5775

Csmall
Transfer

Linear – 0.2777 0.5373 0.6737 0.4575
Lasso 0.02 0.2777 0.4737 0.6396 0.5246

Multi-Task CNN 0.125 0.4118 0.4182 0.6020 0.5567

Ccorrelation
Transfer

Linear – 0.3292 0.7307 0.7825 0.2624
Lasso 0.05 0.3292 0.5478 0.6815 0.4505

Multi-Task CNN 2.0 0.4534 0.4513 0.6115 0.5201

Rdefault
Transfer

Linear – 0.2228 0.9709 0.9054 0.0168
Lasso 0.02, 0.05 0.2228 0.8315 0.8739 0.1631

Multi-Task CNN 2.0 0.3533 0.6211 0.7297 0.3369

Rbest

Transfer
Linear – 0.3019 1.0791 0.9362 -0.0886
Lasso 0.02 0.3019 0.7376 0.8102 0.2605

Multi-Task CNN
0.25,

0.4033 0.5494 0.6846 0.4213
0.5, 2.0
0.0625 0.3893 0.5504 0.6851 0.4144

Table 3. Cluster analysis of the augmented images in the individual feature spaces
(averaged across all folds) using the Silhouette coefficient and the Cosine distance.

Configuration Cdefault Csmall Ccorrelation Rdefault Rbest

0% Noise 0.6448 0.6347 0.5310 -0.0359 0.0818

10% Noise 0.6364 0.6263 0.5180 -0.0300 0.0768

autoencoder needs to preserve very detailed information about its input (both
local and global shape information) in order to create a faithful reconstruction,
while a classification network only needs to preserve pieces of information that
are highly indicative of class membership (rather global than local information).

4.3 Multi-Task Learning

In our multi-task learning experiments, we trained our networks in the different
configurations again from scratch, using however also the mapping loss as addi-
tional training objective. Instead of a two-phase process as used in the transfer
learning setup, we therefore optimize both objectives at once. When training
the networks, we varied the relative weight λ of the mapping loss in order to
explore different trade-offs between the two tasks. We explored the following set-
tings (where λ = 0.25 approximately reflects the relative proportion of mapping
examples in the classification task):

λ ∈ {0.0625, 0.125, 0.25, 0.5, 1.0, 2.0}
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Table 2 also contains the results of our multi-task learning experiments. As
we can observe, mapping performance is considerably better in the multi-task
setting than in the transfer learning setting for all of the configurations under
investigation. The best results are obtained for Cdefault, which is followed
closely by Csmall. Ccorrelation performs again considerably worse than the
other classification-based setups, although its best multi-task results are still su-
perior to all transfer learning results. Moreover, both reconstruction-based setups
are not able to close the performance gap to the classification-based networks
also under multi-task learning. These observations indicate that the multi-task
learning regime is more promising than the transfer learning approach and that
classification is a more helpful secondary task than reconstruction.

When taking a closer look at the optimal values for λ, we note that for
both the Cdefault and the Csmall setting, relatively small values of λ ∈
{0.0625, 0.125} have been selected. For the Ccorrelation configuration, how-
ever, a relatively large mapping weight of λ = 2.0 leads to the best mapping
results, indicating that this configuration requires stronger regularization than
others. Also for Rdefault, a relatively large mapping weight of λ = 2.0 yielded
the best performance, while no unique best setting for λ could be determined
for the Rbest configuration, where different metrics are optimized by different
hyperparameter settings – here, λ = 0.0625 provides a reasonable trade-off.

In all cases, the introduction of the mapping loss leads to a considerable in-
crease in the correlation τ to the dissimilarity ratings. This effect is however to
be expected, since the mapping loss tries to align a part of the internal repre-
sentation with the coordinates of the similarity space, which is explicitly based
on the psychological dissimilarity ratings.

4.4 Generalization to Other Target Spaces

So far, we have only considered a four-dimensional target space. In this section,
we investigate how well the different approaches generalize to target spaces of
different dimensionality. We considered the respective best setups for all com-
binations of classification-based vs. reconstruction-based networks and transfer
learning vs. multi-task learning (cf. Table 2) and retrained them (using the same
values of β/λ) on all other target spaces (one to ten dimensions) of Bechberger
and Scheibel [10], using again a five-fold cross validation.

Figure 3 illustrates the results of these generalization experiments for our
three evaluation metrics. Both transfer learning approaches reach their peak
performance for a two-dimensional target space, even though they have been
optimized on the four-dimensional similarity space. Only with respect to the
MED, performance is best on the one-dimensional target space. However, also the
MED of the zero baseline is smallest for a one-dimensional space. If we consider
the relative MED (by dividing through the MED of the zero baseline), then the
best performance is again obtained on a two-dimensional target space. In all
cases, classification-based transfer learning is clearly superior to reconstruction-
based transfer learning.
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Fig. 3. Results of our generalization experiments.

The multi-task learners on the other hand do not show such a uniform pat-
tern: While the reconstruction-based approach also obtains its optimum for a
two-dimensional target space, the classification-based multi-task learner seems
to prefer a four-dimensional target space. Moreover, both multi-task learners are
more sensitive to the dimensionality of the target space than the transfer learning
approaches: The classification-based multi-task learner considerably outperforms
all other approaches on medium- to high-dimensional target spaces, while falling
behind for a smaller number of dimensions. The reconstruction-based multi-task
learner on the other hand performs quite poorly on high-dimensional spaces
while becoming competitive on low-dimensional target spaces. Both multi-task
learners use a mapping weight of λ = 0.0625, i.e., the smallest value we investi-
gated. However, the size of the classification and reconstruction loss has differed
considerably, with a classification loss of around 1.3 to 1.6, compared to a re-
construction loss of 0.10 to 0.12 (both measured on the test set). The relative
influence of the mapping objective on the overall optimization is thus consid-
erably greater in the classification-based multi-task learner. One may therefore
speculate that even smaller values of λ would have benefited the classification-
based multi-task learner for smaller target spaces.

Overall, the results of this generalization experiment confirm the effects re-
ported in our earlier study [8], where we also observed a performance sweet spot
for a two-dimensional target space in a transfer learning setting. Again, we can
argue that this strikes a balance between a clear semantic structure in the target
space and a small number of output variables to predict. The observed sensitiv-
ity of the multi-task learning approach indicates that the target space should be
carefully chosen before optimizing the multi-task learner.

5 Discussion and Conclusion

In this paper, we have aimed to learn a mapping from line drawings to their
corresponding coordinates in a psychological shape space. We have compared
classification-based networks to autoencoders, investigating both transfer learn-
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ing and multi-task learning. Overall, classification seemed to be a better sec-
ondary task than reconstruction, and multi-task learning consistently outper-
formed transfer learning. We found that the best performance in general was
reached for classification-based multi-task learning, but that this approach was
quite sensitive to the dimensionality of the target space.

We can compare our results to our earlier study [8], where we used a lasso re-
gression on top of a CNN pretrained to classify photographs. There, we achieved
for a four-dimensional target space a MSE of about 0.59, a MED of about 0.73,
and a coefficient of determination of R2 ≈ 0.39. These numbers are considerably
worse than the ones obtained for classification-based transfer learning Section
4.2, indicating that the shape space considered in the current study poses an
easier regression problem. Moreover, we can compare our performance with re-
spect to the coefficient of determination to the results reported by Sanders and
Nosofsky [53], who reported a value of R2 ≈ 0.77 for an eight-dimensional target
space and a more complex network architecture, using a data set of 360 stimuli.
Our best results with R2 ≈ 0.61 on a two-dimensional target space are consider-
ably worse than this and clearly not good enough for practical applications. We
assume that performance in our scenario is heavily constrained by the network
size and the number of stimuli for which dissimilarity ratings were collected.
This urges for further experimentation with more complex architectures, larger
data sets, different augmentation techniques, and additional regularization ap-
proaches.

Overall, our present study has illustrated that it is in principle possible to
predict the coordinates of a given input image in a psychological similarity space
for the shape domain. Although performance is not yet satisfactory, this is an
important step towards making conceptual spaces usable for cognitive AI sys-
tems. Once a robust mapping of reasonably high quality has been obtained,
one can use the full expressive power of the conceptual spaces framework: For
instance, the interpretable directions reported by Bechberger and Scheibel [10]
can give rise to an intuitive description of novel stimuli based on psychological
features. Also categorization based on conceptual regions, common-sense reason-
ing strategies, and concept combination can then be implemented on top of the
predicted coordinates in shape space.

The approach presented in this article can of course also be generalized to
other domains and data sets such as the THINGS data base and its associated
embeddings [26] or the recently published similarity ratings and embeddings
for a subset of ImageNet [50]. It can furthermore be seen as a contribution to
the currently emerging field of research which tries to align neural networks with
psychological models of cognition [1, 5, 6, 29, 35, 36, 44, 46, 47, 48, 53, 54, 59, 60].
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8. Bechberger, L., Kühnberger, K.U.: Generalizing Psychological Similarity Spaces
to Unseen Stimuli – Combining Multidimensional Scaling with Artificial Neu-
ral Networks, pp. 11–36. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-69823-2 2

9. Bechberger, L., Scheibel, M.: Analyzing Psychological Similarity Spaces for Shapes.
In: Alam, M., Braun, T., Yun, B. (eds.) Ontologies and Concepts in Mind and
Machine. pp. 204–207. Springer International Publishing, Cham (2020)

10. Bechberger, L., Scheibel, M.: Modeling the Holistic Perception of Everyday Object
Shapes with Conceptual Spaces (in preparation)

11. Op de Beeck, H.P., Torfs, K., Wagemans, J.: Perceived Shape Similar-
ity among Unfamiliar Objects and the Organization of the Human Ob-
ject Vision Pathway. Journal of Neuroscience 28(40), 10111–10123 (2008).
https://doi.org/10.1523/JNEUROSCI.2511-08.2008

12. Biederman, I.: Recognition-by-Components: A Theory of Human Image Under-
standing. Psychological Review 94(2), 115–147 (1987)

13. Borg, I., Groenen, J.F.: Modern Multidimensional Scaling: Theory and Applica-
tions. Springer Series in Statistics, Springer-Verlag New York, 2nd edn. (2005)

14. Chella, A., Frixione, M., Gaglio, S.: Conceptual Spaces for Computer Vi-
sion Representations. Artificial Intelligence Review 16(2), 137–152 (2001).
https://doi.org/10.1023/a:1011658027344

15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet:
A Large-Scale Hierarchical Image Database. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. pp. 248–255 (June 2009).
https://doi.org/10.1109/CVPR.2009.5206848

16. Derrac, J., Schockaert, S.: Inducing Semantic Relations from Conceptual Spaces:
A Data-Driven Approach to Plausible Reasoning. Artificial Intelligence 228, 66–94
(Nov 2015). https://doi.org/10.1016/j.artint.2015.07.002

17. Diesendruck, G., Bloom, P.: How Specific is the Shape Bias? Child Development
74(1), 168–178 (2003). https://doi.org/https://doi.org/10.1111/1467-8624.00528

18. Dosovitskiy, A., Brox, T.: Inverting Visual Representations With Convolutional
Networks. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (June 2016)

https://doi.org/10.2307/1418869
https://doi.org/10.1371/journal.pcbi.1006613
https://doi.org/10.1162/089892903321662976
https://doi.org/https://doi.org/10.1111/nyas.14593
https://doi.org/10.5281/zenodo.5524374
https://doi.org/10.1007/978-3-030-69823-2_2
https://doi.org/10.1523/JNEUROSCI.2511-08.2008
https://doi.org/10.1023/a:1011658027344
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.artint.2015.07.002
https://doi.org/https://doi.org/10.1111/1467-8624.00528


Grounding Psychological Shape Space in Convolutional Neural Networks 17

19. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to Generate Chairs
With Convolutional Neural Networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2015)

20. Eitz, M., Hays, J., Alexa, M.: How Do Humans Sketch Objects? ACM Trans.
Graph. 31(4) (Jul 2012). https://doi.org/10.1145/2185520.2185540

21. Erdogan, G., Jacobs, R.A.: Visual Shape Perception as Bayesian Inference of 3D
Object-Centered Shape Representations. Psychological Review 124(6), 740–761
(2017)

22. Garcez, A.d., Besold, T.R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T.,
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31. Kaipainen, M., Zenker, F., Hautamäki, A., Gärdenfors, P. (eds.): Conceptual
Spaces: Elaborations and Applications, vol. 405. Springer (2019)

32. Kendall, M.G.: A New Measure of Rank Correlation. Biometrika 30(1-2), 81–93
(06 1938). https://doi.org/10.1093/biomet/30.1-2.81

33. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiV, https:
//arxiv.org/abs/1412.6980 (2014)

34. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems. vol. 25,
pp. 1097–1105. Curran Associates, Inc. (2012), https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

35. Kubilius, J., Bracci, S., Op de Beeck, H.P.: Deep Neural Networks as a Computa-
tional Model for Human Shape Sensitivity. PLOS Computational Biology 12(4),
1–26 (04 2016). https://doi.org/10.1371/journal.pcbi.1004896

https://doi.org/10.1145/2185520.2185540
https://openreview.net/forum?id=Bygh9j09KX
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/s41562-020-00951-3
https://doi.org/10.1167/jov.20.4.10
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1016/0885-2014(93)90008-S
https://doi.org/10.1016/0885-2014(93)90008-S
https://doi.org/10.1093/biomet/30.1-2.81
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1371/journal.pcbi.1004896


18 L. Bechberger and K.-U. Kühnberger
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