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Abstract. This paper introduces a novel approach to automatic ahead-
of-time (AOT) parallelization and optimization of sequential Python pro-
grams for execution on distributed heterogeneous platforms. Our ap-
proach enables AOT source-to-source transformation of Python pro-
grams, driven by the inclusion of type hints for function parameters
and return values. These hints can be supplied by the programmer or
obtained by dynamic profiler tools; multi-version code generation guar-
antees the correctness of our AOT transformation in all cases.
Our compilation framework performs automatic parallelization and so-
phisticated high-level code optimizations for the target distributed het-
erogeneous hardware platform. It includes extensions to the polyhedral
framework that unify user-written loops and implicit loops present in
matrix/tensor operators, as well as automated section of CPU vs. GPU
code variants. Further, our polyhedral optimizations enable both intra-
node and inter-node parallelism. Finally, the optimized output code is
deployed using the Ray runtime for scheduling distributed tasks across
multiple heterogeneous nodes in a cluster.
Our empirical evaluation shows significant performance improvements
relative to sequential Python in both single-node and multi-node exper-
iments, with a performance improvement of over 20,000× when using
24 nodes and 144 GPUs in the OLCF Summit supercomputer for the
Space-Time Adaptive Processing (STAP) radar application.

1 Introduction

Multiple simultaneous disruptions are currently under way in both hardware and
software, as we consider the implications for future parallel systems. In hardware,
“extreme heterogeneity” has become critical to sustaining cost and performance
improvements with the end of Moore’s Law, but poses significant productivity
challenges for developers. In software, the rise of large-scale data science and
AI applications is being driven by domain scientists from diverse backgrounds
who demand the programmability that they have come to expect from high-level
languages like Python [14]. While this paper focuses on Python as an exemplar
of modern high-productivity programming, the approach in this paper is equally
applicable to other high-productivity languages such as Julia [7].

A key challenge facing domain scientists is determining how to enable their
Python-based applications to use the parallelism inherent in both distributed
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and heterogeneous computing. A typical workflow for domain scientists is to
experiment with new algorithms by starting with smaller datasets and then
moving on to larger datasets. A tipping point is reached when the dataset size
becomes too large to be processed within a single node, and another tipping
point is reached when there is a need to use accelerators such as GPUs.

One approach to dealing with these tipping points is to rely on experienced
programmers with a deep (“ninja level”) expertise in computer architecture
and code optimization for accelerators and inter-node communication. However,
this approach is a non-starter for many domain scientists due to its complexity
and the skills required. For example, even though Python bindings for MPI [9]
have been available for many years, there has been very little adoption of these
bindings by domain scientists. An alternate approach is to augment a high-
productivity language with native libraries that include high-performance im-
plementations of commonly used functions, e.g., functions in the NumPy [2] and
SciPy [1] libraries for Python. However, fixed library interfaces and implementa-
tions do not address the needs of new applications and algorithms. Yet another
approach is to develop and use Domain Specific Languages (DSLs); this approach
has recently begun showing promise for certain target domains, e.g., PyTorch
and TensorFlow for machine learning, Halide for image processing computations,
and TACO for tensor kernels. However, the deliberate lack of generality in DSLs
poses significant challenges in requiring domain scientists to learn multiple DSLs
and to integrate DSL kernels into their overall programming workflow, while also
addressing corner cases that may not be supported by DSLs.

In this paper, we make the case for new advances to enable productivity
and programmability of future HPC platforms for domain scientists. The goal
of our system, named AutoMPHC, is Automation of Massively Parallel and Het-
erogeneous Computing, obtained by delivering the benefits of distributed het-
erogeneous hardware platforms to domain scientists without requiring them to
undergo any new training. As a first step towards this goal, this paper intro-
duces a novel approach to automatic ahead-of-time (AOT) parallelization and
optimization of sequential Python programs for execution on distributed hetero-
geneous platforms, and supports program multi-versioning for specializing code
generation to different input data types and different target processors. The op-
timized code is deployed using the Python-based Ray runtime [11] for scheduling
distributed tasks across multiple heterogeneous nodes in a cluster.

As a simple illustration of our approach, consider two versions of the Poly-
Bench [6] correlation benchmark shown in Figures 1 and 2. The first case
represents a list-based pattern implemented using three explicit Python loops
that access elements of lists (as surrogates for arrays), which might have been
written by a domain scientist familiar with classical books on algorithms such as
[13]. The second case represents a NumPy-based pattern with one explicit loop
and a two-dimensional array statement in line 7 of Figure 2, which might have
been written by a domain scientist familiar with matrix operations. A unique
feature of our approach is the ability to support both explicit Python loops and
implicit loops from NumPy operators and library calls in a unified optimization
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1 def kernel(self, float_n: float, data: list, corr: list, mean: list, stddev: list):
2 ...
3 for i in range(0, self.M-1):
4 corr[i][i] = 1.0
5 for j in range(i+1, self.M):
6 corr[i][j] = 0.0
7 for k in range(0, self.N):
8 corr[i][j] += (data[k][i] * data[k][j])
9 corr[j][i] = corr[i][j]

10 corr[self.M-1][self.M-1] = 1.0

Fig. 1. PolyBench-Python correlation: List version (default)

1 from numpy.core.multiarray import ndarray
2 ...
3 def kernel(self, float_n: float, data: ndarray, corr: ndarray, mean: ndarray, stddev: ndarray):
4 ...
5 corr[np.diag_indices(corr.shape[0])] = 1.0
6 for i in range(0, self.M - 1):
7 corr[i,i+1:self.M] = (data[0:self.N,i] * data[0:self.N,i+1:self.M].T).sum(axis=1)
8 tril_indices = np.tril_indices( n=self.M, m=self.M, k=-1 )
9 corr[tril_indices] = corr[triu_indices]

10 corr[self.M - 1, self.M - 1] = 1.0

Fig. 2. PolyBench-Python correlation: NumPy version

Table 1. Execution time of correlation (dataset = large)

List version NumPy version Our optimization (Figure 6c)

152.5 [sec] 2.212 [sec] 0.07163 [sec]

framework. Table 1 shows that the NumPy-based version of the correlation

benchmark performs better than the list version, while our approach (which
can be applied to either style of input) performs significantly better than both.
Additional performance results are discussed in Section 5.

In summary, this paper makes the following contributions:

– A novel approach to automatic ahead-of-time (AOT) parallelization and op-
timization of sequential Python programs for execution on distributed het-
erogeneous platforms. Our approach is driven by the inclusion of type hints
for function parameters and return values, which can be supplied by the
programmer or obtained by dynamic profiler tools; multi-version code gen-
eration guarantees the correctness of our AOT transformation in all cases.

– Automatic parallelization and high-level code optimizations for the target
distributed heterogeneous hardware platform, based on extensions to the
polyhedral framework that unify user-written loops and implicit loops present
in matrix/tensor operators, as well as automated selection of CPU vs. GPU
code variants.

– Automatic code generation for targeting the Ray runtime to schedule dis-
tributed tasks across multiple heterogeneous nodes in a cluster.

– An empirical evaluation for 15 Python-based benchmarks from the Poly-
bench suite on a single node with multiple GPUs, and another evaluation of
the Space-Time Adaptive Processing (STAP) radar application in Python.
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Both evaluations show significant performance improvements due to the use
of AutoMPHC. In the case of STAP, the performance improvement relative to
the original Python code was over 20,000× when using 24 nodes and 144
GPUs (6 GPUs/node) in the OLCF Summit supercomputer.

2 Background

2.1 Intrepydd Compiler

The Intrepydd programming language [23] introduced a subset of Python that
is amenable to ahead-of-time (AOT) compilation into C++. It is intended for
writing kernel functions rather than complete or main programs. The C++ code
generated from Intrepydd kernels can be imported into a Python application or
a C++ application.

A key constraint in the Intrepydd subset of Python is the requirement that
Intrepydd function definitions include type annotations for parameters and re-
turn values. Given these type annotations, the Intrepydd compiler statically
infers the types of local variables and expressions. The Intrepydd tool chain in-
cludes a library knowledge base, which specifies type rules for a wide range of
standard library functions used by Python programs. As discussed in the follow-
ing sections, the AutoMPHC system extends the Intrepydd tool chain to serve as
a Python-to-Python optimization and parallelization system; there is no C++
code generated by AutoMPHC.

It is important to note that Intrepydd also includes extensions to standard
Python to enable C++ code generation. These extensions include statements
with explicit parallelism (e.g., pfor for parallel loops) and special library func-
tions. In contrast, AutoMPHC does not rely on any of these extensions. All input
code to AutoMPHC and all output code generated by AutoMPHC can be executed
on standard Python implementations.

2.2 AutoMPHC Runtime

We use Ray [11] as the base distributed runtime framework. Ray features a
number of properties beneficial for AutoMPHC. First, the ability to simultane-
ously support both stateless and stateful computation—one of its key research
contributions useful for a heterogeneous mix of CPU and GPU compute. State-
less computation, in the form of side effect free tasks, is best suited for processing
large data objects or partitions on numerous CPU resources. Stateful computa-
tion is beneficial for GPU tasks. We create tasks for this distributed runtime by
automatically compiling chunks of code into Ray tasks. Each Ray task then can
be spawned asynchronously. A full directed acyclic graph (DAG) of such task
instantiations is dynamically constructed and submitted for execution without
waiting for intermediate computation results. It enables AutoMPHC to (a) hide
the latency of task instantiation and propagation to workers for execution, (b)
extract pipeline parallelism, and, (c) extract parallelism from the partial order of
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Fig. 3. AutoMPHC distributed runtime architecture.

the dynamically constructed directed acyclic task graph. As Ray tasks are instan-
tiated, they return immediately with a future-like construct, called an ObjectID
— an object handle that refers to a globally addressable object. The object
is eventually fulfilled and can be extracted with a blocking ray.get(object id)

API. We note that the distributed object store (Fig. 3 used for the lifecycle of
these objects is immutable—a property that elides the need for expensive consis-
tency protocols, state coherence protocols, and other synchronization overheads
needed for data correctness. Critically, this alleviates the need for expensive
MPI-style distributed barriers and, therefore, does not suffer from the otherwise
common straggler challenges—an important property for heterogeneous compute
at scale. Finally, data store immutability, combined with the deterministic na-
ture of the task graph, enable fault tolerance, as any missing object in the graph
can be recomputed by simply replaying the sub-graph leading up to and includ-
ing the object’s parent vertex. This mechanism can be triggered automatically
and comes with minimal overhead on the critical path of a task [22].

3 Overview of our Approach

Figure 4 summarizes the overall design of our proposed AutoMPHC system. User-
developed code is a combination of main program code and kernel code, where
the former is executed unchanged and the latter is optimized by AutoMPHC via
automatic ahead-of-time (AOT) source-to-source transformations. There are two
forms of kernel code supported by our system — one in which type annotations
are manually provided by the user, and another in which type annotations are
obtained by a type profiler such as MonkeyType. In both cases, the type an-
notations serve as hints since the multi-version code generation guarantees the
correctness of our AOT transformations in all cases (whether or not the actual
inputs match the type annotations).
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Fig. 4. Overall Design of AutoMPHC system

The kernel functions with type annotations (hints) are first translated by the
Front-end to an Abstract Syntax Tree (AST) representation implemented using
the standard Python Typed AST package. The core optimizations in AutoMPHC

are then performed on the AST, including multi-version code specialization (Sec-
tion 4.1), polyhedral optimizations (Section 4.2), and generation of distributed
parallel code using Ray tasking APIs along with generation of heterogeneous
code using selective NumPy-to-CuPy conversion (Section 4.3). These Static Op-
timizations benefit from the use of the AutoMPHC Knowledge Base, which includes
dataflow and type information for many commonly used library functions. The
transformed code is then executed on a distributed heterogeneous platform using
standard Python libraries in addition to Ray.

4 Optimizations

The AutoMPHC compiler is the extension of Intrepydd compiler [23], which sup-
ports type inference and basic optimizations including loop invariant code mo-
tion, sparsity optimization, and array allocation/slicing optimizations. In the
following sections, we present newly developed optimizations for automatic par-
allelization targeting distributed heterogeneous systems.

4.1 Program Multi-versioning for Specialized Code Optimizations

Multi-versioning is an approach to data-aware optimizations, which generates
multiple code versions specialized under certain conditions at compile-time and
selects a proper code version at runtime. In our framework, we consider two
classes of conditions, legality-based and profitability-based. All the conditions are
organized as decision trees, where legality conditions are located at higher levels
while profitability conditions are at lower levels in general.
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1 def kernel(self, float_n: float, data: ndarray, ...):
2 if type(float_n) == float and type(data) == ndarray and ...:
3 if data.ndim == 2 and ... :
4 ... # Code with type-specific and rank-specific optimizations
5 else:
6 ... # Code with type-specific optimizations
7 else:
8 ... # Code without type-specific optimizations

Fig. 5. Multi-versioning for PolyBench-Python correlation

The legality conditions are mainly used to verify the data type annotations
attached on function parameters and returns. In our approach, the type annota-
tions are used as hints and can be different from actual types given at runtime.
Further, the correctness of array rank/dimensionality inference is critical to the
polyhedral optimizations (Section 4.2). The multi-versioning serves as runtime
checks of annotated/inferred types and ranks for specialized code version while
ensuring correct behavior for others, as shown in Figure 5.

The profitability conditions can cover a broad range of conditions/scenarios
related to runtime performance rather than correctness. As described later, the
AutoMPHC compiler can generate two versions of optimized kernels, one for CPUs
and the other for GPUs. The runtime condition between these two versions is a
typical example of profitability conditions (Section 4.3).

4.2 Polyhedral Optimizations

Polyhedral compilation has provided significant advances in the unification of
affine loop transformations combined with powerful code generation techniques [8,21,24].
However, despite these strengths in program transformation, the polyhedral
frameworks lack support for: 1) dynamic control flow and non-affine access pat-
terns; and 2) library function calls in general. To address the first limitation, we
have extended the polyhedral representation, Static Control Parts (SCoP), to
represent unanalyzable expressions as a compound “black-box” statement with
approximated input/output relations. To address the second limitation, we took
advantage of our library knowledge base to obtain element-wise dataflow rela-
tions among function arguments and return values, whose examples are shown in
Table 2. These unique features enable the co-optimization of both explicit loops
and implicit loops from operators and library calls in a unified optimization
framework, as detailed in the following sections.

Given SCoP representation extracted from the Python IR, the AutoMPHC

polyhedral optimizer, which is built on PolyAST [16,15] framework, computes
dependence constraints and performs program transformations. Finally, the op-
timized SCoP representation is converted back to Python IR with the help of
library knowledge base for efficient library mapping.
Intra-node parallelization: The optimization policy for intra-node level is to
provide sufficient parallelism to fully utilize the efficient multithreaded imple-
mentations such as BLAS-based NumPy and CuPy. Our modified PolyAST [16]
algorithm applies loop distribution to split different library calls while maximiz-
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Table 2. NumPy examples in library knowledge base

Library function Domain Semantics and dataflow

transpose2D (i0, i1) R[i0, i1] := A1[i1, i0]

mult1D,2D (i0, i1) R[i0, i1] := A1[i1]×A2[i0, i1]

sum1D (0) R := ΣkA1[k]

sum2D,axis=1 (i0) R[i0] := sum1D(A1[i0, :])

dot2D,2D (i0, i1) R[i0, i1] := sum1D(mult1D,1D(A1[i0, :], A2[:, i1]))

fft2D,axis=1 (i0) R[i0, :] := fft1D(A1[i0, :])

(a) Original code fragment

(c) Transformed code fragment by intra-node polyhedral optimization

(b) Extracted polyhedral information (SCoP)

Domain: {S[i0, i1] : 0 <= i0 < M - 1 and i0 + 1 <= i1 < M}

Read:   {S[i0, i1] -> data[any1, i0], data[any2, i1] : 0 <= any1, any2 < N}

Write:  {S[i0, i1] -> corr[i0, i1]}

Body:    S[i0, i1] :: corr[i0, i1] = sum(mult(data[:, i0], data[:, i1]))

2 First Author, Second Author, and ...

Table 1. NumPy examples in library knowledge base

Library function Semantics and dataflow

transpose2D R[i0, i1] := A1[i1, i0]

mult1D,2D R[i0, i1] := A1[i1] ⇥ A2[i0, i1]

sum1D R := ⌃kA1[k]

sum2D,axis=1 R[i0] := sum1D(A1[i0, :])

dot2D,2D R[i0, i1] := sum1D(mult1D,1D(A1[i0, :], A2[:, i1]))

↵t2D,axis=1 R[i0, :] := ↵t1D(A1[i0, :])

1 for i in range(0, M-1):

2 corr[i, i+1:M] = (data[0:N, i] * data[0:N, i+1:M].T).sum(axis=1)

3

4 # Polyhedral information

5 # Domain: {S[i0, i1] : 0 <= i0 < M - 1 and i0 + 1 <= i1 < M}

6 # Read: {S[i0, i1] -> data[any1, i0], data[any2, i1] : 0 <= any1, any2 < N}

7 # Write: {S[i0, i1] -> corr[i0, i1]}

8 # Body: S[i0, i1] :: corr[i0, i1] = sum(mult(data[:, i0], data[:, i1]))

Fig. 1. Code fragment from PolyBench-Python correlation

1 tmp1 = np.dot(data[0:N, 0:M].T, data[0:N, 0:M])

2 corr[0:M-1, 0:M] = np.triu(tmp1[0:M-1, 0:M], k=1)

Fig. 2. Transformed code by intra-node polyhedral optimizations
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Fig. 6. Kernel from the PolyBench-Python correlation

ing the iteration domain (i.e., amount of computation) that can be mapped to a
single library function call. The SCoP-to-Python-IR generation stage leverages
the library knowledge base to select the efficient combination of available library
functions for each statement whenever possible. The maximal matching strategy
is currently employed if multiple choices are available.

Figure 6a shows the computationally heavy code fragment of PolyBench-
Python correlation NumPy version, which has a for loop enclosing a sequence
of NumPy function calls: 2-D array transpose overlapping T operator; 1-D×2-D
array multiply overlapping * operator, and 2-D array summation sum to pro-
duce 1-D result. Based on the type inference results, the polyhedral phase first
identifies these library functions with specific types and array ranks. As summa-
rized in Table 2, the library knowledge base provides the element-wise dataflow
information and operational semantics of these functions, which are used to
extract the SCoP information and semantics of each statement (Figure 6b).
Both explicit and implicit loops are unified in a triangular iteration domain; and
the same loop order is selected by the transformation stage. Given statement
body of sum(mult(data[:, i0], data[:, i1])), the SCoP-to-Python-IR gener-
ation stage selects the combination of matrix-matrix multiplication numpy.dot

and 2-D transpose T as the best mapping, followed by numpy.triu to update
only the triangular iteration domain (Figure 6c). As evaluated in Section 5.2,
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Title 3

1 for idx in range(numPulses):

2 ...

3 beamforming[idx,:] = np.squeeze(np.matmul(steerVector11, dataCube)) # S

4 d_X = np.fft.fft(beamforming, fftSize, axis=1) # T

5 d_Y = d_X * d_matchFilterMultiply # U

6

7 # Polyhedral information (read/write omitted due to space)

8 # Domain: {S[i0] : 0 <= i0 < numPulses}

9 # {T[i0] : 0 <= i0 < numPulses}

10 # {U[i0, i1] : 0 <= i0 < numPulses and 0 <= i1 < fftSize}

11 # Body: S[i0] :: beamforming[i0, :] = ...

12 # T[i0] :: d_X[i0, :] = fft(beamforming[i0, :])

13 # U[i0, i1] :: d_Y[i0, i1] = d_X[i0, i1] * d_matchFilterMultiply[i0, i1]

Fig. 3. Code fragment from the STAP Signal Processing Application

1 pfor t1 in range(0, numPulses, __tile_size): # Parallel loop across nodes

2 up1 = min(t1 + __tile_size, numPulses)

3 for c1 in range(t1, up1):

4 ...

5 beamforming[c1,:] = np.squeeze(np.matmul(steerVector11, dataCube)) # S

6 d_X = np.fft.fft(beamforming[t1:up1, :], fftSize, axis=1) # T

7 d_Y = d_X * d_matchFilterMultiply # U

Fig. 4. Transformed code by inter-node polyhedral parallelization
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1 pfor t1 in range(0, numPulses, __tile_size): # Parallel loop across nodes

2 up1 = min(t1 + __tile_size, numPulses)

3 for c1 in range(t1, up1):

4 ...

5 beamforming[c1,:] = np.squeeze(np.matmul(steerVector11, dataCube)) # S

6 d_X = np.fft.fft(beamforming[t1:up1, :], fftSize, axis=1) # T

7 d_Y = d_X * d_matchFilterMultiply # U

Fig. 4. Transformed code by inter-node polyhedral parallelization

(c) Transformed code fragment by inter-node polyhedral parallelization

Domain: {S[i0]     : 0 <= i0 < numPulses}

        {T[i0]     : 0 <= i0 < numPulses}

        {U[i0, i1] : 0 <= i0 < numPulses and 0 <= i1 < fftSize}

Body:    S[i0]     :: beamforming[i0, :] = ...

         T[i0]     :: d_X[i0, :] = fft(beamforming[i0, :])

         U[i0, i1] :: d_Y[i0, i1] = d_X[i0, i1] * d_matchFilterMultiply[i0, i1]

(b) Extracted polyhedral information (read/write omitted due to space)

Fig. 7. Kernel from the STAP Signal Processing Application

this transformation sufficiently increases the intra-node parallelism per library
call and resulted in significant improvements for several benchmarks.

When the input program is written only with explicit loops, e.g., List version
in Figure 2, our approach extracts similar SCoP and generates the same code
with additional conversions between List and NumPy array.

Inter-node parallelization: The optimization policy for inter-node level is
equivalent to the original PolyAST [16] algorithm that maximizes outermost
level parallelism, while incorporated with our data layout transformation ap-
proach [17,18] to reduce the total allocated array sizes and data movement across
Ray tasks. Analogous to the GPU two-level parallelization [15], our polyhedral
optimizer selects different schedules – i.e., compositions of loop transformations
and parallelization – for inter-node and intra-node levels individually; and inte-
grates them into the final schedule via loop tiling.

Figures 7a and 7b respectively show the computational kernel of the STAP
radar application and the extracted SCoP information. The explicit loop with
statement S and the fft call of statement T are handled as 1-D iteration do-
mains while 2-D×2-D array multiply of statement U is handled as a 2-D iteration
domain. The polyhedral optimizer identifies the outermost level parallelism and
computes the inter-node schedule that fuses these statements into a single par-
allel loop. The transformed code after integrating the inter-node and intra-node
schedules is shown in Figure 7c, where pfor is the parallel loop construct to be
distributed across Ray tasks.
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4.3 NumPy-to-CuPy Conversion and Parallelized Code Generation

After the polyhedral phase, the program multi-versioning (Section 4.1) is applied
to the pfor parallel loops and generates both sequential and parallel versions.
The profitability condition, which makes the decision on whether the loop to be
distributed across nodes via Ray runtime, is generated by a simple cost-based
analysis and summarized as a threshold expression using loop counts. This anal-
ysis also includes the feasibility and profitability check of the CuPy conversion
for given sequence of NumPy library calls. The current implementation takes
an all-or-nothing approach for the NumPy-to-CuPy conversion, and more fine-
grained control, e.g., per-array decision, will be addressed in future work.

To generate Ray-based distributed code from high-level pfor loop, the poly-
hedral phase provides the following data access information.

pfor (output = {varout1 : typeout1, varout2 : typeout2, ...},
input = {varin1 : typein1, varin2 : typein2, ...},
transfer = module name)

The output and input clauses respectively specify the produced and referenced
variables by the pfor loop and their corresponding types, while transfer clause
indicates the possibility of NumPy-to-CuPy conversion based on the polyhedral
dataflow analysis and library compatibility. Due to the space limit, the generated
code with Ray tasking APIs is omitted.

4.4 Important Packages Used in Tool Chain Implementations

Our AutoMPHC compilation flow is built on top of the Python Typed AST pack-
age [5], which serves as the baseline IR to perform fundamental program anal-
yses and transformations such as type inference, loop invariant code motions,
and constant propagations. For the polyhedral optimizations presented in Sec-
tion 4.2, we employ islpy package, the Python interface to the Integer Set Li-
brary (ISL) [20] for manipulating sets and relations of integer points bounded by
linear constraints. Beside the polyhedral representations using islpy, we employ
sympy [19] to manage symolic expressions observed in the Typed AST.

5 Experimental Results

5.1 Experimental Setup

We use a standard GPU-equipped workstation, Titan Xp, for single-node ex-
periments (Section 5.2) and two leading HPC platforms, NERSC Cori [3] and
OLCF Summit [4] supercomputers, for multi-node experiments (Section 5.3).
The single-node specification for each platform is summarized in Table 3. For
Summit, we manually build Ray and its dependencies from scratch because there
is currently no out-of-the-box Python Ray package for POWER.
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Table 3. Hardware Platform Information (per node) and software versions

Per node Cori-GPU Summit Titan Xp (workstation)

CPU 2 × Intel Xeon Gold 6148 2 × IBM POWER9 1 × Intel i5-7600 CPU
@ 2.40 GHz (40 cores/node) @ 3.1 GHz (44 cores/node) @ 3.50GHz (4cores)

GPU 8 × NVIDIA Tesla V100 6 × NVIDIA Tesla V100 1 × NVIDIA Pascal

Memory 384GB 512GB 15GB

Interconnect InfiniBand + PCIe (CPUs-GPUs) InfiniBand N/A
+ NVLink(GPUs) + NVLink (CPUs-GPUs, GPUs)

Python / NumPy / CuPy 3.7.3 / 1.16.4 / 7.4.0 3.7.3 / 1.16.0 / 7.4.0 3.6.9 / 1.19.5 / 7.2.0

Ray 0.8.4 0.7.7 0.8.4

Table 4. PolyBench-Python baselines: Execution time in second (dataset = large)

2mm 3mm atax bicg correlation covariance doitgen gemm

List Default [sec] 224.4 356.2 0.6578 0.6730 152.5 305.7 54.46 147.4

List Pluto [sec] 205.2 337.9 0.8381 0.8304 152.1 153.8 54.45 191.5

NumPy [sec] 0.0214 0.03252 0.002516 0.002447 2.212 3.813 0.1250 0.01789

gemver gesummv mvt symm syr2k syrk trmm

List Default [sec] 1.510 0.3068 0.8710 140.4 171.4 96.66 91.10

List Pluto [sec] 1.453 0.3154 0.8714 140.5 137.9 81.73 93.27

NumPy [sec] 0.04676 0.001074 0.002537 1.656 2.667 0.7839 0.8499

5.2 Single-node Results (Polybench)

We first evaluate the impact of our polyhedral optimizations using PolyBench-
Python [6], which is the Python implementation of PolyBench [12], a widely used
benchmark kernels for compiler evaluations. We use total 15 benchmarks shown
in Table 4, which are appropriate to evaluate the current library-oriented opti-
mization strategy, while the evaluation of other 15 benchmarks will be addressed
in our on-going work on hybrid Python/C++ code generation.

PolyBench Python provides a variety of benchmark implementations, includ-
ing default List version, optimized List version by the Pluto polyhedral com-
piler [8], and NumPy version. Table 4 shows the execution time of these versions
using “large” dataset. While the Pluto optimization improves the performance,
NumPy version largely outperforms List versions for all benchmarks.

In the following experiments, we use NumPy version as the baseline of our
comparison, and “extra large” dataset to ensure sufficient execution time. Fig-
ure 8 shows the GFLOP/s of three experimental variants:

– NumPy baseline: the original NumPy implementation from PolyBench.
– AutoMPHC opt-CPU: the CPU optimized version by AutoMPHC framework.
– AutoMPHC opt-GPU: the GPU optimized version by AutoMPHC framework

enabling NumPy-to-CuPy conversion.

Comparing the NumPy and AutoMPHC opt-CPU versions, our polyhedral op-
timization gives 8.7× – 212.4× performance improvements for correlation,
covariance, doitgen, symm, syr2k, syrk, and trmm, while showing comparable
performance for other benchmarks. Enabling NumPy-to-CuPy conversion fur-
ther improves the performance for most benchmarks, with two exceptions of
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Fig. 8. PolyBench-Python performance on NVIDIA Titan Xp (dataset = extra large)

gesummv and syrk. In this evaluation, our profitability conditions always se-
lected GPU variants. The improvement of CPU/GPU selection based on offline
profiling is an important future work.

5.3 Multi-node Results (STAP)

We demonstrate the multi-node performance of our AutoMPHC compiler frame-
work using one of our target applications in the signal processing domain, namely
the Space-Time Adaptive Processing (STAP) application for radar systems [10].
The problem size used for STAP is to evaluate the analysis of 144 data cubes for
the CPU case; and 2304 data cubes for the GPU case, where each data cube has
# pulses per cube = 100, # channels = 1000, and # samples per pulse = 30000.
The throughput required for real-time execution is 33.3 [cubes/sec]. There are
three experimental variants as listed below:

– Python NumPy: The original single-node CPU implementation.
– Python CuPy: CuPy-based single-node GPU implementation, manually ported

from the original Python NumPy version.
– AutoMPHC: Automatic parallelization by the AutoMPHC compiler of the origi-

nal Python NumPy version, running on the Ray distributed runtime.

Figures 9 and 10 show the throughput performance, i.e., number of data cubes
processed per second, respectively on Cori and Summit. Given the Python
NumPy version as input, the AutoMPHC compiler automatically parallelized the
major computation kernel and mapped to GPUs via NumPy-to-CuPy conver-
sions. This significantly improves the throughput performance of the baseline
Python NumPy version, while obtaining comparable performance with the man-
ually ported CuPy implementation when using a single GPU. The AutoMPHC

version also shows good multi-node scalability based on the Ray distributed
runtime up to 44.58 [cubes/sec] using 24 nodes on Summit, which satisfies the
domain-specific throughput requirement of 33.3 [cubes/sec] in the real-time sce-
nario of actual radar systems. The AutoMPHC version also shows good single-node
performance on Cori, 4.40 [cubes/sec], but the multi-node scalability on Cori is
more limited than on Summit. One reason for this could be the difference in
networks, i.e., Summit’s NVLink (50GB/s) vs. Cori’s PCIe 3.0 (16GB/s). In the
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Fig. 9. STAP radar application performance on NERSC Cori supercomputer
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Fig. 10. STAP radar application performance on OLCF Summit supercomputer

parallelized code by AutoMPHC, each parallel task performs the computation on
the GPU-side and returns the result via the device-to-host data (D2H) trans-
fers. We expect that the low-latency D2H transfer on NVLink contributed to the
good scalability of the AutoMPHC-generated code on the Summit system.

6 Conclusions

This paper describes AutoMPHC —a programming system designed to deliver the
benefits of distributed heterogeneous hardware platforms to domain scientists
who naturally use high-productivity languages like Python. In our approach,
the parameters and return values of kernel Python functions are annotated
with type hints, manually by users or automatically by profiling tools. Based
on these type hints, the AutoMPHC compiler performs automatic AOT paral-
lelization, based on advanced polyhedral optimizations, CuPy-driven GPU code
generation, and Ray-targeted heterogeneous distributed code generation and ex-
ecution. The correctness of our AOT parallelization is guaranteed by multi-
version code generation, since code versions with type-specific optimizations are
executed only when the actual runtime types match the type hints. Our empir-
ical evaluations using PolyBench-Python for workstation performance and the
STAP radar application for heterogeneous distributed performance show signif-
icant performance improvements, e.g., up to 358× improvement for PolyBench
and up to 20,000× improvement for the STAP radar application, relative to
baseline NumPy-based implementations. Opportunities for future work include
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hybrid Python/C++ code generation, fine-grained NumPy-to-CuPy conversion,
and profile-based CPU/GPU runtime selection.
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