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Motivation

Kernel execution on a GPU may not scale well due to architecture constraints and 
saturation of computational resources like pipeline stalls, L1-cache trashing, global 
memory bandwidth, etc.
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Waste of computational power

Kernels like Reduction do not scale well
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GPU resources allocation to kernels: SMT

Spatial Multitask (SMT): CTAs are assigned to a subset of SMs
(CTAs of one kernel in light blue, CTAs of other kernels in light orange)
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Concurrent Kernel Execution (CKE)

A kernel can be co-executed with another kernel with complimentary requirements to 
improve performance
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Slowdown Model

Best results obtained by co-executing compute bound (CB) kernels together with 
memory bound (MB) kernels
A slowdown model can be used to obtain the best mapping:
 Predict Normalized Progress, NP, for each SM allocation

 Use some criteria like fairness, STP or ANTT to choose the best mapping
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HSM: A Hybrid Slowdown Model for Multitasking 
GPUs, Zhao, Jahre and Eeckhout, ASPLOS’20

• NP of compute-bound kernels is predicted

as ೎್
ೞ೓ೌೝ೐೏

೎್
ೌ೗೚೙೐ where is the 

total number of SMs allocated and 
is the total number of SMs in the GPU.

• NP of memory-bound kernels is predicted 
using the effective bandwidth utilization, 
which can be obtained from the Row 
Buffer Hit rate (RBH)
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GPU resources allocation to kernels: SMK

Simultaneous Multikernel (SMK): CTAs are assigned to all SMs
(CTAs of one kernel in light blue, CTAs of other kernels in light orange)
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CKE using SMK

Performance under SMK allocation can improve significatively
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Objectives

Compare

Compare SMK with 
respect to SMT in 
terms of performance 
using
• Average Normalized Turn-

around Time (ANTT)
• System Throughput (STP)

Build

Build a slowdown 
model for SMK

Implement

Implement a fairness-
based CTA allocation 
policy

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 11



Testbed

GPGPU-sim v4.0 modified to support SMT and SMK
Simulated system: Volta Titan V, with 80 SMs and HBM memory with 3 stacks and 
24 channels
Benchmarks: 14 kernels from CUDA SDK, Rodinia, Parboil and Chai
 8 MB and 6 CB

Concurrent kernel execution test: both kernels are launched at the same time, and 
stopped when one of them has no new CTAs left to allocate
Performance metrics:
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SMK vs SMT
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Using HSM with SMK

NP prediction for CB kernels under SMK allocation is not very good
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1. Allocate half SMs use to each kernel
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HSM slowdown prediction with SMK

1. Allocate half SMs use to each kernel. Predict NP of both kernels
2. Give (or take) SMs use to the CB kernel
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A hybrid piece-wise slowdown model

1. Start at one extrema: detect whether kernel is CB or MB
2. Give (or take) SMs use to the CB kernel
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A hybrid piece-wise slowdown model

2. Give (or take) SMs use to the CB kernel. Adjust NP with the real value
3. Give (or take) SMs use to the CB kernel.
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A hybrid piece-wise slowdown model

3. Give (or take) SMs use to the CB kernel. Adjust NP with the real value
4. Give (or take) SMs use to the CB kernel…
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HSM-Fair
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HPSM-Fair
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Prediction error
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Performance evaluation
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Conclusions and future work

We have compared two CTA distribution strategies: SMT and SMK

We have built a Hybrid Piece-wise Slowdown Model that predicts accurately 
the normalized progress of co-executing kernels

We have implemented a fairness-based CTA allocation policy

In the future, we plan to develop a more sophisticated model for kernel 
performance to reduce errors and number of approximations
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