
A hybrid piece-wise slowdown model 
for concurrent kernel execution on GPU

B. López-Albelda, F. M. Castro, J. M. González-Linares and N. Guil



Contents

Motivation

Objectives

A hybrid piece-wise slowdown model

Performance evaluation

Conclusions and future work

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 2



Motivation

Kernel execution on a GPU may not scale well due to architecture constraints and 
saturation of computational resources like pipeline stalls, L1-cache trashing, global 
memory bandwidth, etc.

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 3

L2 Cache

Global Memory

SM-0

RegistersRegisters

L1/SMEML1/SMEM Read 
only

Read 
only

SM-1

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-2

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-3

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM: Streaming Multiprocessor
CTA: Cooperative Threads Array

CTA CTA CTA CTA CTA CTA CTA CTA



Waste of computational power

Kernels like Reduction do not scale well

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 4

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

IP
C

Normalized SMs use

Performance achieved by Reduction kernel



GPU resources allocation to kernels: SMT

Spatial Multitask (SMT): CTAs are assigned to a subset of SMs
(CTAs of one kernel in light blue, CTAs of other kernels in light orange)

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 5

L2 Cache

Global Memory

SM-0

RegistersRegisters

L1/SMEML1/SMEM Read 
only

Read 
only

SM-1

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-2

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-3

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM: Streaming Multiprocessor
CTA: Cooperative Threads Array

CTA CTA CTA CTA CTA CTA CTA CTA



Concurrent Kernel Execution (CKE)

A kernel can be co-executed with another kernel with complimentary requirements to 
improve performance

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 6

0.9

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1

ST
P

Normalized SMs use in co-execution

System Throughput for Reduction and GCED kernels

𝑆𝑇𝑃 =
𝐼𝑃𝐶ோா஽

௦௛௔௥௘ௗ

𝐼𝑃𝐶ோா஽
௔௟௢௡௘

+
𝐼𝑃𝐶ீ஼ா஽஽

௦௛௔௥௘ௗ

𝐼𝑃𝐶ீ஼ா஽஽
௔௟௢௡௘



Slowdown Model

Best results obtained by co-executing compute bound (CB) kernels together with 
memory bound (MB) kernels
A slowdown model can be used to obtain the best mapping:
 Predict Normalized Progress, NP, for each SM allocation

 Use some criteria like fairness, STP or ANTT to choose the best mapping

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 7

𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = min
௜,௝

𝑁𝑃௜

𝑁𝑃௝

𝑁𝑃 =
𝐼𝑃𝐶௦௛௔௥௘ௗ

𝐼𝑃𝐶௔௟௢௡௘



HSM: A Hybrid Slowdown Model for Multitasking 
GPUs, Zhao, Jahre and Eeckhout, ASPLOS’20

• NP of compute-bound kernels is predicted

as ೎್
ೞ೓ೌೝ೐೏

೎್
ೌ೗೚೙೐ where is the 

total number of SMs allocated and 
is the total number of SMs in the GPU.

• NP of memory-bound kernels is predicted 
using the effective bandwidth utilization, 
which can be obtained from the Row 
Buffer Hit rate (RBH)

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
P

Normalized SMs use

Matrix Multiplication NP

Prediction
Real values

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
N

P
Normalized SMs use

Vector Addition NP

Prediction
Real values



GPU resources allocation to kernels: SMK

Simultaneous Multikernel (SMK): CTAs are assigned to all SMs
(CTAs of one kernel in light blue, CTAs of other kernels in light orange)

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 9

L2 Cache

Global Memory

SM-0

RegistersRegisters

L1/SMEML1/SMEM Read 
only

Read 
only

SM-1

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-2

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM-3

RegistersRegisters

L1/SMEML1/SMEM Read 
only
Read 
only

SM: Streaming Multiprocessor
CTA: Cooperative Threads Array

CTA CTA CTA CTA CTA CTA CTA CTA



CKE using SMK

Performance under SMK allocation can improve significatively

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 10

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1

ST
P

Normalized SMs use in co-execution

RED/GCED SMK

RED/GCED SMT



Objectives

Compare

Compare SMK with 
respect to SMT in 
terms of performance 
using
• Average Normalized Turn-

around Time (ANTT)
• System Throughput (STP)

Build

Build a slowdown 
model for SMK

Implement

Implement a fairness-
based CTA allocation 
policy

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 11



Testbed

GPGPU-sim v4.0 modified to support SMT and SMK
Simulated system: Volta Titan V, with 80 SMs and HBM memory with 3 stacks and 
24 channels
Benchmarks: 14 kernels from CUDA SDK, Rodinia, Parboil and Chai
 8 MB and 6 CB

Concurrent kernel execution test: both kernels are launched at the same time, and 
stopped when one of them has no new CTAs left to allocate
Performance metrics:

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 12

௦௛௔௥௘ௗ

௔௟௢௡௘
௜ ௝

௜ ௝ ௜,௝

௜

௝



SMK vs SMT

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 13



Using HSM with SMK

NP prediction for CB kernels under SMK allocation is not very good

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 14

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
P

Normalized SMs use

GCED NP using SMT

Prediction
Real values

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
N

P
Normalized SMs use

GCED NP using SMK

Prediction
Real values



0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
P

Normalized SMs use

RED Real values

GCED Real values

HSM slowdown prediction with SMK

1. Allocate half SMs use to each kernel

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 15





HSM slowdown prediction with SMK

1. Allocate half SMs use to each kernel. Predict NP of both kernels
2. Give (or take) SMs use to the CB kernel

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 16

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
P

Normalized SMs use

RED Prediction

GCED Prediction

RED Real values

GCED Real values




error



0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
P

Normalized SMs use

RED Real values

GCED Real values

RED Prediction

A hybrid piece-wise slowdown model

1. Start at one extrema: detect whether kernel is CB or MB
2. Give (or take) SMs use to the CB kernel

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 17







0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
P

Normalized SMs use

RED Real values

GCED Real values

RED Prediction

A hybrid piece-wise slowdown model

2. Give (or take) SMs use to the CB kernel. Adjust NP with the real value
3. Give (or take) SMs use to the CB kernel.

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 18









0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
P

Normalized SMs use

RED Real values

GCED Real values

RED Prediction

A hybrid piece-wise slowdown model

3. Give (or take) SMs use to the CB kernel. Adjust NP with the real value
4. Give (or take) SMs use to the CB kernel…

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 19










HSM-Fair

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 20

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00
Fa

irn
es

s
Normalized SMs use

Predicted Fairness
Real Fairness

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
P

Normalized SMs use

RED Prediction
GCED Prediction
RED Real values
GCED Real values



2



2



HPSM-Fair

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 21

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
P

Normalized SMs use

RED Real values

GCED Real values

RED Prediction








0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00
Fa

irn
es

s

Normalized SMs use

Predicted Fairness
Real Fairness











Prediction error

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 22



Performance evaluation

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 23

0.6

0.8

1

1.2

1.4

1.6

1.8

Sorted all workloads

STP

Best Fair

HSM

HPSM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sorted all workloads

Fairness

Best fair

HSM

HPSM

0

0.5

1

1.5

2

2.5

3

3.5

Sorted all workloads

ANTT

Best Fair

HSM

HPSM



Conclusions and future work

We have compared two CTA distribution strategies: SMT and SMK

We have built a Hybrid Piece-wise Slowdown Model that predicts accurately 
the normalized progress of co-executing kernels

We have implemented a fairness-based CTA allocation policy

In the future, we plan to develop a more sophisticated model for kernel 
performance to reduce errors and number of approximations

A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 24



A hybrid piece-wise slowdown model for concurrent kernel execution on GPU 25

THANK YOU FOR YOUR 
ATTENTION!

ANY QUESTIONS?


