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Abstract. Loop invariant generation, which automates the generation
of assertions that always hold at the entry of a while loop, has many
important applications in program analysis and formal verification. In
this work, we target an important category of while loops, namely affine
while loops, that are unnested while loops with affine loop guards and
variable updates. Such a class of loops widely exists in many programs
yet still lacks a general but efficient approach to invariant generation. We
propose a novel matrix-algebra approach to automatically synthesizing
affine inductive invariants in the form of an affine inequality. The main
novelty of our approach is that (i) the approach is general in the sense
that it theoretically addresses all the cases of affine invariant generation
over an affine while loop, and (ii) it can be efficiently automated through
matrix-algebra (such as eigenvalue, matrix inverse) methods.

The details of our approach are as follows. First, for the case where
the loop guard is a tautology (i.e., ‘true’), we show that the eigenvalues
and their eigenvectors of the matrices derived from the variable updates
of the loop body encompass all meaningful affine inductive invariants.
Second, for the more general case where the loop guard is a conjunction
of affine inequalities, our approach completely addresses the invariant-
generation problem by first establishing through matrix inverse the rela-
tionship between the invariants and a key parameter in the application
of Farkas’ lemma, then solving the feasible domain of the key parameter
from the inductive conditions, and finally illustrating that a finite num-
ber of values suffices for the key parameter w.r.t a tightness condition
for the invariants to be generated.

Experimental results show that compared with previous approaches,
our approach generates much more accurate affine inductive invariants
over affine while loops from existing and new benchmarks within a few
seconds, demonstrating the generality and efficiency of our approach.

1 Introduction

An invariant is a logical assertion at a certain program location that always holds
whenever the program executes across that location. Invariants are indispens-
able parts of program analysis and formal verification, and thus the generation of
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invariants has been key to the proof and analysis of crucial properties like reach-
ability [3,6,15], time complexity [9] and safety [2,32]. To ease program analysis
and formal verification, there has been a long thread of research on approaches
to automatic generation of invariants, including constraint solving [10,12,27],
recurrence analysis [17,24,29,31], abstract interpretation [13,14], logical infer-
ence [18,19,38], dynamic analysis [33,39], and machine learning [20,23,44]. To
guarantee that an assertion is indeed an invariant, the widely-adopted paradigm
is to generate an inductive invariant that holds for the first execution and
for every periodic execution to the particular program location [12,32]. In this
work, we consider an important subclass of invariants called numerical invariants
which are assertions over the numerical values taken by the program variables,
and are closely related to many common vulnerabilities like integer overflow,
buffer overflow, division by zero and array out-of-bound. More specifically, we
consider affine inductive invariants in the form of an affine inequality over pro-
gram variables, and focus on affine while loops that have affine loop guards (as
a conjunction of affine inequalities) and affine updates for the program variables
but do not have nested loops.

To automate the generation of affine inductive invariants, we adopt the
constraint-solving based approach with three steps. First, it establishes a tem-
plate with unknown parameters for the target invariants. Second, it collects
constraints derived from the inductive conditions. Finally, it solves the unknown
parameters to get the desired invariants. Prior work in this space [12,37] lever-
ages Farkas’ lemma to provide a sound and complete characterization for the
inductive conditions and then generates the affine inductive invariants either by
the complete approach of quantifier elimination [12] or through several heuris-
tics [37]. Specifically, the StInG invariant generator [40] implements the approach
in [37], and the InvGen invariant generator [22] integrates abstract interpreta-
tion as well as the approach in [37]. Furthermore, a recent effort [34] leverages
eigenvalues and eigenvectors for inferring a restricted class of invariants. Finally,
some recent work considers decidable logic fragments that directly verify prop-
erties of loops [4,11,28,30]. Compared with other approaches such as machine
learning and dynamic analysis, constraint solving has a theoretical guarantee on
the correctness and accuracy of the generated invariants, yet typically at the
cost of higher runtime complexity.

The novelty of our approach lies in that it completely addresses the con-
straints derived from Farkas’ lemma by matrix methods, thus ensuring both
generality and efficiency. In detail, this paper makes the following contributions
(due to the page limit, the current paper is abridged. The full version is available
at [25]):

– For affine while loops with tautological guard, we prove that the affine induc-
tive invariants are determined by the eigenvalues and eigenvectors of the
matrices that describe variable updates in the loop body.

– For affine while loops whose loop guard is a conjunction of affine inequali-
ties, we solve the affine inductive invariants by first deriving through matrix
inverse a formula with a key parameter in the application of Farkas’ lemma,
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then solving the feasible domain of the key parameter from the inductive con-
ditions, and finally showing that it suffices to choose a finite number of values
for the key parameter if one imposes a tightness condition on the invariants.

– We generalize our results to affine while loops with non-deterministic updates
and to bidirectional affine invariants. A continuity property on the invari-
ants w.r.t. the key parameter is also proved for tackling the numerical issue
arising from the computation of eigenvectors. Experimental results on exist-
ing benchmarks and new benchmarks arising from linear dynamical systems
demonstrate the generality and efficiency of our approach.

1.1 Related Work

Constraint Solving. There have been several prior approaches [12,37] using
constraint solving for invariant generation based on Farkas’ lemma. Compared
to the approach in [12] that uses quantifier elimination to solve the constraints
from Farkas’ lemma, our approach is more efficient since it only involves the
matrix computation. Compared with [37] that uses several heuristics, our app-
roach is more general and complete in addressing all the cases in affine invariant
generation. While the approach in [34] also uses eigenvectors, it is restricted to
the subclass of equality and convergent invariants. In contrast, our approach
targets at general affine inductive invariants over affine while loops. Other prior
work [4,11,28,30] considers to have a decidable logic for unnested affine while
loops with tautological guard but no conditional branches. Compared with them,
our approach handles general affine while loops and targets at invariant genera-
tion.

Abstract Interpretation. A long thread of research to infer inductive invari-
ants is using abstract interpretation [1,7,22,35] framework which constructs
sound approximations for program semantics. In a nutshell, it first establishes
an abstract domain for the specific form of properties to be generated, and then
performs fixed-point computation in the abstract domain. Abstract interpreta-
tion generates invariants whose precision depends on the abstract domain and
abstract operators, except for rare special cases [21,37].

Recurrence Analysis. Another closely-related technique is recurrence anal-
ysis [8,17,24,29,31]. The main idea is transforming the problem of invariant
generation into a recurrence relation problem and then solve the latter one. The
main limitation of recurrence analysis is that it requires the underlying recur-
rence relation to have a closed-form solution. This requirement, unfortunately,
does not hold for the general case of affine inductive invariants over affine while
loops.

Logical Inference. Invariants could also be obtained through logical inference,
such as abductive inference [16], Craig interpolation [18], ICE learning [19,43],
random search [38], etc. These approaches, however, cannot provide any theoret-
ical guarantee on the accuracy of the generated numerical invariants. In contrast,
our approach essentially addresses this issue.
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Dynamic Analysis. Dynamic analysis [33,39] has also been exploited to invari-
ant generation. The major process is first to collect the execution traces of a
particular program by running it multiple times, and then guess the invariants
based on these traces. As indicated in its process, dynamic analysis provides no
guarantee on the correctness or accuracy of the inferred invariants, yet still pays
the price of running the program at a large amount of time.

Machine Learning. There is a recent trend of applying machine learn-
ing [20,23,44] to solve the invariant-generation problem. Such approaches first
establish a (typically large) training set of data, then use training approaches
such as neural networks to generate invariants. Compared to our approach, those
approaches require a large training set, while still having no theoretical guaran-
tee on the correctness or accuracy. Specifically, such approaches cannot produce
specific numerical values (e.g., eigenvalues) that are required to handle some
examples in this work.

2 Preliminaries

In this section, we specify the class of affine while loops and define the affine-
invariant-generation problem over such loops. Throughout the paper, we use
V = {x1, ..., xn} to denote the set of program variables in an affine while loop;
we abuse the notation V so that it also represents the current values (before the
execution of the loop body) of the original variables in V , and use the primed
variables V ′ := {x′ | x ∈ V } for the next values (after the execution of the
loop body). Furthermore, we denote by x = [x1, ..., xn]T the vector variable that
represents the current values of the program variables, and by x′ = [x′

1, ..., x
′
n]T

the vector variable for the next values.
An affine while loop is a while loop without nested loops that has affine

updates in each assignment statement and possibly multiple conditional branches
in the loop body. To formally specify the syntax of it, we first define affine
inequalities and assertions, program states and satisfaction relation between
them as follows.

Affine Inequalities and Assertions. An affine inequality φ is an inequality
of the form cT · y + d ≤ 0 where c is a real vector, y is a vector of real-valued
variables and d is a real scalar. An affine assertion is a finite conjunction of affine
inequalities. An affine assertion is satisfiable if it is true under some assignment
of real values to its variables. Given an affine assertion ψ over vector variable
x, we denote by ψ′ the affine assertion obtained by substituting x in ψ with its
next-value variable x′.

Program States. A program state v is a real vector v = [v1, ..., vn]T such that
each vi is a concrete value for the variable xi (in the vector variable x). We say
that a program state v satisfies an affine inequality φ = cT ·x+d ≤ 0, written as
v |= φ, if it holds that cT ·v+d ≤ 0. Likewise, v satisfies an affine assertion ψ if
it satisfies every conjunctive affine inequality in ψ. Furthermore, given an affine
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assertion ψ with both x and x′, we say that two program states v,v′ satisfy ψ,
written as v,v′ |= ψ, if ψ is true when one substitutes x by v and x′ by v′.

We then illustrate the syntax of (unnested) affine while loops as follows.

Affine While Loops. We consider affine while loops that take the form:

initial condition θ : R · x + f ≤ 0
while G : P · x + q ≤ 0 do

case ψ1 : T1 · x − T′
1 · x′ + b1 ≤ 0 (τ1 ) ;

...
case ψk : Tk · x − T′

k · x′ + bk ≤ 0 (τk ) ;
end

(†)

where (i) θ is an affine assertion that specifies the initial condition for inputs and
is given by the real matrix R and vector f , (ii) G is an affine assertion serving
as the loop guard given by the real matrix P and vector q, and (iii) each ψj

is an affine assertion that represents a conditional branch, with the relationship
between the current-state vector x and the next-state vector x′ given by the
affine assertion τj := Tj · x − T′

j · x′ + bj ≤ 0 with transition matrices Tj ,T′
j

and vector bj . In this work, we always assume that the rows of R are linearly
independent (this condition means that every variable xi has one independent
initial condition attached to it, which holds in most situations such as a fixed
initial program state), such that RT is left invertible; we denote its left inverse
as (RT)−1

L .
The execution of an affine while loop is as follows. First, the loop starts with

an arbitrary initial program state v∗ that satisfies the initial condition θ. Then in
each loop iteration, the current program state v is checked against the loop guard
G. In the case that v |= G, the loop arbitrarily chooses a conditional branch ψj

satisfying v |= ψj , and sets the next program state v′ non-deterministically such
that v,v′ |= τj ; the next program state v′ is then set as the current program
state. Otherwise (i.e., v �|= G), the loop halts immediately.

Now we define affine inductive invariants over affine while loops. Informally,
an affine inductive invariant is an affine inequality satisfying the initiation and
consecution conditions which mean that the inequality holds at the start of
the loop (initiation) and is preserved under every iteration of the loop body
(consecution).

Affine Inductive Invariants. An affine inductive invariant for an affine while
loop (†) is an affine inequality Φ that satisfies the initiation and consecution
conditions as follows:

– (Initiation) θ implies Φ, i.e., v |= θ implies v |= Φ for all program states v;
– (Consecution) for all program states v,v′ and every ψj , τj (1 ≤ j ≤ k) in

(†), we have that (v |= G ∧ v |= Φ ∧ v,v′ |= τj) ⇒ v′ |= Φ′.

From the definition above, it can be observed that an affine inductive invariant is
an invariant, in the sense that every program state traversed (as a current state
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at the start or after every loop iteration) in some execution of the underlying
affine while loop will satisfy the affine inductive invariant.

From now on, we abbreviate affine while loops as affine loops and affine
inductive invariants as affine invariants.

Problem Statement. In this work, we study the problem of automatically gen-
erating affine invariants over affine loops. Our aim is to have a complete math-
ematical characterization on all such invariants and develop efficient algorithms
for generating these invariants.

3 Affine Invariants via Farkas’ Lemma

Affine invariant generation through Farkas’ lemma is originally proposed in [12,
37]. Farkas’ lemma is a fundamental result in the theory of linear inequalities that
leads to a complete characterization for the affine invariants. Since our approach
is based on Farkas’ lemma, we present a detailed account on the approaches
in [12,37], and point out the weakness of each of the approaches.

Theorem 1 (Farkas’ Lemma). Consider the following affine assertion S over
real-valued variables y1, . . . , yn:

S :

⎡
⎢⎣

a11y1 + ... + a1nyn + b1 ≤ 0
...

ak1y1 + ... + aknyn + bk ≤ 0

⎤
⎥⎦

when S is satisfiable, it entails a given affine inequality

φ : c1y1 + ... + cnyn + d ≤ 0

if and only if there exist non-negative real numbers λ0, . . . , λk such that (i)
cj =

∑k
i=1 λiaij for 1 ≤ j ≤ n and (ii) d = (

∑k
i=1 λibi) − λ0.

The application of Farkas’ lemma can be visualized by a table form as follows:

λ0

λ1

...
λk

−1 ≤ 0
a11y1 + ... + a1nyn +b1 ≤ 0

...
...

ak1y1 + ... + aknyn +bk ≤ 0

⎫
⎪⎬
⎪⎭

(S)

c1y1 + ... + cnyn +d ≤ 0 (φ)

(‡)

The intuition of the table form above is that one first multiplies the λi’s on the
left to their corresponding affine inequalities (in the same row) on the right, and
then sums these affine inequalities together to obtain the affine inequality at the
bottom. In this paper, we will call the table form as Farkas table.

Given an affine loop as (†), the approaches in [12,37] first establish a template
Φ : c1x1 + ... + cnxn + d ≤ 0 for an affine invariant where c1, . . . , cn, d are
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the unknown coefficients. Second, they establish constraints for the unknown
coefficients from the initiation and consecution conditions for an affine invariant,
as follows.

Initiation. By Farkas’ lemma, the initiation condition can be solved from the
Farkas table (‡) with S := θ and φ := Φ:

λI
0 − 1 ≤ 0

λ R · x + f ≤ 0 (θ)
cT · x + d ≤ 0 (Φ)

(#)

Here we rephrase the affine inequalities in θ and Φ with the condensed matrix
forms R · x + f ≤ 0 and cT · x + d ≤ 0; we also use λ = [λ1, . . . , λk]T to denote
the non-negative parameters in the leftmost column of (‡).
Consecution. The consecution condition can be solved by handling each condi-
tional branch (specified by τj , ψj in (†)) separately. By Farkas’ lemma, we treat
each conditional branch by the Farkas table (‡) with S := Φ∧G∧τj and φ := Φ′:

μ cT · x + d ≤ 0 (Φ)
λC
0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η Tj · x − T′

j · x′ + bj ≤ 0 (τj)
cT · x′ + d ≤ 0 (Φ′)

(∗)

Note that the Farkas table above contains quadratic constraints as we multiply
an unknown non-negative parameter μ to the unknown invariant cT · x + d ≤ 0
in the table. The Farkas tables for all conditional branches are grouped conjunc-
tively together to represent the whole consecution condition.

The weakness of the approaches presented in [12,37] lies at the treatment of
the quadratic constraints from the consecution condition. The approach in [12]
addresses the quadratic constraints by quantifier elimination that guarantees
the theoretical completeness but typically has high runtime complexity. The
approach in [37] solves the quadratic constraints by several heuristics that guess
possible values for the key parameter μ in (∗) which causes non-linearity, hence
losing completeness. Our approach considers to address parameter μ through
matrix-based methods (eigenvalues and eigenvectors, matrix inverse, etc.), which
is capable of efficiently generating affine invariants (as compared with quantifier
elimination in [12]) while still ensuring theoretical completeness (as compared
with the heuristics in [37]).

4 Single-Branch Affine Loops with Deterministic Updates

For the sake of simplicity, we first consider the affine invariant generation for a
simple class of affine loops where there are no conditional branches in the loop
body and the updates of the next-value vector x′ are deterministic.
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Formally, an affine loop with deterministic updates and a single branch takes
the following form:

initial condition θ : R · x + f ≤ 0
while G do x′ = T · x + b; end

For the loop above, we aim at non-trivial affine invariants, i.e., affine invariants
cT · x + d ≤ 0 with c �= 0. We summarize our results below.

1. When the loop guard is ‘true’, there are only finitely many independent non-
trivial invariants cT · x + d ≤ 0 where c is an eigenvector of the transpose of
the transition matrix T.

2. When the loop guard is not a tautology, there can be infinitely many more
non-trivial invariants cT · x + d ≤ 0 with c given by a direct formula in μ; in
this case we derive the feasible domain of μ and select finitely many optimal
ones (which we call tight choices) among them.

In Sect. 4.1, we first derive the constraints from the initiation (#) and conse-
cution (∗) conditions satisfied by the invariants. Then we solve these constraints
for the tautological loop guard case in Sect. 4.2 and the single-constraint loop
guard case in Sect. 4.3. Finally we generalize the results to the multi-constraint
loop guard case in Sect. 4.4.

4.1 Derived Constraints from the Farkas Tables

We first derive the constraints from the Farkas tables as follows:

Initiation. Recall the Farkas table (#) for initiation. We first compare the
coefficients of x above and below the horizontal line in (#), and obtain

λT · R = cT ⇒ RT · λ = c. (1)

Then by comparing the constant terms in (#), we have:

−λI
0 + λT · f = d ⇒ fT · λ − d = λI

0 ≥ 0. (2)

Note that RT has left inverse (RT)−1
L , thus constraint (1) is equivalent to λ =

(RT)−1
L · c. Plugging it into (2) yields

fT · (RT)−1
L · c − d = λI

0 ≥ 0. (3)

Consecution. The Farkas table (∗) for consecution in the case of single-branch
affine loops with deterministic updates is as follows:

μ cT · x + d ≤ 0 (Φ)
λC
0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η T · x − x′ + b = 0 (τ)

cT · x′ + d ≤ 0 (Φ′)
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Here the transition matrix T is a n × n square matrix, and b is a n-dimensional
vector. Since τ contains only equalities, the components η1, ..., ηn of the vector
parameter η do not have to be non-negative (while the components ξ1, ..., ξn of
ξ and μ must be non-negative). In this table, by comparing the coefficients of x′

above and below the horizontal line, we easily get −η = c. Then we substitute
η by −c and compare the coefficients of x above and below the horizontal line.
We get

μ · cT + ξT · P − cT · T = 0T ⇒ μ · c − TT · c + PT · ξ = 0. (4)

We also compare the constant terms and get

μ · d − λC
0 + ξT · q − cT · b = d ⇒ (μ − 1)d − bT · c + qT · ξ = λC

0 ≥ 0. (5)

The rest of this section is devoted to solving the invariants Φ : cT · x + d ≤ 0
which satisfy all constraints (1)–(5).

4.2 Loops with Tautological Guard

We first consider the simplest case where the loop guard is ‘true’:

initial condition θ : R · x + f ≤ 0
while true do x′ = T · x + b; end

(	)

In order for completely solving the non-linear constraints, we take three steps:

1. choose the correct μ, thus turn the non-linear constraints into linear ones;
2. use linear algebra method to solve out the vector c;
3. with μ and c known, find out the feasible domain of d and determine the

optimal value of it. Here ‘optimality’ is defined by the fact that all invariants
with other d’s in this domain are implied by the invariant with the ‘optimal’
d.

Step 1 and Step 2. We address the values of μ, c by eigenvalues and eigenvec-
tors in the following proposition:

Proposition 1. For any non-trivial invariant cT ·x+ d ≤ 0 of the loop (	), we
have that c must be an eigenvector of TT with a non-negative eigenvalue μ.

Proof. Since the loop guard is a tautology, we take the parameter ξ to be 0 in
(4):

μ · c − TT · c = 0.

It’s obvious that μ must be a non-negative eigenvalue of TT and c is the corre-
sponding eigenvector. 
�
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Example 1. (Fibonacci numbers). Consider the sequence {sn} defined by initial
condition s1 = s2 = 1 and recursive formula sn+2 = sn+1 + sn for n ≥ 1. If we
use variables (x1, x2) to represent (sn, sn+1), then the sequence can be written
as a loop:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while true do
[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
0 1
1 1

]
·
[
x1

x2

]
+ 0; end

The eigenvalues of matrix TT are 1−√
5

2 , 1+
√
5

2 ; only the second one is non-
negative. This eigenvalue μ = 1+

√
5

2 yields eigenvector c = [c1, 1+
√
5

2 c1]T, here
c1 is a free variable, which could be fixed in the final form of the invariant. 
�

Step 3. After solving μ and c, we illustrate the feasible domain of d and its
optimal value by the following proposition:

Proposition 2. For any μ and c given by Proposition 1, the feasible domain of
d is an interval determined by the two conditions below:

d ≤ fT · (RT)−1
L · c and (μ − 1)d ≥ bT · c.

If the above conditions have empty solution set, then no affine invariant is avail-
able from such μ and c; otherwise, the optimal value of d falls in one of the two
choices:

d = fT · (RT)−1
L · c or (μ − 1)d = bT · c.

Proof. Constraint (3) provides one condition for d:

fT · (RT)−1
L · c − d = λI

0 ≥ 0 ⇒ fT · (RT)−1
L · c ≥ d;

while constraint (5) with ξ = 0 provides the other condition:

(μ − 1)d − bT · c = λC
0 ≥ 0 ⇒ (μ − 1)d ≥ bT · c.

To obtain the strongest inequality cT · x + d ≤ 0, we need to take d to be either
minimal or maximal value, i.e., some boundary point of its interval; thus the
invariant with this d would imply all invariants with the same c and other d’s in
this interval. The boundary is achieved when one of the two conditions achieves
the equality. 
�
Example 2 (Fibonacci, Part 2). We continue with Example 1. Recall that μ =
1+

√
5

2 , c = [c1, 1+
√
5

2 c1]T; in this case, constraints (3) (5) (with ξ = 0) read
− 3+

√
5

2 c1 ≥ d and −1+
√
5

2 d ≥ 0, hence yield 0 ≤ d ≤ − 3+
√
5

2 c1. The free variable
c1 must be negative here, so we choose c1 = −2 and thus c = [−2,−1 − √

5]T

and 0 ≤ d ≤ 3+
√

5; there are two boundary values d = 0 and d = 3+
√

5, where
d = 3 +

√
5 leads to the strongest invariant:

μ = (1 +
√

5)/2 : −2x1 − (1 +
√

5)x2 + 3 +
√

5 ≤ 0. 
�
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4.3 Loops with Guard: Single-Constraint Case

Here we study the loops with non-tautological guard. First of all, the eigenvalue
method of Sect. 4.2 applies to this case as well; thus for the rest of Sect. 4, we
always assume that μ is not any eigenvalue of T (and c is not any eigenvector
of TT either) and aim for other invariants than the ones from the eigenvectors.

Let us start with the case that the loop guard consists of only one affine
inequality:

initial condition θ : R · x + f ≤ 0
while pT · x + q ≤ 0 do x′ = T · x + b; end

(	′)

where p is a n-dimensional real vector and q is a real number.
We again take three steps to compute the invariants; these steps are different

from the previous case:

1. we derive a formula to compute c in terms of μ; so for any non-negative real
value μ, we get a corresponding c;

2. however, not all μ’s would produce invariants that satisfy all constraints (1)–
(5). We will determine the feasible domain of μ that does so;

3. we will select finitely many μ’s from its feasible domain which provide tight
invariants; the meaning of tightness will be defined later. For every single μ,
we will also determine the feasible domain of d and optimal value of it.

Step 1. We first establish the relationship between μ and c through the con-
straints. The initiation is still (1) (2) (3), while the consecution (4) (5) becomes:

μ · c − TT · c + ξ · p = 0 (4′)

(μ − 1)d − bT · c + ξ · q = λC
0 ≥ 0 (5′)

where the matrix P in (4) degenerates to vector pT and the vectors q, ξ in (5)
both have just one component q, ξ here. Note that ξ is a non-negative parameter.

In contrast to Sect. 4.2, we assume that μ is not any eigenvalue of T, and
ξ �= 0. For such μ, we have a new formula to compute c:

Proposition 3. For any non-trivial invariant cT ·x+d ≤ 0 of the loop (	′), we
have that c is given by

c = ξ · (TT − μ · I)−1 · p with ξ ≥ 0 (6)

when μ is fixed, c’s with different ξ’s are proportional to each other and yield
equivalent invariants.

Proof. Since μ is not any eigenvalue of T, the matrix μ · I − TT is invertible;
thus (4′) is equivalent to

(μ · I − TT) · c = −ξ · p ⇒ c = ξ · (TT − μ · I)−1 · p. 
�
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Example 3 (Fibonacci, Part 3). We add a loop guard x1 ≤ 10 to Example 1:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while pT · x + q = [1, 0] ·
[
x1

x2

]
− 10 ≤ 0 do

[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
0 1
1 1

]
·
[
x1

x2

]
+ 0; end

and search for more invariants. The formula (6) here reads
[
c1
c2

]
=

ξ

μ2 − μ − 1

[
1 − μ −1
−1 −μ

]
·
[
1
0

]
=

ξ

μ2 − μ − 1

[
1 − μ
−1

]
. 
�

Step 2. With formula (6) in hand, every non-negative value μ would give us a
vector c; the next step is to find such μ’s that (1) (2) (3) (5′) are all satisfied.
We call this set the feasible domain of μ.

Notice that (3) and (5′) are two inequalities both containing d. When the
value of μ changes, there is a possibility that (3) and (5′) conflict each other,
hence make no invariant available. So the feasible domain consists of such μ’s
that make the two inequalities compatible with each other:

Proposition 4. For the loop (	′), any feasible μ falls in [0, 1) ∪ (
K ∩ [1,+∞)

)
,

where K is the solution set to the following rational inequality of μ (which we
call ‘compatibility condition’):

bT · (TT − μ · I)−1 · p − q ≤ (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p. (7)

Proof. We multiply (μ − 1) on both sides of (3) and get

(μ − 1)fT · (RT)−1
L · c ≤ (μ − 1)d when 0 ≤ μ < 1 (3′)

(μ − 1)fT · (RT)−1
L · c ≥ (μ − 1)d when μ ≥ 1 (3′′)

compare them with (5′), we see: (3′) (5′) would not conflict each other because
they are both about (μ − 1)d being ‘larger’ than something. However, (3′′) (5′)
are two inequalities of opposite directions, they together must satisfy

bT · c − ξ · q ≤ (μ − 1)d ≤ (μ − 1)fT · (RT)−1
L · c

to be compatible. Substitute c by (6) in the above inequality and cancel out
ξ > 0, we obtain the desired inequality:

bT · (TT − μ · I)−1 · p − q ≤ (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p.

Every μ from [0, 1) and K∩[1,+∞) would lead to non-trivial invariant satisfying
all constraints (1) (2) (3) (4′) (5′). 
�
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Example 4 (Fibonacci, Part 4). Let us compute the feasible domain of μ for
Example 3. Inequality (5′) is (μ − 1)d ≥ 10ξ; inequality (3′′) is

(μ − 1)[−1,−1] ·
[
1 0
0 1

]
· c =

ξ(μ − 1)μ
μ2 − μ − 1

≥ (μ − 1)d (when μ ≥ 1).

We combine them to form the compatibility condition (7) as

10 ≤ (μ − 1)μ
μ2 − μ − 1

⇒ 0 ≤ − 9(μ − 5
3 )(μ + 2

3 )

(μ − 1−√
5

2 )(μ − 1+
√
5

2 )
(when μ ≥ 1).

The solution domain of it is (1+
√
5

2 , 5
3 ]. Thus by Proposition 4, the feasible domain

of μ is [0, 1) ∪ (1+
√
5

2 , 5
3 ]. 
�

Step 3. Proposition 4 provides us with a continuum of candidates for μ, thus
produces infinitely many legitimate invariants. We want to find a basis consisting
of finitely many invariants, such that all invariants are non-negative linear com-
binations of the basis; however, this idea does not work out, where the reason
is explained thoroughly in the full version of this paper [25, Appendix A.1 and
A.2]. Instead, we impose a weaker form of optimality called tightness coming
from the equality cases of constraints (3) (5′):

fT · (RT)−1
L · c − d = λI

0 = 0

(μ − 1)d − bT · c + ξ · q = λC
0 = 0

we call an invariant tight and the corresponding μ as tight choice when both
equalities are achieved:

– λI
0 = 0: The invariant is tight at the initial state, i.e., the invariant reaches

equality at the initial state;
– λC

0 = 0: The invariant stays as close to being tight as much at later iterations.

The non-tight choices could be kept as back-up for invariant generation. The
tight choices are characterized by the following proposition:

Proposition 5. For the loop (	′), the tight choices of μ consist of 0 and the
positive real roots of the following rational equation:

bT · (TT − μ · I)−1 · p − q = (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p. (8)

Note that these roots are also the boundary points of the intervals in K defined
in Proposition 4.

Proof. Recall Proposition 2, constraints (3) (5) form the two boundaries of the
domain of d, which can not be achieved simultaneously in the case of loops with
tautological guard. Nevertheless, in the case of loops with guard, we have an
extra freedom on μ which allows us to set λI

0 = λC
0 = 0:

fT · (RT)−1
L · c = d ∧ (μ − 1)d = bT · c − ξ · q

⇒ bT · (TT − μ · I)−1 · p − q = (μ − 1)fT · (RT)−1
L (TT − μ · I)−1 · p.
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Equation (8) is just the case that (7) achieves the equality, hence is a rational
equation of μ with finite number of roots. These roots are also the boundary
points of K since K is the solution domain to (7). Besides the roots of (8),
μ = 0 is also a boundary point of the feasible domain; its corresponding invariant
reflects the feature of the loop guard itself. Thus we add it into the list of tight
choices. 
�

With μ determined and c fixed up to a scaling factor, the last thing remains
is to determine the optimal d. The strategy here is similar to Proposition 2:

Proposition 6. Suppose μ is from the feasible domain and c is given by Propo-
sition 3. Then the optimal value of d is determined by one of the two choices
below:

bT · c − ξ · q = (μ − 1)d or fT · (RT)−1
L · c = d.

The proof is omitted here and can be found in our full version [25].

Example 5 (Fibonacci, Part 5). Remember that
[
c1
c2

]
=

ξ

μ2 − μ − 1

[
1 − μ
−1

]
and the feasible domain of μ is [0, 1) ∪ (

1 +
√

5
2

,
5
3
].

We compute the tight choices of μ and tight invariants. The equation (8) here is

0 =
−9μ2 + 9μ + 10

μ2 − μ − 1
= − 9(μ − 5

3 )(μ + 2
3 )

(μ − 1−√
5

2 )(μ − 1+
√
5

2 )

which has only one positive root μ = 5
3 . By Proposition 5 and Proposition 6, We

get two invariants:

μ = 0 : − x1 + x2 − 10 ≤ 0;
μ = 5/3 : − 2x1 − 3x2 + 5 ≤ 0. 
�

4.4 Loops with Guard: Multi-constraint Case

After settling the single-constraint loop guard case, we consider the more general
loop guard which contains the conjunction of multiple affine constraints:

initial condition θ : R · x + f ≤ 0
while P · x + q ≤ 0 do x′ = T · x + b; end

(	′′)

where the loop guard P · x + q ≤ 0 contains m affine inequalities.
We can easily generalize the results of Sect. 4.3 to this case. First of all, we

generalize Proposition 3: one simply needs to modify the formula (6) into

c = (TT − μ · I)−1PT · ξ with ξ ≥ 0 (6′)

here ξ is a free non-negative m-dimensional vector parameter. With a fixed μ,
we take ξ to traverse all vectors in the standard basis {e1, ..., em} to get m
conjunctive invariants.

Next, we generalize Proposition 4 which describes the feasible domain of μ:
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Proposition 7. For the loop (	′′), the feasible domain of μ is [0, 1) ∪ (
K ∩

[1,+∞)
)
, where K is the solution set to the following generalized compatibility

condition:
bT · c − qT · ξ ≤ (μ − 1)d ≤ (μ − 1)fT · (RT)−1

L · c
substitute c by (6′) and take ξ to traverse all vectors in the standard basis (in
order for all constraints in the loop guard to be satisfied by the invariant), we
have the above condition completely decoded as m conjunctive inequalities:

u(μ) := bT · (TT − μ · I)−1PT − qT

≤ w(μ) := (μ − 1)fT · (RT)−1
L (TT − μ · I)−1PT (7′)

where u(μ),w(μ) are two m-dimensional vector functions in μ. The meaning of
(7′) is that the i-th component of u(μ) is no larger than the i-th component of
w(μ) for all 1 ≤ i ≤ m; when m = 1, it goes back to (7).

At last, we consider the tight choices of μ. The first idea comes up to mind
is to repeat Proposition 5: setting λI

0 = λC
0 = 0 for arbitary ξ such that the

generalized compatibility condition achieves equality, i.e., u(μ) = w(μ); however,
this is the conjunction of m rational equations and probably contains no solution.

Thus we use a different idea: recall that in the single-constraint case, the
tight choices are also the (positive) boundary points of K along with 0; so we
adopt this property as the definition in the multi-constraint case:

Definition 1. For the loop (	′′), the tight choices of μ consist of 0 and the
(positive) boundary points of the domain K defined in Proposition 7.

The generalized compatibility condition (7′) contains m inequalities; at each
(positive) boundary point of K, at least one inequality achieves equality and
all other inequalities are satisfied (equivalently, λI

0 = λC
0 = 0 is achieved for at

least one non-trivial evaluation of the free vector parameter ξ). This is indeed a
natural generalization of Proposition 5.

Example 6. We consider the loop:

initial condition θ : R · x + f =
[
1 0
0 1

]
·
[
x1

x2

]
+

[−1
−1

]
= 0

while P · x + q =
[
1 0
0 −1

]
·
[
x1

x2

]
+

[−10
−5

]
≤ 0 do

[
x′
1

x′
2

]
= T ·

[
x1

x2

]
+ b =

[
1 0
0 1

]
·
[
x1

x2

]
+

[
1

−1

]
; end

There is one eigenvalue μ = 1 with geometric multiplicity 2; we solve three
independent invariants from it:

x1 + x2 − 2 ≤ 0, x1 + x2 − 2 ≥ 0; −x1 + x2 ≤ 0.
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Next we find out the other invariants from tight μ’s. In this case (7′) read
11−10µ
1−µ ≤ 1 ∧ 6−5µ

1−µ ≤ −1 (when μ > 1). Then K = (1, 10
9 ] ∩ (1, 7

6 ] = (1, 10
9 ]

and the feasible domain of μ is [0, 1)∪ (1, 10
9 ]. The tight choices are 0, 10

9 (taking
ξ to be [1, 0]T, [0, 1]T respectively yields the two conjunctive invariants for each
μ):

μ = 0 : x1 − 10 ≤ 0 ∧ −x2 − 5 ≤ 0;
μ = 10/9 : − x1 + 1 ≤ 0 ∧ x2 − 1 ≤ 0. 
�

5 Generalizations

In this section, we extend our theory developed in Sect. 4 in two directions. For
one direction, we consider the invariants cT · x + d ≤ 0 for the affine loops in
the general form (†): we will derive the relationship of μ and c, as well as the
feasible domain and tight choices of μ. For the other direction, we stick to the
single-branch affine loops with deterministic updates and tautological guard (	),
yet generalize the invariants to bidirectional-inequality form d1 ≤ cT ·x ≤ d2; we
will apply eigenvalue method to this case for solving the invariants. At the end of
the section, we also give a brief discussion on some other possible generalizations.

5.1 Affine Loops with Non-deterministic Updates

In Sect. 4, we handled the loops with deterministic updates; here we generalize
the results to the non-deterministic case in the form of (†). We focus on the single-
branch loops here, because the multi-branch ones can be handled similarly by
taking the conjunction of all branches, as illustrated in the full version of this
paper [25, Appendix A.3].

initial condition θ : R · x + f ≤ 0
while P · x + q ≤ 0 do T · x − T′ · x′ + b ≤ 0; end

(†′)

For this general form, the initiation constraints are still (1) (2) (3), while the
consecution constraints from Farkas table (∗) are

μ · c + PT · ξ + TT · η = 0 (9)

−(T′)T · η = c (10)

(μ − 1)d + qT · ξ + bT · η = λC
0 ≥ 0 (11)

with ξ,η ≥ 0. The relationship of c and η is given by (10); plugging it into (9)
yield

(
TT − μ · (T′)T

) · η + PT · ξ = 0. (9′)

Hence for any non-trivial invariant cT · x + d ≤ 0 of this loop (†′), we have
c = −(T′)T · η, where η is characterized differently in the following three cases:
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1. T and T′ are square matrices and the loop guard is ‘true’. In this case, we take
ξ = 0 in (9′) and easily see that μ must be a root of det

(
TT − μ · (T′)T

)
= 0

and η is a kernel vector of the matrix TT − μ · (T′)T.
2. T and T′ are square matrices and the loop guard is non-tautological. In this

case, we set μ to be values other than the roots of det
(
TT − μ · (T′)T

)
= 0,

thus the inverse matrix
(
TT − μ · (T′)T

)−1 exists; we multiply it on (9′) and
get that η(μ) = −(

TT − μ · (T′)T
)−1

PT · ξ.
3. Neither T nor T′ is square matrix. In this case, we need to use Gaussian

elimination method (with parameters) to solve (9′). By linear algebra, the
solution η(μ) would contain ‘homogeneous term’ (which does not involve ξ
but possibly some free variables η = [η1, ..., ηl]T) and ‘non-homogeneous term’
(which contains ξ linearly). Thus η(μ) could be written in parametric vector
form as M(μ) · η + N(μ) · ξ, where M(μ),N(μ) are matrix functions only in
μ.

For Case 2 and Case 3, we have a continuum of candidates for μ. The feasible
domain of μ is given by

(
[0, 1) ∪ (

K̃ ∩ [1,+∞)
)) ∩ J , where K̃ is the solution

set to the following compatibility condition (obtained by combining constraints
(3′′) (11)):

bT · η(μ) + qT · ξ ≥ (μ − 1)fT · (RT)−1
L (T′)T · η(μ)

and J is the solution set to constraints η(μ) ≥ 0. Here both η and ξ as free
non-negative vector parameters are taken to traverse all standard basis vectors,
just in the same way as Proposition 7. The tight choices of μ consists of 0 and
the positive boundary points of K̃ ∩ J , in the same sense as Definition 1.

5.2 An Extension to Bidirectional Affine Invariants

Here we restrict ourselves to single-branch affine loops with deterministic updates
and tautological loop guard (	), but aim for the invariants of bidirectional-
inequality form d1 ≤ cT · x ≤ d2. This is actually the conjunction of two affine
inequalities: Φ1 : −cT · x + d1 ≤ 0 ∧ Φ2 : cT · x − d2 ≤ 0. We have the following
proposition:

Proposition 8. For any bidirectional invariant d1 ≤ cT ·x ≤ d2 of the loop (	),
we have that c must be an eigenvector of TT with a negative eigenvalue.

Proof. We can easily write down the initiation condition: θ |= (Φ1 ∧ Φ2) and the
corresponding constraints (with λ, λ̃ being two different vector parameters):

RT · λ = c, fT · λ + d2 = λI
0 ≥ 0; RT · λ̃ = −c, fT · λ̃ − d1 = λ̃I

0 ≥ 0.

However, there are two possible ways to propose the consecution condition:

(Φ1 ∧ τ |= Φ′
1 and Φ2 ∧ τ |= Φ′

2) or (Φ1 ∧ τ |= Φ′
2 and Φ2 ∧ τ |= Φ′

1)
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If we choose the first one, there will be nothing different from the things we did
in Sect. 4.2. Thus we choose the second one: making the two inequalities induct
each other. Hence the Farkas tables are

μ −cT · x + d1 ≤ 0 (Φ1)
λC
0 − 1 ≤ 0

−c T · x − x′ + b = 0 (τ)
cT · x′ − d2 ≤ 0 (Φ′

2)

μ̃ cT · x − d2 ≤ 0 (Φ2)
λ̃C
0 − 1 ≤ 0
c T · x − x′ + b = 0 (τ)

− cT · x′ + d1 ≤ 0 (Φ′
1)

We write out the constraints of consecution:

−μ · c = TT · c = −μ̃ · c (12)

μ · d1 + d2 − bT · c = λC
0 ≥ 0, − μ̃ · d2 − d1 + bT · c = λ̃C

0 ≥ 0

the proposition is verified by (12) since μ, μ̃ ≥ 0. 
�
Example 7 (Fibonacci, Part 6). Recall that in this example we have a negative
eigenvalue 1−√

5
2 . It yields the eigenvector c = [c1, 1−√

5
2 c1]T. The other con-

straints are computed as:

−(3 −
√

5)c1/2 + d2 = λI
0 ≥ 0, (3 −

√
5)c1/2 − d1 = λ̃I

0 ≥ 0.

−(1 −
√

5)d1/2 + d2 = λC
0 ≥ 0, (1 −

√
5)d2/2 − d1 = λ̃C

0 ≥ 0.

If we choose c1 = 2, λI
0 = 0 = λ̃C

0 (or c1 = −2, λ̃I
0 = 0 = λC

0 ), we get an invariant

μ = |(1 −
√

5)/2| : 2(2 −
√

5) ≤ 2x1 + (1 −
√

5)x2 ≤ 3 −
√

5

which reflects the ‘golden ratio’ property of the Fibonacci numbers. 
�
Remark 1. The generalizations for bidirectional affine invariants to the loops
with non-tautological guard or multiple branches are practicable but with some
restrictions. The main restriction lies at the point that we need to assume the
affine loop guard to also be bidirectional to make our approach for bidirectional
affine invariants work. The issue of multiple branches is not critical as the bidi-
rectional invariants can be derived in almost the same way as single-inequality
invariants (illustrated in full version [25, Appendix A.3]), with the only difference
at the adaption to bidirectional inequalities.

5.3 Other Possible Generalizations

Integer-valued Variables. One direction is to transfer some of the results for
affine loops over real-valued variables to those over integer-valued variables. Our
approach is based on Farkas’ lemma which is dedicated to real-valued variables,
thus can only provide a sound but not exact treatment for integer-valued vari-
ables. An exact treatment for integer-valued variables would require Presburger
arithmetics [16], rather than Farkas’ lemma.
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Strict-inequality Invariants. We handle the non-strict-inequality affine
invariants in this work. It’s natural to consider the affine invariants of the strict-
inequality form. For strict inequalities, we could utilize an extended version of
Farkas’ lemma in [6, Corollary 1], so that strict inequalities can be generated by
either relaxing the non-strict ones obtained from our method or restricting the μ
value to be positive. Since Motzkin transposition theorem is a standard theorem
for handling strict inequalities, we believe that Motzkin transposition theorem
can also achieve similar results, but may require more tedious manipulations.

6 Approximation of Eigenvectors through Continuity

In Sect. 4.2 and Sect. 5.2, we need to solve the characteristic polynomial of the
transition matrix to get eigenvalues; while general polynomials with degree ≥ 5
do not have algebraic solution formula due to Abel-Ruffini theorem. We can
develop a number sequence {λi} to approximate the eigenvalue λ through root-
finding algorithms; however, we cannot approximate the eigenvector of λ by
solving the kernel of TT−λi ·I since it has trivial kernel. In the case of dimensions
≥ 5, i.e., when an explicit formula for eigenvalues is unavailable, we introduce
an approximation method of the eigenvectors through a continuity property of
the invariants:

Continuity of Invariants w.r.t. μ. In Sect. 4, we have shown that for any
invariant cT · x + d ≤ 0 of single-branch affine loops with deterministic updates,
the relationship of c and μ is given in two ways:

c =

{
kernel vector of TT − μ · I when det(TT − μ · I) = 0
(TT − μ · I)−1 · z when det(TT − μ · I) �= 0

with z = PT · ξ. Thus c = c(μ) could be seemed as a vector function in μ
expressed differently at eigenvalues from other points. c(μ) is undoubtedly con-
tinuous at the points other than eigenvalues, while the following proposition
illustrates the continuity property of c(μ) at the eigenvalues:

Proposition 9. Suppose λ is a real eigenvalue of TT with eigenvector c(λ); and
{λi} is a sequence lying in the feasible domain of μ which converges to λ. If λ
has geometric multiplicity 1, then the sequence {c(λi)} converges to c(λ) as well;
otherwise, {c(λi)} converges to 0.

Due to the lack of space, the proof of Proposition 9 is omitted here and available
in our full version [25].

An Algorithmic Approach to Eigenvalue Method in Dimensions ≥ 5.
By Proposition 9, if λ has geometric multiplicity 1, we can compute c(λi) =
(TT − λi · I)−1 · z (in the case of tautological loop guard, we just replace z by
any non-zero n-dimensional real vector) to approximate the eigenvector c(λ).
On the other hand, in the case that λ has geometric multiplicity > 1, one can
adopt Least-squares approximation as presented in [5, Section 8.9]. Though the
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Least-squares approximation applies to the cases of eigenvalues with arbitrary
geometric multiplicity, our method is much easier to implement and has higher
efficiency.

7 Experimental Results

Experiment. We implement our automatic invariant-generation algorithm of
eigenvalues and tight choices in Python 3.8 and use Sage [42] for matrix manip-
ulation. All results are obtained on an Intel Core i7 (2.00 GHz) machine with
64 GB memory, running Ubuntu 18.04. Our benchmarks are affine loops chosen
from some benchmark in the StInG invariant generator [40], some linear dynam-
ical system in [30], some loop programs in [41] and some other linear dynamical
systems resulting from well-known linear recurrences such as Fibonacci numbers,
Tribonacci numbers, etc.

Complexity. The main bottleneck of our algorithm lies at exactly solving or
approximating real roots of univariate polynomials (for computing eigenvalues
and boundary points in our algorithmic approach). The rest includes Gaussian
elimination with a single parameter (the polynomial-time solvability of which is
guaranteed by [26]), matrix inverse and solving eigenvectors with fixed eigenval-
ues, which can easily be done in polynomial time. The exact solution for degrees
less than 5 can be done by directly applying the solution formulas. The approxi-
mation of real roots can be carried out through real root isolation and a further
divide-and-conquer (or Newton’s method) in each obtained interval, which can
be completed in polynomial time (see e.g. [36] for the polynomial-time solvability
of real root isolation). Thus, our approach runs in polynomial time and is much
more efficient than quantifier elimination in [12].

Results. The experimental results are presented in Table 1. In the table, the
column ‘Loop’ specifies the name of the benchmark, ‘Dim(ension)’ specifies the
number of program variables, ‘μ’ specifies the values through eigenvalues of the
transition matrices (which we marked with e) or boundary points of the intervals
in the feasible domain, ‘Invariants’ lists the generated affine invariants from our
approach. We compare our approach with the existing generators StInG [40]
and InvGen [22], where ‘=’, ‘>’, ‘�’ and ‘�=’ means the generated invariants are
identical, more accurate, can only be generated in this work, and incomparable,
respectively. Table 2 compares the amounts of runtime for our approach and
StInG and InvGen respectively, measured in seconds. Note that the runtime of
StInG and InvGen are obtained by executing their binary codes on our platform.

Analysis. StInG [40] implements constraint-solving method proposed in [12,37],
InvGen [22] integrates both constraint-solving method and abstract interpre-
tation, while our approach uses matrix algebra to refine and upgrade the
constraint-solving method. Based on the results in Table 1 and Table 2, we con-
clude that:
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Table 1. Experimental Results of Invariants

Loop Dim μ Invariants [40] [22]

Fibonacci numbers 2 |(1 − √
5)/2|e 2x1 + (1 − √

5)x2 − 3 +
√

5 ≤ 0 � �
−2x1 − (1 − √

5)x2 + 4 − 2
√

5 ≤ 0

(1 +
√

5)/2e −2x1 − (1 +
√

5)x2 + 3 +
√

5 ≤ 0

−2x1 − (1 +
√

5)x2 ≤ 0

See-Saw [40] 2 1e x1 − 2x2 ≤ 0 = >

−3x1 + x2 ≤ 0

Example 6.2 [30] 4 |1 − √
2|e w − y − (1 − √

2)x + (1 − √
2)z ≤ 0 > >

1 +
√

2e w − y − (1 +
√

2)x + (1 +
√

2)z ≤ 0

css2003 [41] 3 0, 1e i − L1 ≤ 0 = =

−i + 1 ≤ 0, i + k − 1 = 0

afnp2014 [41] 2 0, 1e, 1000/999 y − 999 ≤ 0 = >

−y ≤ 0, x − 999y − 1 ≤ 0

gsv2008 [41] 2 0, 1e, 8/7 x − y + 2 ≤ 0 > �=
−y ≤ 0, −x − 7y − 50 ≤ 0

cggmp2005 [41] 2 0, 1e, 4/3 i − j − 3 ≤ 0, −i + 1 ≤ 0, j − 10 ≤ 0 > >

i + 2j − 21 = 0, −i + j − 9 ≤ 0

Jacobsthal numbers 2 |−1|e, 2e 2x1 − x2 − 1 ≤ 0, −2x1 + x2 − 1 ≤ 0 � >

−x1 − x2 + 2 ≤ 0

Pell numbers 2 |1 − √
2|e x1 + (1 − √

2)x2 − 3 + 2
√

2 ≤ 0 � �
−x1 − (1 − √

2)x2 + 7 − 5
√

2 ≤ 0

1 +
√

2e −x1 − (1 +
√

2)x2 + 3 + 2
√

2 ≤ 0

−x1 − (1 +
√

2)x2 ≤ 0

Perrin numbers 3 Δ =
3
√ √

69+9
18 a =

3Δ+1/Δ
3 , b = 1/a + 1 � �

μ = 4
3 Δe x1 + bx2 + ax3 ≥ 2

3Δ
+ 2Δ + 3

Tribonacci numbers 3 Δ =
3√

3
√

33 + 19 a = 1
3 (Δ + 4

Δ
+ 1), b = 1/a + 1 � �

μ = (5Δ + 1)/3e x1 + bx2 + ax3 ≥ b + a
1 L stands for the variable LARGE INT in the original program [41]. Note that we modified the loop

programs in [41] as affine loops before execution.

Table 2. Experimental Results of Execution Time (s)

Loop StInG [40] InvGen [22] Our Approach

Fibonacci numbers 0.030 0.079 0.178
See-Saw [40] 0.024 0.104 0.104

Example 6.2 [30] 0.030 0.092 0.173
css2003 [41] 0.019 0.111 0.193

afnp2014 [41] 0.025 0.076 0.193
gsv2008 [41] 0.027 0.092 0.207

cggmp2005 [41] 0.026 0.111 0.184
Jacobsthal numbers 0.026 0.085 0.193

Pell numbers 0.023 0.102 0.219
Perrin numbers 0.031 0.129 0.250

Tribonacci numbers 0.029 0.115 0.262
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– For the benchmarks with rather simple transition matrices (identity or diag-
onal matrices), our approach covers or outnumbers the invariants generated
by StInG and InvGen.

– For the benchmarks with complicated transition matrices (which are the
matrices far away from diagonal ones), especially the ones with irrational
eigenvalues, our approach generates adequate accurate invariants while StInG
and InvGen generate nothing or only trivial invariants.

– For all benchmarks, the runtime of StInG and InvGen are faster but compa-
rable with our runtime, hence shows the efficiency of our approach.

Summarizing all above, the experimental results demonstrate the wider cover-
age for the μ value endowed from our approach, and show the generality and
efficiency of our approach.
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35. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program. 64(1),
54–75 (2007)

36. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symb.
Comput. 73, 46–86 (2016)

37. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1 7

38. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. Formal Methods Syst. Des.‘ 48(3), 235–256 (2016). https://doi.
org/10.1007/s10703-016-0248-5

39. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 31

40. Sting: Stanford invariant generator (2004). http://theory.stanford.edu/∼srirams/
Software/sting.html

41. SV-COMP2021: 11th Competition on Software Verification (2021). https://github.
com/sosy-lab/sv-benchmarks

42. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.4) (2021). https://www.sagemath.org

43. Xu, R., He, F., Wang, B.: Interval counterexamples for loop invariant learning. In:
ESEC/FSE, pp. 111–122. ACM (2020)

44. Yao, J., Ryan, G., Wong, J., Jana, S., Gu, R.: Learning nonlinear loop invariants
with gated continuous logic networks. In: PLDI, pp. 106–120. ACM (2020)

https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-540-27864-1_7
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
http://theory.stanford.edu/~srirams/Software/sting.html
http://theory.stanford.edu/~srirams/Software/sting.html
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
https://www.sagemath.org


Affine Loop Invariant Generation via Matrix Algebra 281

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
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