
A Scalable Shannon Entropy Estimator

Priyanka Golia1,2(B), Brendan Juba3, and Kuldeep S. Meel2

1 Indian Institute of Technology Kanpur, Kanpur, India
pgolia@cse.iitk.ac.in

2 National University of Singapore, Singapore, Singapore
3 Washington University in St. Louis, St. Louis, USA

Abstract. Quantified information flow (QIF) has emerged as a rigor-
ous approach to quantitatively measure confidentiality; the information-
theoretic underpinning of QIF allows the end-users to link the computed
quantities with the computational effort required on the part of the
adversary to gain access to desired confidential information. In this work,
we focus on the estimation of Shannon entropy for a given program Π.
As a first step, we focus on the case wherein a Boolean formula ϕ(X, Y)
captures the relationship between inputs X and output Y of Π. Such
formulas ϕ(X, Y) have the property that for every valuation to X, there
exists exactly one valuation to Y such that ϕ is satisfied. The existing
techniques require O(2m) model counting queries, where m = |Y |.

We propose the first efficient algorithmic technique, called Entropy
Estimation to estimate the Shannon entropy of ϕ with PAC-style guar-
antees, i.e., the computed estimate is guaranteed to lie within a (1 ± ε)-
factor of the ground truth with confidence at least 1 − δ. Further-
more, EntropyEstimation makes only O(min(m,n)

ε2
) counting and sam-

pling queries, where m = |Y |, and n = |X|, thereby achieving a sig-
nificant reduction in the number of model counting queries. We demon-
strate the practical efficiency of our algorithmic framework via a detailed
experimental evaluation. Our evaluation demonstrates that the proposed
framework scales to the formulas beyond the reach of the previously
known approaches.

1 Introduction

Over the past half-century, the cost effectiveness of digital services has led to
an unprecedented adoption of technology in virtually all aspects of our modern
lives. Such adoption has invariably led to sensitive information being stored in
data centers around the world and increasingly complex software accessing the
information in order to provide the services that form the backbone of our mod-
ern economy and social interactions. At the same time, it is vital that protected
information does not leak, as such leakages may have grave financial and societal

EntropyEstimation is available open-sourced at https://github.com/meelgroup/
entropyestimation. The names of authors are sorted alphabetically and the order does
not reflect contribution.

c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 363–384, 2022.
https://doi.org/10.1007/978-3-031-13185-1_18

https://doi.org/10.5281/zenodo.6526072
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_18&domain=pdf
https://github.com/meelgroup/entropyestimation
https://github.com/meelgroup/entropyestimation
https://doi.org/10.1007/978-3-031-13185-1_18

364 P. Golia et al.

consequences. Consequently, the detection and prevention of information leakage
in software have attracted sustained interest in the security community.

The earliest efforts on information leakage focused on qualitative approaches
that sought to return a Boolean output of the form “yes” or “no” [11,26,30].
While these qualitative approaches successfully capture situations where part of
the code accesses prohibited information, such approaches are not well-suited
to situations wherein some information leakage is inevitable. An oft-repeated
example of such a situation is a password checker wherein every response “incor-
rect password” does leak information about the secret password. As a result,
the past decade has seen the rise of quantified information flow analysis (QIF)
as a rigorous approach to quantitatively measure confidentiality [7,53,57]. The
information-theoretic underpinnings of QIF analyses allow an end-user to link
the computed quantities with the probability of an adversary successfully guess-
ing a secret, or the worst-case computational effort required for the adversary
to infer the underlying confidential information. Consequently, QIF has been
applied in diverse use-cases such as software side-channel detection [40], inferring
search-engine queries through auto-complete responses sizes [21], and measuring
the tendency of Linux to leak TCP-session sequence numbers [59].

The standard recipe for using the QIF framework is to measure the informa-
tion leakage from an underlying program Π as follows. In a simplified model,
a program Π maps a set of controllable inputs (C) and secret inputs (I) to
outputs (O) observable to an attacker. The attacker is interested in inferring
I based on the output O. A diverse array of approaches have been proposed
to efficiently model Π, with techniques relying on a combination of symbolic
analysis [48], static analysis [24], automata-based techniques [4,5,14], SMT-
based techniques [47], and the like. For each, the core underlying technical
problem is to determine the leakage of information for a given observation.
We often capture this leakage using entropy-theoretic notions, such as Shan-
non entropy [7,16,48,53] or min-entropy [7,44,48,53]. In this work, we focus on
computing Shannon entropy.

In this work, we focus on entropy estimation for programs modeled by
Boolean formulas; nevertheless, our techniques are general and can be extended
to other models such as automata-based frameworks. Let a formula ϕ(X,Y) cap-
ture the relationship between X and Y such that for every valuation to X there
is atmost one valuation to Y such that ϕ is satisfied; one can view X as the set of
inputs and Y as the set of outputs. Let m = |Y | and n = |X|. Let p be a probabil-
ity distribution over {0, 1}Y such that for every assignment to Y , σ : Y �→ {0, 1},
we have pσ = |sol(ϕ(Y �→σ))|

2n , where sol(ϕ(Y �→ σ)) denotes the set of solutions of
ϕ(Y �→ σ). Then, the entropy of ϕ is defined as Hϕ(Y) =

∑

σ
pσ log 1

pσ
.

The past decade has witnessed a multitude of entropy estimation techniques
with varying guarantees on the quality of their estimates [9,17,35,58]. The prob-
lem of computing the entropy of a distribution represented by a given circuit is
closely related to the EntropyDifference problem considered by Goldreich
and Vadhan [34], and shown to be SZK-complete. We therefore do not expect to
obtain polynomial-time algorithms for this problem. The techniques that have

A Scalable Shannon Entropy Estimator 365

been proposed to compute H(ϕ) exactly compute pσ for each σ. Observe that
computing pσ is equivalent to the problem of model counting, which seeks to
compute the number of solutions of a given formula. Therefore, the exact tech-
niques require O(2m) model-counting queries [13,27,39]; therefore, such tech-
niques often do not scale for large values of m. Accordingly, the state of the
art often relies on sampling-based techniques that perform well in practice but
can only provide lower or upper bounds on the entropy [37,49]. As is often the
case, techniques that only guarantee lower or upper bounds can output estimates
that can be arbitrarily far from the ground truth. This raises the question: can
we design efficient techniques for approximate estimation, whose estimates have
PAC-style (ε, δ) guarantees? I.e., can we compute an estimate that is guaranteed
to lie within a (1 + ε)-factor of the ground truth for all possible values, with
confidence at least 1 − δ?

The primary contribution of our work is the first efficient algorithmic tech-
nique (given in our algorithm EntropyEstimation), to estimate Hϕ(Y) with PAC-
style guarantees for all possible values of Hϕ(Y). In particular, given a for-
mula ϕ, EntropyEstimation returns an estimate that is guaranteed to lie within a
(1 ± ε)-factor of Hϕ(Y) with confidence at least 1 − δ. We stress that we obtain
such a multiplicative estimate even when Hϕ(Y) is very small, as in the case of
a password-checker as described above. Furthermore, EntropyEstimation makes
only O(min(m,n)

ε2) counting and sampling queries even though the support of the
distribution specified by ϕ can be of the size O(2m).

While the primary focus of the work is theoretical, we seek to demonstrate
that our techniques can be translated into practically efficient algorithms. As
such, we focused on developing a prototype using off-the-shelf samplers and coun-
ters. As a first step, we use GANAK [52] for model counting queries and SPUR [3]
for sampling queries. Our empirical analysis demonstrates that EntropyEstimation
can be translated into practice and achieves significant speedup over baseline.

It is worth mentioning that recent approaches in quantified information leak-
age focus on programs that can be naturally translated to string and SMT
constraints, and therefore, employ model counters for string and SMT con-
straints. Since counting and sampling are closely related, we hope the algorith-
mic improvements attained by EntropyEstimation will lead to the development of
samplers in the context of SMT and string constraints, and would lead to prac-
tical implementation of EntropyEstimation for other domains. We stress again
that while we present EntropyEstimation for programs modeled as a Boolean for-
mula, our analysis applies other approaches, such as automata-based approaches,
modulo access to the appropriate sampling and counting oracles.

The rest of the paper is organized as follows: we present the notations and pre-
liminaries in Sect. 2. We then discuss related work in Sect. 3. Next, we present an
overview of EntropyEstimation including a detailed description of the algorithm
and an analysis of its correctness in Sect. 4. We then describe our experimental
methodology and discuss our results with respect to the accuracy and scalability
of EntropyEstimation in Sect. 5. Finally, we conclude in Sect. 6.

366 P. Golia et al.

2 Preliminaries

We use lower case letters (with subscripts) to denote propositional variables and
upper case letters to denote a subset of variables. The formula ∃Y ϕ(X,Y) is
existentially quantified in Y , where X = {x1, · · · , xn} and Y = {y1, · · · , ym}.
For notational clarity, we use ϕ to refer to ϕ(X,Y) when clear from the context.
We denote V ars(ϕ) as the set of variables appearing in ϕ(X,Y). A literal is a
boolean variable or its negation.

A satisfying assignment or solution of a formula ϕ is a mapping τ :
V ars(ϕ) → {0, 1}, on which the formula evaluates to True. For V ⊆ V ars(ϕ),
τ↓V represents the truth values of variables in V in a satisfying assignment τ of
ϕ. We denote the set of all the solutions of ϕ as sol(ϕ). For S ⊆ V ars(ϕ), we
define sol(ϕ)↓S as the set of solutions of ϕ projected on S.

The problem of model counting is to compute |sol(ϕ)| for a given formula
ϕ. Projected model counting is defined analogously using sol(ϕ)↓S instead of
sol(ϕ), for a given projection set1 S ⊆ V ars(ϕ). A uniform sampler outputs a
solution y ∈ sol(ϕ) such that Pr[y is output] = 1

|sol(ϕ)| .
We say that ϕ is a circuit formula if for all assignments τ1, τ2 ∈ sol(ϕ), we

have τ1↓X = τ2↓X =⇒ τ1 = τ2. It is worth remarking that if ϕ is a circuit
formula, then X is an independent support.

For a circuit formula ϕ(X,Y) and for σ : Y �→ {0, 1}, we define pσ =
|sol(ϕ(Y �→σ))|

|sol(ϕ)↓X | . Given a circuit formula ϕ(X,Y), we define the entropy of ϕ,
denoted by Hϕ(Y) as follows: Hϕ(Y) = −∑

σ∈2Y pσ log(pσ).

3 Related Work

The Shannon entropy is a fundamental concept in information theory, and as
such have been studied by theoreticians and practitioners alike. While this is the
first work, to the best of our knowledge, that provides Probabilistic Approx-
imately Correct (PAC) (ε, δ)-approximation guarantees for all values of the
entropy, while requiring only logarithmically (in the size of the support of dis-
tribution) many queries, we survey below prior work relevant to ours.

Goldreich and Vadhan [34] showed that the problem of estimating the entropy
for circuit formulas is complete for statistical zero-knowledge. Estimation of the
entropy via collision probabilities has been considered in the statistical physics
community, but these techniques only provide lower bounds [43,55]. Batu et al.
[9] considered entropy estimation in a black-box model wherein one is allowed
to sample σ ∈ 2Y with probability proportional to pσ and pσ is revealed along
with the sample σ. Batu et al. showed that any algorithm that can estimate the
entropy within a factor of 2 in this model must use Ω(2m/8) samples. Further-
more, Batu et al. proposed a multiplicative approximation scheme assuming a
lower bound on H—precisely, it required a number of samples that grow lin-
early with 1/H; their scheme also gives rise to an additive approximate scheme.

1 Projection set has been referred to as sampling set in prior work [19,54].

A Scalable Shannon Entropy Estimator 367

Guha et al. [35] improved Batu et al.’s scheme to obtain (ε, δ) multiplicative
estimates using O(m log 1

δ

ε2H) samples, matching Batu et al.’s lower bound. Note
that this grows with 1/H.

A more restrictive model has been considered wherein we only get access
to samples (with the assurance that every σ is sampled with probability pro-
portional to pσ). Valiant and Valiant [58] obtained an asymptotically optimal
algorithm in this setting, which requires Θ(2m

ε2m) samples to obtain an ε additive
approximation. Chakraborty et al. [17] considered the problem in a different set-
ting, in which the algorithm is given the ability to sample σ from a conditional
distribution: the algorithm is permitted to specify a set S, and obtains σ from
the distribution conditioned on σ ∈ S. We remark that as discussed below, our
approach makes use of such conditional samples, by sampling from a modified
formula that conjoins the circuit formula to a formula for membership in S. In
any case, Chakraborty et al. use O(1

ε8 m7 log 1
δ) conditional samples to approxi-

mately learn the distribution, and can only provide an additive approximation
of entropy. A helpful survey of all of these different models and algorithms was
recently given by Canonne [15].

In this paper, we rely on the advances in model counting. Theoretical inves-
tigations into model counting were initiated by Valiant in his seminal work that
defined the complexity class #P and showed that the problem of model counting
is #P-complete. From a practical perspective, the earliest work on model count-
ing [12] focused on improving enumeration-based strategies via partial solutions.
Subsequently, Bayardo and Pehoushek [10] observed that if a formula can be
partitioned into subsets of clauses, also called components, such that each of
the subsets is over disjoint sets of variables, then the model count of the for-
mula is the product of the model counts of each of the components. Building on
Bayardo and Pehoushek’s scheme, Sang et al. [50] showed how conflict-driven
clause learning can be combined with component caching, which has been fur-
ther improved by Thurley [56] and Sharma et al. [52]. Another line of work
focuses on compilation-based techniques, wherein the core approach is to com-
pile the input formula into a subset L in negation normal form, so that counting
is tractable for L. The past five years have witnessed a surge of interest in the
design of projected model counters [6,18,20,42,45,52]. In this paper, we employ
GANAK [52], the state of the art projected model counter; an entry based on
GANAK won the projected model counting track at the 2020 model counting
competition [31].

Another crucial ingredient for our technique is access to an efficient sampler.
Counting and sampling are closely related problems, and therefore, the devel-
opment of efficient counters spurred the research on the development of sam-
plers. In a remarkable result, Huang and Darwiche [36] showed that the traces
of model counters are in d-DNNF (deterministic Decomposable Negation Nor-
mal Form [25]), which was observed to support sampling in polynomial time [51].
Achlioptas, Hammoudeh, and Theodoropoulos [3] observed that one can improve
the space efficiency by performing an on-the-fly traversal of the underlying trace
of a model counter such as SharpSAT [56].

368 P. Golia et al.

Our work builds on a long line of work in the QIF community that identified
a close relationship between quantified information flow and model counting [4,
5,27,33,38,59]. There are also many symbolic execution based approaches for
QIF based on model counting that would require model counting calls that are
linear in the size of observable domain, that is, exponential in the number of bits
represents the domain [8,46]. Another closely related line of the work concerns
the use of model counting in side-channel analysis [28,29,33]. Similarly, there
exists sampling based approaches for black-box leakage estimation that either
require too many samples, much larger than the product of size of input and
output domain [23] to converge or uses ML based approaches that predict the
error of the idea classifier for predicting secrets given observable [22]. However,
these approaches can not provide PAC guarantees on the estimation. While we
focus on the case where the behavior of a program can be modeled with a Boolean
formula ϕ, the underlying technique is general and can extended to cases where
programs (and their abstractions) are modeled using automata [4,5,14].

Before concluding our discussion of prior work, we remark that Köpf and
Rybalchenko [41] used Batu et al.’s [9] lower bounds to conclude that their
scheme could not be improved without usage of structural properties of the
program. In this context, our paper continues the direction alluded by Köpf and
Rybalchenko and designs the first efficient multiplicative approximation scheme
by utilizing white-box access to the program.

4 EntropyEstimation: Efficient Estimation of H(ϕ)

In this section, we focus on the primary technical contribution of our work: an
algorithm, called EntropyEstimation, that takes a circuit formula ϕ(X,Y) and
returns an (ε, δ) estimate of H(ϕ). We first provide a detailed technical overview
of the design of EntropyEstimation in Sect. 4.1, then provide a detailed description
of the algorithm, and finally, provide the accompanying technical analysis of the
correctness and complexity of EntropyEstimation.

4.1 Technical Overview

At a high level, EntropyEstimation uses a median of means estimator, i.e., we first
estimate H(ϕ) to within a (1±ε)-factor with probability at least 5

6 by computing
the mean of the underlying estimator and then take the median of many such
estimates to boost the probability of correctness to 1 − δ.

Let us consider a random variable S over the domain sol(ϕ)↓Y such that
Pr[S = σ] = pσ wherein σ ∈ sol(ϕ)↓Y and consider the self-information function
g : sol(ϕ)↓Y → [0,∞), given by g(σ) = log(1

pσ
). Observe that the entropy

H(ϕ) = E[g(S)]. Therefore, a simple estimator would be to sample S using
our oracle and then estimate the expectation of g(S) by a sample mean. At
this point, we observe that given access to a uniform sampler, UnifSample, we
can simply first sample τ ∈ sol(ϕ) uniformly at random, and then set S =
τ↓Y , which gives Pr[S = τ↓Y] = pτ↓Y

. Furthermore, observe that g(σ) can be

A Scalable Shannon Entropy Estimator 369

computed via a query to a model counter. In their seminal work, Batu et al. [9]
observed that the variance of g(S), denoted by variance[g(S)], can be at most
m2. The required number of sample queries, based on a straightforward analysis,

would be Θ
(

variance[g(S)]
ε2·(E[g(S)])2

)
= Θ

(∑
pσ log2 1

pσ

(
∑

pσ log 1
pσ

)2

)

. However, E[g(S)] = H(ϕ) can

be arbitrarily close to 0, and therefore, this does not provide a reasonable upper
bound on the required number of samples.

To address the lack of lower bound on H(ϕ), we observe that for ϕ to have
H(ϕ) < 1, there must exist σhigh ∈ sol(ϕ)↓Y such that p(σhigh) > 1

2 . We then
observe that given access to a sampler and counter, we can identify such a
σhigh with high probability, thereby allowing us to consider the two cases sep-
arately: (A) H(ϕ) > 1 and (B) H(ϕ) < 1. Now, for case (A), we could use
Batu et al.’s bound for variance[g(S)] [9] and obtain an estimator that would
require Θ

(
variance[g(S)]
ε2·(E[g(S)])2

)
sampling and counting queries. It is worth remarking

that the bound variance[g(S)] ≤ m2 is indeed tight as a uniform distribution
over sol(ϕ)↓X would achieve the bound. Therefore, we instead focus on the
expression variance[g(S)]

(E[g(S)])2 and prove that for the case when E[g(S)] = H(ϕ) > h,

we can upper bound variance[g(S)]
(E[g(S)])2 by (1+o(1))·m

h·ε2 , thereby reducing the complexity
from m2 to m (Observe that we have H(ϕ) > 1, that is, we can take h = 1).

Now, we return to the case (B) wherein we have identified σhigh ∈ sol(ϕ)↓Y

with pσhigh
> 1

2 . Let r = pσhigh
and Hrem =

∑

σ∈sol(ϕ)↓Y \σhigh

pσ log 1
pσ

. Note

that H(ϕ) = r log 1
r + Hrem. Therefore, we focus on estimating Hrem. To this

end, we define a random variable T that takes values in sol(ϕ)↓Y \ σhigh such
that Pr[T = σ] = pσ

1−r . Using the function g defined above, we have Hrem =
(1 − r) · E[g(T)]. Again, we have two cases, depending on whether Hrem ≥ 1 or
not; if it is, then we can bound the ratio variance[g(T)]

E[g(T)]2 similarly to case (A). If
not, we observe that the denominator is at least 1 for r ≥ 1/2. And, when Hrem

is so small, we can upper bound the numerator by (1 + o(1))m, giving overall
variance[g(T)]
(E[g(T)])2 ≤ (1 + o(1)) · 1

ε2 · m. We can thus estimate Hrem using the median
of means estimator.

4.2 Algorithm Description

Algorithm 1 presents the proposed algorithmic framework EntropyEstimation.
EntropyEstimation takes a formula ϕ(X,Y), a tolerance parameter ε, a confi-
dence parameter δ as input, and returns an estimate ĥ of the entropy Hϕ(Y),
that is guaranteed to lie within a (1±ε)-factor of Hϕ(Y) with confidence at least
1 − δ. Algorithm 1 assumes access to following subroutines:

ComputeCount: The subroutine ComputeCount takes a formula ϕ(X,Y) and a
projection set V ⊆ X ∪ Y as input, and returns a projected model count of
ϕ(X,Y) over V .

UnifSample: The subroutine UnifSample takes a formula ϕ(X,Y) as an input and
returns a uniformly sampled satisfying assignment of ϕ(X,Y).

370 P. Golia et al.

Algorithm 1. EntropyEstimation(ϕ(X,Y), ε, δ)
1: m ← |Y |; n ← |X|
2: z ← ComputeCount(ϕ(X, Y), X)
3: for i ∈ [1, log(10/δ)] do
4: τ ← UnifSample(ϕ)
5: r = z−1 · ComputeCount(ϕ(X, Y) ∧ (Y ↔ τ↓Y), X)
6: if r > 1

2
then

7: ϕ̂ ← ϕ ∧ (Y �↔ τ↓Y)

8: t ← 6
ε2

· min

{
n

2 log 1
1−r

, m + log(m + log m + 2.5)

}

9: ĥrem ← SampleEst(ϕ̂, z, t, 0.9 · δ)
10: ĥ ← (1 − r)ĥrem + r log(1

r
)

11: return ĥ
12: t ← 6

ε2
· (min {n, m + log(m + log m + 1.1)} − 1)

13: ĥ ← SampleEst(ϕ, z, t, 0.9 · δ)
14: return ĥ

Algorithm 2. SampleEst(ϕ, z, t, δ)
1: C ← []
2: T ← 9

2
log 2

δ

3: for i ∈ [1, T] do
4: est ← 0
5: for j ∈ [1, t] do
6: τ ← UnifSample(ϕ)
7: r = z−1 · ComputeCount(ϕ(X, Y) ∧ (Y ↔ τ↓Y), X)
8: est ← est + log(1/r)

9: C.Append(est
t

)

10: return Median(C)

SampleEst: Algorithm 2 presents the subroutine SampleEst, which also assumes
access to the ComputeCount and UnifSample subroutines. SampleEst takes as
input a formula ϕ(X,Y); the projected model count of ϕ(X,Y) over X, z; the
number of required samples, t; and a confidence parameter δ, and returns a
median-of-means estimate of the entropy. Algorithm 2 starts off by computing
the value of T , the required number of repetitions to ensure at least 1 − δ
confidence for the estimate. The algorithm has two loops—one outer loop
(Lines 3–9), and one inner loop (Lines 5–8). The outer loop runs for [92 log(2δ)]
rounds, where in each round, Algorithm2 updates a list C with the mean
estimate, est. In the inner loop, in each round, Algorithm2 updates the value
of est : Line 6 draws a sample τ using the UnifSample(ϕ(X,Y)) subroutine.
At Line 7, value of r is computed as the ratio of the projected model count
of X in ϕ(X,Y) ∧ (Y ↔ τ↓Y) to z. To compute the projected model count,
Algorithm 2 calls the subroutine ComputeCount on input (ϕ(X,Y) ∧ (Y ↔
τ↓Y),X). At line 8, est is updated with log(1r), and at line 9, the final est is
added to C. Finally, at line 10, Algorithm 2 returns the median of C.

A Scalable Shannon Entropy Estimator 371

Returning back to Algorithm 1, it starts by computing the value of z as the
projected model count of ϕ(X,Y) over X at line 2. The projected model count is
computed by calling the ComputeCount subroutine. Next, Algorithm1 attempts
to determine whether there exists an output τhigh with probability greater than
1/2 or not by iterating over lines 3–11 for [log(10/δ)] rounds. Line 4, draws a
sample τ by calling the UnifSample(ϕ(X,Y)) subroutine. Line 5 computes the
value of r by taking the ratio of the projected model count of ϕ(X,Y)∧(Y ↔ τ↓Y)
to z. Line 6 checks whether the value of r is greater than 1/2 or not, and chooses
one of the two paths based on the value of r:

1. If the value of r turns out to be greater than 1/2, the formula ϕ(X,Y) is
updated to ϕ(X,Y) ∧ (Y �↔ τ↓Y) at line 7. The resulting formula is denoted
by ϕ̂(X,Y). Then, the value of required number of samples, t, is calculated
as per the calculation shown at line 8. At line 9, the subroutine SampleEst is
called with ϕ̂(X,Y), z, t, and 0.9 × δ as arguments to compute the estimate
ĥrem. Finally, it computes the estimate ĥ at line 10.

2. If the value of r is at most 1/2 in every round, the number of samples we
use, t, is calculated as per the calculation shown at line 12. At line 13, the
subroutine SampleEst is called with ϕ(X,Y), z, t, and 0.9 × δ as arguments
to compute the estimate ĥ.

4.3 Theoretical Analysis

Theorem 1. Given a circuit formula ϕ with |Y | ≥ 2, a tolerance parameter
ε > 0, and confidence parameter δ > 0, the algorithm EntropyEstimation returns
ĥ such that

Pr
[
(1 − ε)Hϕ(Y) ≤ ĥ ≤ (1 + ε)|Hϕ(Y)|

]
≥ 1 − δ

We first analyze the median-of-means estimator computed by SampleEst.

Lemma 1. Given a circuit formula ϕ and z ∈ N, an accuracy parameter ε > 0,
a confidence parameter δ > 0, and a batch size t ∈ N for which

1
tε2

·

⎛

⎜
⎝

∑
σ∈2Y

|sol(ϕ(Y �→σ))|
|sol(ϕ)↓X | (log z

|sol(ϕ(Y �→σ))|)
2

(∑
σ∈2Y

|sol(ϕ(Y �→σ))|
|sol(ϕ)↓X | log z

|sol(ϕ(Y �→σ))|
)2 − 1

⎞

⎟
⎠ ≤ 1/6

the algorithm SampleEst returns an estimate ĥ such that with probability 1 − δ,

ĥ ≤ (1 + ε)
∑

σ∈2Y

|sol(ϕ(Y �→ σ))|
|sol(ϕ)↓X | log

z

|sol(ϕ(Y �→ σ))| and

ĥ ≥ (1 − ε)
∑

σ∈2Y

|sol(ϕ(Y �→ σ))|
|sol(ϕ)↓X | log

z

|sol(ϕ(Y �→ σ))| .

372 P. Golia et al.

Proof. Let Rij be the random value taken by r in the ith iteration of the outer
loop and jth iteration of the inner loop. We observe that {Rij}(i,j) are a family of
i.i.d. random variables. Let Ci =

∑t
j=1

1
t log 1

Rij
be the value appended to C at

the end of the ith iteration of the loop. Clearly E[Ci] = E[log 1
Rij

]. Furthermore,
we observe that by independence of the Rij ,

variance[Ci] =
1
t
variance[log

1
Rij

] =
1
t
(E[(log Rij)2] − E[log

1
Rij

]
2

).

By Chebyshev’s inequality, now,

Pr
[

|Ci − E[log
1

Rij
]| > εE[log

1
Rij

]
]

<
variance[Ci]

ε2E[log 1
Rij

]2

=
E[(log Rij)2] − E[log 1

Rij
]2

t · ε2E[log 1
Rij

]2

≤ 1/6

by our assumption on t.
Let Li ∈ {0, 1} be the indicator random variable for the event that Ci <

E[log 1
Rij

] − εE[log 1
Rij

], and let Hi ∈ {0, 1} be the indicator random variable for
the event that Ci > E[log 1

Rij
] + εE[log 1

Rij
]. Similarly, since these are disjoint

events, Bi = Li + Hi is also an indicator random variable for the union. So
long as

∑T
i=1 Li < T/2 and

∑T
i=1 Hi < T/2, we note that the value returned

by SampleEst is as desired. By the above calculation, Pr[Li = 1] + Pr[Hi = 1] =
Pr[Bi = 1] < 1/6, and we note that {(Bi, Li,Hi)}i are a family of i.i.d. random
variables. Observe that by Hoeffding’s inequality,

Pr

[
T∑

i=1

Li ≥ T

6
+

T

3

]

≤ exp(−2T
1
9
) =

δ

2

and similarly Pr
[∑T

i=1 Hi ≥ T
2

]
≤ δ

2 . Therefore, by a union bound, the returned
value is adequate with probability at least 1 − δ overall.

The analysis of SampleEst relied on a bound on the ratio of the first and
second “moments” of the self-information in our truncated distribution. Suppose
for all assignments σ to Y , pσ ≤ 1/2. We observe that then Hϕ(Y) ≥ ∑

σ∈2Y pσ ·
1 = 1. We also observe that on account of the uniform distribution on X, any
σ in the support of the distribution has pσ ≥ 1/2|X|. Such bounds allow us to
bound the relative variance of the self information:

Lemma 2. Let {pσ ∈ [1/2|X|, 1]}σ∈2Y be given. Then,

∑

σ∈2Y

pσ(log pσ)2 ≤ |X|
∑

σ∈2Y

pσ log
1
pσ

A Scalable Shannon Entropy Estimator 373

Proof. We observe simply that

∑

σ∈2Y

pσ(log pσ)2 ≤ log 2|X| ∑

σ∈2Y

pσ log
1
pσ

= |X|
∑

σ∈2Y

pσ log
1
pσ

.

Lemma 3. Let {pσ ∈ [0, 1]}σ∈2Y be given with
∑

σ∈2Y pσ ≤ 1 and

H =
∑

σ∈2Y

pσ log
1
pσ

≥ 1.

Then ∑
σ∈2Y pσ(log pσ)2

(∑
σ∈2Y pσ log 1

pσ

)2 ≤
(

1 +
log(|Y | + log |Y | + 1.1)

|Y |
)

|Y |.

Similarly, if H ≤ 1 and |Y | ≥ 2,
∑

σ∈2Y

pσ(log pσ)2 ≤ |Y | + log(|Y | + log |Y | + 2.5).

Concretely, both cases give a bound that is at most 2|Y | for |Y | ≥ 3; |Y | = 8
gives a bound that is less than 1.5 × |Y | in both cases, |Y | = 64 gives a bound
that is less than 1.1 × |Y |, etc.

Proof. By induction on the size of the support, denoted as supp and defined as
|{σ ∈ 2Y |pσ > 0}|, we’ll show that when H ≥ 1, the ratio is at most log |supp|+
log(log |supp| + log log |supp| + 1.1). The base case is when there are only two
elements (|Y | = 1), in which case we must have p0 = p1 = 1/2, and the ratio is
uniquely determined to be 1. For the induction step, observe that whenever any
subset of the pσ take value 0, this is equivalent to a distribution with smaller
support, for which by induction hypothesis, we find the ratio is at most

log(|supp| − 1) + log(log(|supp| − 1) + log log(|supp| − 1) + 1.1)
< log |supp| + log(log |supp| + log log |supp| + 1.1).

Consider any value of Hϕ(Y) = H. With the entropy fixed, we need only max-
imize the numerator of the ratio with Hϕ(Y) = H. Indeed, we’ve already ruled
out a ratio of |supp(Y)| for solutions in which any of the pσ take value 0, and
clearly we cannot have any pσ = 1, so we only need to consider interior points
that are local optima. We use the method of Lagrange multipliers: for some λ,
all pσ must satisfy log2 pσ + 2 log pσ − λ(log pσ − 1) = 0, which has solutions

log pσ =
λ

2
− 1 ±

√

(1 − λ

2
)2 − λ =

λ

2
− 1 ±

√
1 + λ2/4.

We note that the second derivatives with respect to pσ are equal to 2 log pσ

pσ
+ 2−λ

pσ

which are negative iff log pσ < λ
2 − 1, hence we attain local maxima only for the

374 P. Golia et al.

solution log pσ = λ
2 − 1 − √

1 + λ2/4. Thus, there is a single pσ, which by the
entropy constraint, must satisfy |supp|pσ log 1

pσ
= H which we’ll show gives

pσ =
H

|supp|(log |supp|
H + log log |supp|

H + ρ)

for some ρ ≤ 1.1. For |supp| = 3, we know 1 ≤ H ≤ log 3, and we can verify
numerically that log

(
log 3

H +log log 3
H +ρ

log 3
H

)
∈ (0.42, 0.72) for ρ ∈ [0, 1]. Hence, by

Brouwer’s fixed point theorem, such a choice of ρ ∈ [0, 1] exists. For |supp| ≥ 4,

observe that |supp|
H ≥ 2, so log

(
log

|supp|
H +log log

|supp|
H

log
|supp|

H

)

> 0. For |supp| = 4,

log
(

log 4
H +log log 4

H +ρ

log 4
H

)
∈ [0, 1], and similarly for all integer values of |supp| up to

15, log
(

log
|supp|

H +log log
|supp|

H +1.1

log
|supp|

H

)

< 1.1, so we can obtain ρ ∈ (0, 1.1). Finally,

for |supp| ≥ 16, we have |supp|
H ≤ 2|supp|/2H , and hence log log

|supp|
H +ρ

log
|supp|

H

≤ 1, so

|supp|H(log |supp|
H + log(log |supp|

H + log log |supp|
H + ρ))

|supp|(log |supp|
H + log log |supp|

H + ρ)

≤ H
log |supp|

H + log log |supp|
H + 1

log |supp|
H + log log |supp|

H + ρ

Hence it is clear that this gives H for some ρ ≤ 1. Observe that for such a choice
of ρ, using the substitution above, the ratio we attain is

|supp| · H
H2 · |supp|(log |supp|

H
+ log log

|supp|
H

+ ρ)

(
log

|supp|(log |supp|
H

+ log log
|supp|

H
+ ρ)

H

)2

=
1

H
(log

|supp|
H

+ log(log
|supp|

H
+ log log

|supp|
H

+ ρ))

which is monotone in 1/H, so using the fact that H ≥ 1, we find it is at most

log |supp| + log(log |supp| + log log |supp| + ρ)

which, recalling ρ < 1.1, gives the claimed bound.
For the second part, observe that by the same considerations, for fixed H,

∑

σ∈2Y

pσ(log pσ)2 = H log
1
pσ

for the unique choice of pσ for |Y | and H as above, i.e., we will show that for
|Y | ≥ 2, it is

H

(

log
2|Y |

H
+ log(log

2|Y |

H
+ log log

2|Y |

H
+ ρ)

)

A Scalable Shannon Entropy Estimator 375

for some ρ ∈ (0, 2.5). Indeed, we again consider the function

f(ρ) =
log(log 2|Y |

H + log log 2|Y |
H + ρ)

log log 2|Y |
H

,

and observe that for 2|Y |/H > 2, f(0) > 0. Now, when |Y | ≥ 2 and H ≤ 1,
2|Y |/H ≥ 4. We will see that the function d(ρ) = f(ρ) − ρ has no critical
points for 2|Y |/H ≥ 4 and ρ > 0, and hence its maximum is attained at the
boundary, i.e., at 2|Y |

H = 4, at which point we see that f(2.5) < 2.5. So, for such
values of 2|Y |

H , f(ρ) maps [0, 2.5] into [0, 2.5] and hence by Brouwer’s fixed point
theorem again, for all |Y | ≥ 4 and H ≥ 1 some ρ ∈ (0, 2.5) exists for which
pσ = log 2|Y |

H + log(log 2|Y |
H + log log 2|Y |

H + ρ) gives
∑

pσ∈2Y pσ log 1
pσ

= H.
Indeed, d′(ρ) = 1

ln 2(log 2|Y |
H +log log 2|Y |

H +ρ) log log 2|Y |
H

−1, which has a singularity

at ρ = − log log 2|Y |
H − log log 2|Y |

H , and otherwise has a critical point at ρ =
ln 2

log log 2|Y |
H

− log 2|Y |
H − log log 2|Y |

H . Since log 2|Y |
H ≥ 2 and log log 2|Y |

H ≥ 1 here,

these are both clearly negative.
Now, we’ll show that this expression (for |Y | ≥ 2) is maximized when H = 1.

Observe first that the expression H(|Y |+log 1
H) as a function of H does not have

critical points for H ≤ 1: the derivative is |Y | + log 1
H − 1

ln 2 , so critical points
require H = 2|Y |−(1/ ln 2) > 1. Hence we see that this expression is maximized at
the boundary, when H = 1. Similarly, the rest of the expression,

H log(|Y | + log
1
H

+ log(|Y | + log
1
H

) + 2.5)

viewed as a function of H, only has critical points for

log(|Y |+log
1
H

+log(|Y |+log
1
H

)+2.5) =
1

ln 2 (1 + 1
|Y |+log 1

H

)

|Y | + log 1
H + log(|Y | + log 1

H) + 2.5

i.e., it requires

(|Y | + log
1

H
+ log(|Y | + log

1

H
) + 2.5) log(|Y | + log

1

H
+ log(|Y | + log

1

H
) + 2.5)

=
1

ln 2
(1 +

1

|Y | + log 1
H

).

But, the right-hand side is at most 3
2 ln 2 < 3, while the left-hand side is at least

13. Thus, it also has no critical points, and its maximum is similarly taken at
the boundary, H = 1. Thus, overall, when H ≤ 1 and |Y | ≥ 2 we find

∑

σ∈2Y

pσ(log pσ)2 ≤ |Y | + log(|Y | + log |Y | + 2.5).

Although the assignment of probability mass used in the bound did not sum
to 1, nevertheless this bound is nearly tight. For any γ > 0, and letting H = 1+Δ

376 P. Golia et al.

where Δ = 1
logγ(2|Y |−2)

, the following solution attains a ratio of (1−o(1))|Y |1−γ :
for any two σ∗

1 , σ
∗
2 ∈ 2Y , set pσ∗

i
= 1

2 − ε
2 and set the rest to ε

2|Y |−2
, for ε chosen

below. To obtain

H = 2 · (
1
2

− ε

2
) log

2
1 − ε

+ (2|Y | − 2) · ε

2|Y | − 2
log

2|Y | − 2
ε

= (1 − ε)(1 + log(1 +
ε

1 − ε
)) + ε log

2|Y | − 2
ε

observe that since log(1 + x) = x
ln 2 + Θ(x2), we will need to take

ε =
Δ

log(2|Y | − 2) + log 1−ε
ε − (1 + 1

ln 2) + Θ(ε2)

=
Δ

log(2|Y | − 2) + log log(2|Y | − 2) + log 1
Δ − (1 + 1

ln 2) − ε
ln 2 + Θ(ε2)

.

For such a choice, we indeed obtain the ratio

(1 − ε) log2 2
1−ε + ε log2 (2|Y |−2)

ε

H2
≥ (1 − o(1))|Y |1−γ .

Using these bounds, we are finally ready to prove Theorem 1:

Proof. We first consider the case where no σ ∈ sol(ϕ) has pσ > 1/2; here, the
condition in line 6 of EntropyEstimation never passes, so we return the value
obtained by SampleEst on line 12. Note that we must have Hϕ(Y) ≥ 1 in this
case. So, by Lemma 3,

∑
σ∈2Y pσ(log pσ)2

(∑
σ∈2Y pσ log 1

pσ

)2 ≤ min
{

|X|,
(

1 +
log(|Y | + log |Y | + 1.1)

|Y |
)

|Y |
}

and hence, by Lemma 1, using t ≥ 6·min{|X|,|Y |+log(|Y |+log |Y |+1.1)}−1)
ε2 suffices to

ensure that the returned ĥ is satisfactory with probability 1 − δ.
Next, we consider the case where some σ∗ ∈ sol(ϕ) has pσ∗ > 1/2. Since the

total probability is 1, there can be at most one such σ∗. So, in the distribution
conditioned on σ �= σ∗, i.e., {p′

σ}σ∈2Y that sets p′
σ∗ = 0, and p′

σ = pσ

1−pσ∗
otherwise, we now need to show that t satisfies

1
tε2

(∑
σ 	=σ∗ p′

σ(log 1
(1−pσ∗)p′

σ
)2

(
∑

σ 	=σ∗ p′
σ log 1

(1−pσ∗)p′
σ
)2

− 1

)

<
1
6

to apply Lemma 1. We first rewrite this expression. Letting H =
∑

σ 	=σ∗ p′
σ log 1

p′
σ

be the entropy of this conditional distribution,
∑

σ 	=σ∗ p′
σ(log 1

(1−pσ∗)p′
σ
)2

(
∑

σ 	=σ∗ p′
σ log 1

(1−pσ∗)p′
σ
)2

=

∑
σ 	=σ∗ p′

σ(log 1
p′

σ
)2 + 2H log 1

1−pσ∗ + (log 1
1−pσ∗)2

(H + log 1
1−pσ∗)2

=

∑
σ 	=σ∗ p′

σ(log 1
p′

σ
)2 − H2

(H + log 1
1−pσ∗)2

+ 1.

A Scalable Shannon Entropy Estimator 377

Lemma 2 now gives rather directly that this quantity is at most

H|X| − H2

(H + log 1
1−pσ∗)2

+ 1 <
|X|

2 log 1
1−pσ∗

+ 1.

For the bound in terms of |Y |, there are now two cases depending on whether
H is greater than 1 or less than 1. When it is greater than 1, the first part of
Lemma 3 again gives

∑
σ∈2Y p′

σ(log p′
σ)2

H2
≤ |Y | + log(|Y | + log |Y | + 1.1).

When H < 1, on the other hand, recalling pσ∗ > 1/2 (so log 1
1−pσ∗ ≥ 1), the

second part of Lemma 3 gives that our expression is less than

|Y | + log(|Y | + log |Y | + 2.5)) − H2

(H + log 1
1−pσ∗)2

< |Y | + log(|Y | + log |Y | + 2.5).

Thus, by Lemma 1,

t ≥
6 · min{ |X|

2 log 1
1−pσ∗

, |Y | + log(|Y | + log |Y | + 2.5)}
ε2

suffices to obtain ĥ such that ĥ ≤ (1 + ε)
∑

σ 	=σ∗
pσ

1−pσ∗ log 1
pσ

and ĥ ≥ (1 −
ε)

∑
σ 	=σ∗

pσ

1−pσ∗ log 1
pσ

; hence we obtain such a ĥ with probability at least 1−0.9·δ
in line 10, if we pass the test on line 6 of Algorithm 1, thus identifying σ∗. Note
that this value is adequate, so we need only guarantee that the test on line 6
passes on one of the iterations with probability at least 1 − 0.1 · δ.

To this end, note that each sample(τ↓Y) on line 4 is equal to σ∗ with prob-
ability |sol(ϕ(Y �→σ∗))|

|sol(ϕ)↓X | > 1
2 by hypothesis. Since each iteration of the loop is an

independent draw, the probability that the condition on line 6 is not met after
log 10

δ draws is less than (1 − 1
2)log

10
δ = δ

10 , as needed.

4.4 Beyond Boolean Formulas

We now focus on the case where the relationship between X and Y is mod-
eled by an arbitrary relation R instead of a Boolean formula ϕ. As noted in
Sect. 1, program behaviors are often modeled with other representations such as
automata [4,5,14]. The automata-based modeling often has X represented as
the input to the given automaton A while every realization of Y corresponds to
a state of A. Instead of an explicit description of A, one can rely on a symbolic
description of A. Two families of techniques are currently used to estimate the
entropy. The first technique is to enumerate the possible output states and, for
each such state s, estimate the number of strings accepted by A if s was the only
accepting state of A. The other technique relies on uniformly sampling a string σ,

378 P. Golia et al.

noting the final state of A when run on σ, and then applying a histogram-based
technique to estimate the entropy.

In order to use the algorithm EntropyEstimation one requires access to a
sampler and model counter for automata; the past few years have witnessed the
design of efficient counters for automata to handle string constraints. In addition,
EntropyEstimation requires access to a conditioning routine to implement the
substitution step, i.e., Y �→ τ↓Y , which is easy to accomplish for automata via
marking the corresponding state as a non-accepting state.

5 Empirical Evaluation

To evaluate the runtime performance of EntropyEstimation, we implemented
a prototype in Python that employs SPUR [3] as a uniform sampler and
GANAK [52] as a projected model counter. We experimented with 96 Boolean
formulas arising from diverse applications ranging from QIF benchmarks [32],
plan recognition [54], bit-blasted versions of SMTLIB benchmarks [52,54], and
QBFEval competitions [1,2]. The value of n = |X| varies from 5 to 752 while
the value of m = |Y | varies from 9 to 1447.

In all of our experiments, the parameters δ and ε were set to 0.09, 0.8 respec-
tively. All of our experiments were conducted on a high-performance computer
cluster with each node consisting of a E5-2690 v3 CPU with 24 cores, and
96 GB of RAM with a memory limit set to 4 GB per core. Experiments were
run in single-threaded mode on a single core with a timeout of 3000 s.

Baseline: As our baseline, we implemented the following approach to com-
pute the entropy exactly, which is representative of the current state of the
art approaches [13,27,39]2. For each valuation σ ∈ sol(ϕ)↓Y , we compute
pσ = |sol(ϕ(Y �→σ))|

|sol(ϕ)↓X | , where |sol(ϕ(Y → σ))| is the count of satisfying assign-
ments of ϕ(Y �→ σ), and |sol(ϕ)↓X | represents the projected model count of ϕ
over X. Then, finally the entropy is computed as

∑

σ∈2Y

pσ log(1
pσ

).

Our evaluation demonstrates that EntropyEstimation can scale to the for-
mulas beyond the reach of the enumeration-based baseline approach. Within a
given timeout of 3000 s, EntropyEstimation is able to estimate the entropy for
all the benchmarks, whereas the baseline approach could terminate only for 14
benchmarks. Furthermore, EntropyEstimation estimated the entropy within the
allowed tolerance for all the benchmarks.

5.1 Scalability of EntropyEstimation

Table 1 presents the performance of EntropyEstimation vis-a-vis the baseline
approach for 20 benchmarks.3 Column 1 of Table 1 gives the names of the
2 We wish to emphasize that none of the previous approaches could provide theoretical

guarantees of (ε, δ) without enumerating over all possible assignments to Y .
3 The complete analysis for all of the benchmarks is deferred to the technical report

https://arxiv.org/pdf/2206.00921.pdf.

https://arxiv.org/pdf/2206.00921.pdf

A Scalable Shannon Entropy Estimator 379

Table 1. “-” represents that entropy could not be estimated due to timeout. Note that
m = |Y | and n = |X|.

Benchmarks |X| |Y | Baseline EntropyEstimation

count count/sample

Time(s) queries Time(s) queries

pwd-backdoor 336 64 - 1.84×1019 5.41 1.25×102

case31 13 40 201.02 1.02×103 125.36 5.65×102

case23 14 63 420.85 2.05×103 141.17 6.10×102

s1488 15 7 14 927 1037.71 3.84×103 150.29 6.10×102

bug1-fix-4 53 17 373.52 1.76×103 212.37 9.60×102

s832a 15 7 23 670 - 2.65×106 247 1.04×103

dyn-fix-1 40 48 - 3.30×104 252.2 1.83×103

s1196a 7 4 32 676 - 4.22×107 343.68 1.46×103

backdoor-2x16 168 32 - 1.31×105 405.7 1.70×103

CVE-2007 752 32 - 4.29×109 654.54 1.70×103

subtraction32 65 218 - 1.84×1019 860.88 3.00×103

case 1 b11 1 48 292 - 2.75×1011 1164.36 2.20×103

s420 15 7-1 235 116 - 3.52×107 1187.23 5.72×103

case145 64 155 - 7.04×1013 1243.11 2.96×103

floor64-1 405 161 - 2.32×1027 1764.2 7.85×103

s641 7 4 54 453 - 1.74×1012 1849.84 2.48×103

decomp64 381 191 - 6.81×1038 2239.62 9.26×103

squaring2 72 813 - 6.87×1010 2348.6 3.33×103

stmt5 731 730 379 311 - 3.49×1010 2814.58 1.49×104

benchmarks, while columns 2 and 3 list the numbers of X and Y variables.
Columns 4 and 5 respectively present the time taken, number of samples used by
baseline approach, and columns 6 and 7 present the same for EntropyEstimation.
The required number of samples for the baseline approach is |sol(ϕ)↓Y |.

Table 1 clearly demonstrates that EntropyEstimation outperforms the base-
line approach. As shown in Table 1, there are some benchmarks for which the
projected model count on V is greater than 1030, i.e., the baseline approach
would need 1030 valuations to compute the entropy exactly. By contrast, the
proposed algorithm EntropyEstimation needed at most ∼ 104 samples to esti-
mate the entropy within the given tolerance and confidence. The number of
samples required to estimate the entropy is reduced significantly with our pro-
posed approach, making it scalable.

5.2 Quality of Estimates

There were only 14 benchmarks out of 96 for which the enumeration-based base-
line approach finished within a given timeout of 3000s. Therefore, we compared

380 P. Golia et al.

the entropy estimated by EntropyEstimation with the baseline for those 14 bench-
marks only. Figure 1 shows how accurate were the estimates of the entropy by
EntropyEstimation. The y-axis represents the observed error, which was calcu-
lated as max(Estimated

Exact − 1, Exact
Estimated − 1), and the x-axis represents the bench-

marks ordered in ascending order of observed error; that is, a bar at x represents
the observed error for a benchmark—the lower, the better.

Fig. 1. The accuracy of estimated entropy using EntropyEstimation for 14 benchmarks.
ε = 0.8, δ = 0.09. (Color figure online)

The red horizontal line in Fig. 1 indicates the maximum allowed tolerance (ε),
which was set to 0.80 in our experiments. We observe that for all 14 benchmarks,
EntropyEstimation estimated the entropy within the allowed tolerance; in fact,
the observed error was greater than 0.1 for just 2 out of the 14 benchmarks, and
the maximum error observed was 0.29.

Alternative Baselines: As we discussed earlier, several other algorithms have
been proposed for estimating the entropy. For example, Valiant and Valiant’s
algorithm [58] obtains an ε-additive approximation using O(2m

ε2m) samples, and
Chakraborty et al. [17] compute such approximations using O(m7

ε8) samples. We
stress that neither of these is exact, and thus could not be used to assess the
accuracy of our method as presented in Fig. 1. Moreover, based on Table 1, we
observe that the number of sampling or counting calls that could be computed
within the timeout was roughly 2×104, where m ranges between 101–103. Thus,
the method of Chakraborty et al. [17], which would take 107 or more samples on
all benchmarks, would not be competitive with our method, which never used
2 × 104 calls. The method of Valiant and Valiant, on the other hand, would
likely allow a few more benchmarks to be estimated (perhaps up to a fifth of
the benchmarks). Still, it would not be competitive with our technique except in
the smallest benchmarks (for which the baseline required < 106 samples, about
a third of our benchmarks), since we were otherwise more than a factor of m
faster than the baseline.

A Scalable Shannon Entropy Estimator 381

6 Conclusion

In this work, we considered estimating the Shannon entropy of a distribution
specified by a circuit formula ϕ(X,Y). Prior work relied on O(2m) model count-
ing queries and, therefore, could not scale to instances beyond small values of m.
In contrast, we propose a novel technique, called EntropyEstimation, for estima-
tion of entropy that takes advantage of the access to the formula ϕ via condition-
ing. EntropyEstimation makes only O(min(m,n)) model counting and sampling
queries, and therefore scales significantly better than the prior approaches.

Acknowledgments. This work was supported in part by National Research Foun-
dation Singapore under its NRF Fellowship Programme[NRF-NRFFAI1-2019-0004],
Ministry of Education Singapore Tier 2 grant [MOE-T2EP20121-0011], NUS ODPRT
grant [R-252-000-685-13], an Amazon Research Award, and NSF awards IIS-1908287,
IIS-1939677, and IIS-1942336. We are grateful to the anonymous reviewers for con-
structive comments to improve the paper. The computational work was performed on
resources of the National Supercomputing Centre, Singapore: https://www.nscc.sg.

References

1. QBF solver evaluation portal 2017. http://www.qbflib.org/qbfeval17.php
2. QBF solver evaluation portal 2018. http://www.qbflib.org/qbfeval18.php
3. Achlioptas, D., Hammoudeh, Z.S., Theodoropoulos, P.: Fast sampling of perfectly

uniform satisfying assignments. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 135–147. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8 9

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 15

5. Aydin, A., et al.: Parameterized model counting for string and numeric constraints.
In: Proceedings of ESEC/FSE, pp. 400–410 (2018)

6. Aziz, R.A., Chu, G., Muise, C., Stuckey, P.: #∃SAT: projected model counting. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 121–137. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 10

7. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: Proceedings of SP (2009)

8. Bang, L., Aydin, A., Phan, Q.S., Păsăreanu, C.S., Bultan, T.: String analysis for
side channels with segmented oracles. In: Proceedings of SIGSOFT (2016)

9. Batu, T., Dasgupta, S., Kumar, R., Rubinfeld, R.: The complexity of approximat-
ing the entropy. SIAM J. Comput. 35(1), 132–150 (2005)

10. Bayardo Jr, R.J., Pehoushek, J.D.: Counting models using connected components.
In: AAAI/IAAI, pp. 157–162 (2000)

11. Bevier, W.R., Cohen, R.M., Young, W.D.: Connection policies and controlled inter-
ference. In: Proceedings of CSF (1995)

12. Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps count-
ing models. J. Artif. Intell. Res. 10, 457–477 (1999)

13. Borges, M., Phan, Q.-S., Filieri, A., Păsăreanu, C.S.: Model-counting approaches
for nonlinear numerical constraints. In: Barrett, C., Davies, M., Kahsai, T. (eds.)
NFM 2017. LNCS, vol. 10227, pp. 131–138. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57288-8 9

https://www.nscc.sg
http://www.qbflib.org/qbfeval17.php
http://www.qbflib.org/qbfeval18.php
https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-24318-4_10
https://doi.org/10.1007/978-3-319-57288-8_9
https://doi.org/10.1007/978-3-319-57288-8_9

382 P. Golia et al.

14. Bultan, T.: Quantifying information leakage using model counting constraint
solvers. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031,
pp. 30–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 3

15. Canonne, C.L.: A survey on distribution testing: your data is big. But is it blue?
Theory Comput. 1–100 (2020)

16. Cernỳ, P., Chatterjee, K., Henzinger, T.A.: The complexity of quantitative infor-
mation flow problems. In: Proceedings of CSF (2011)

17. Chakraborty, S., Fischer, E., Goldhirsh, Y., Matsliah, A.: On the power of condi-
tional samples in distribution testing. SIAM J. Comput. (2016)

18. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT, In: AAAI, pp. 1722–1730.
AAAI Press (2014)

19. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proceedings of DAC (2014)

20. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic sat calls. In:
IJCAI (2016)

21. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow. In: Proceedings of SP (2010)

22. Cherubin, G., Chatzikokolakis, K., Palamidessi, C.: F-BLEAU: fast black-box leak-
age estimation. In: Proceedings of SP (2019)

23. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 13

24. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. (2007)

25. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non-Classical Logics 11(1–2), 11–
34 (2001)

26. Denning, D.E.: A lattice model of secure information flow. Commun. ACM (1976)
27. Eiers, W., Saha, S., Brennan, T., Bultan, T.: Subformula caching for model count-

ing and quantitative program analysis. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 453–464. IEEE (2019)

28. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-
sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. (TOSEM)
24(2), 1–24 (2014)

29. Eldib, H., Wang, C., Taha, M., Schaumont, P.: QMS: evaluating the side-channel
resistance of masked software from source code. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2014)

30. Ferrari, E., Samarati, P., Bertino, E., Jajodia, S.: Providing flexibility in informa-
tion flow control for object oriented systems. In: Proceedings of SP (1997)

31. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. arXiv
preprint arXiv:2012.01323 (2020). https://arxiv.org/pdf/2012.01323.pdf

32. Fremont, D., Rabe, M., Seshia, S.: Maximum model counting. In: Proceedings of
AAAI (2017)

33. Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-channel
resistance of masked software implementations. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 28(3), 1–32 (2019)

https://doi.org/10.1007/978-3-030-41600-3_3
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13
http://arxiv.org/abs/2012.01323
https://arxiv.org/pdf/2012.01323.pdf

A Scalable Shannon Entropy Estimator 383

34. Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero knowledge with
applications to the structure of SZK. In: Proceedings of CCC, pp. 54–73. IEEE
(1999)

35. Guha, S., McGregor, A., Venkatasubramanian, S.: Sublinear estimation of entropy
and information distances. ACM Trans. Algorithms (TALG) 5(4), 1–16 (2009)

36. Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191–219
(2007)

37. Kadron, İ.B., Rosner, N., Bultan, T.: Feedback-driven side-channel analysis for
networked applications. In: Proceedings of SIGSOFT (2020)

38. Kim, S., McCamant, S.: Bit-vector model counting using statistical estimation.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 133–151.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 8

39. Klebanov, V.: Precise quantitative information flow analysis using symbolic model
counting. QASA (2012)

40. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of CCS (2007)

41. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: Proceedings of CSF, pp. 3–14. IEEE (2010)

42. Lagniez, J.M., Marquis, P.: A recursive algorithm for projected model counting.
In: Proceedings of AAAI, vol. 33, pp. 1536–1543 (2019)

43. Ma, S.K.: Calculation of entropy from data of motion. J. Stat. Phys. 26(2), 221–240
(1981)

44. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: Proceedings of PLAS (2011)

45. Möhle, S., Biere, A.: Dualizing projected model counting. In: Proceedings of ICTAI,
pp. 702–709. IEEE (2018)

46. Phan, Q.S., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of
adaptive side-channel attacks. In: Proceedings of CSF (2017)

47. Phan, Q.S., Malacaria, P.: Abstract model counting: a novel approach for quan-
tification of information leaks. In: Proceedings of CCS (2014)

48. Phan, Q.S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative
information flow. Proc. ACM SIGSOFT (2012)

49. Rosner, N., Kadron, I.B., Bang, L., Bultan, T.: Profit: detecting and quantifying
side channels in networked applications. In: Proceedings of NDSS (2019)

50. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. SAT 4, 7th (2004)

51. Sharma, S., Gupta, R., Roy, S., Meel, K.S.: Knowledge compilation meets uniform
sampling. In: Proceedings of LPAR (2018)

52. Sharma, S., Roy, S., Soos, M., Meel, K.S.: Ganak: a scalable probabilistic exact
model counter. In: Proceedings of IJCAI (2019)

53. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

54. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 22

55. Strong, S.P., Koberle, R., Van Steveninck, R.R.D.R., Bialek, W.: Entropy and
information in neural spike trains. Phys. Rev. Lett. 80(1), 197 (1998)

https://doi.org/10.1007/978-3-319-89960-2_8
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22

384 P. Golia et al.

56. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 38

57. Val, C.G., Enescu, M.A., Bayless, S., Aiello, W., Hu, A.J.: Precisely measuring
quantitative information flow: 10k lines of code and beyond. In: Proceedings of
EuroS&P, pp. 31–46. IEEE (2016)

58. Valiant, G., Valiant, P.: Estimating the unseen: improved estimators for entropy
and other properties. J. ACM 64(6), 1–41 (2017)

59. Zhou, Z., Qian, Z., Reiter, M.K., Zhang, Y.: Static evaluation of noninterference
using approximate model counting. In: Proceedings of SP (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11814948_38
http://creativecommons.org/licenses/by/4.0/

	A Scalable Shannon Entropy Estimator
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 EntropyEstimation: Efficient Estimation of H()
	4.1 Technical Overview
	4.2 Algorithm Description
	4.3 Theoretical Analysis
	4.4 Beyond Boolean Formulas

	5 Empirical Evaluation
	5.1 Scalability of EntropyEstimation
	5.2 Quality of Estimates

	6 Conclusion
	References

