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Abstract. Many problems in program verification, Model Checking,
and type inference are naturally expressed as satisfiability of a verifica-
tion condition expressed in a fragment of First-Order Logic called Con-
strained Horn Clauses (CHC). This transforms program analysis and
verification tasks to the realm of first order satisfiability and into the
realm of SMT solvers. In this paper, we give a brief overview of how
CHCs capture verification problems for sequential imperative programs,
and discuss CHC solving algorithm underlying the SPACER engine of
SMT-solver Z3.

1 Introduction

First Order Logic (FOL) is a powerful formalism that naturally captures many
interesting decision (and optimization) problems. In recent years, there has been
a tremendous progress in automated logic reasoning tools, such as Boolean SAT-
isfiability Solvers (SAT) and Satisfiability Modulo Theory (SMT) solvers. This
enabled the use of logic and logic satisfiabilty solvers as a universal solution to
many problems in Computer Science, in general, and in Program Analysis, in
particular. Most new program analysis techniques formalize the desired analysis
task in a fragment of FOL, and delegate the analysis to a SAT or an SMT solver.
Examples include deductive verification tools such as Dafny [30] and Why3 [13],
symbolic execution engines such as KLEE [7], Bounded Model Checking engines
such as CBMC [10] and SMACK [9], and many others.

In this paper, we focus on a fragment of FOL called Constrained Horn
Clauses (CHC). CHCs arise in many applications of automated verification.
They naturally capture such problems as discovery and verification of induc-
tive invariants [4,18]; Model Checking of safety properties of finite- and
infinite-state systems [2,23]; safety verification of push-down systems (and their
extensions) [4,28]; modular verification of distributed and parameterized sys-
tems [17,19,33]; and type inference [35,36], and many others.

Using CHC, developers of program analysis tools can separate the process of
developing a proof methodology (also known as generation of Verification Con-
dition (VC)) from the algorithmic details of deciding whether the VC is correct.
Such a flexible design simplifies supporting multiple proof methodologies, mul-
tiple languages, and multiple verification tasks with a single framework. Today,
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there are multiple effective program verification tools based on the CHC method-
ology, including a C/C++ verification framework SEAHORN [18], a Java verifica-
tion framework JAYHORN [25], and an Android information flow verification tool
HoRNDROID [8], a Rust verification framework RUSTHORN [31], Solidity veri-
fication tools SmartACE [37] and Solidity Compiler Model Checker [1]. Many
more approaches utilize CHC as part of a more general verification solution.

The idea of reducing program verification (and model checking) to FOL sat-
isfiability is well researched. A great example is the use of Constraint Logic Pro-
gramming (CLP) [24] in program verification, or the use of Datalog for pointer
analysis [34]. What is unique is the application of SMT-solvers in the decision
procedure and lifting of techniques that have been developed in Model Check-
ing and Program Verification communities to the uniform setting of satisfiabilty
of CHC formulas. In the rest of this paper, we show how verification prob-
lems can be represented in CHCs (Sect. 2), and describe key algorithms behind
SPACER [27], a CHC engine of the SMT solver Z3 [32] that is used to solve them
(Sect. 3).

2 Logic of Constrained Horn Clauses

In this section, we give a brief overview of Constrained Horn Clauses (CHC). We
illustrate an application of CHC to verification of a simple imperative program
with a loop.

The logic of Constrained Horn Clauses is a fragment of FOL. We assume
that the reader is familiar with the basic concepts of FOL, including signatures,
theories, and models. For the purpose of this presentation, let X' be some fixed
FOL signature and A be an FOL theory over X. For example, X' is a signature
for arithmetic, including constants 0, and 1, and a binary function - + -, and A
the theory of Presburger arithmetic. A Constrained Horn Clause (CHC) is an
FOL sentence of the form:

YW (@ Api(X1) A Apr(Xy) = h(X)) (1)

where V is the set of all free variables in the body of the sentence, {p;}*_;
and h are uninterpreted predicate symbols (in the signature), {X;}* , and X
are first-order terms, and p(X) stands for application of predicate p to a list of
terms X.

A CHC in Eq. (1) can be equivalently written as the following clause:

(= Vopr (X)) VeV pn (X)) V(X)) (2)

where all free variables are implicitly universally quantified. Note that in this
case only h appears positively, which explains why these are called Horn clauses.
We write CHC(A) to denote the set of all sentences in FOL modulo theory A
that can be written as a set of Constrained Horn Clauses. A sentence @ is in
CHC(A) if it can be written as a conjunction of clauses of the form of Eq. (1).
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assume(x <= 0);

while (x < 5) { Vo -z <0 = Inv(z)
= + 1;

3 x=x ’ Ve,y-Inv(z) Az <5Ay=x+1 = Inv(y)

assert(x < 10); Vo - Inv(z) A —(x < 5) A =(z < 10) = false

Fig. 1. A program and its verification conditions in CHC.

A CHC(A) sentence @ is satisfiable if there exists a model M of A extended
with interpretation for all of the uninterpreted predicates in @ such that M sat-
isfies @, written M = @. In practice, we are often interested not in an arbitrary
model, but a model that can be described concisely in some target fragment of
FOL. We call such models solutions. Given an FOL fragment F, an F-solution
to a CHC(A) formula @ is a model M such that M = & and interpretation of
every uninterpreted predicate in M is definable in F. Most commonly, F is taken
to be either a quantifier free or universally quantified fragment of arithmetic A,
often further extended with arrays.

Ezxample 1. To illustrate the definitions above consider a C program of a simple
counter shown in Fig. 1. The goal is to verify that the assertion at the end of the
program holds on every execution. To verify the assertion using the principle
of inductive invariants, we need to show that there exists a formula Inv(z)
over program variable x such that (a) it is true before the loop, stable at every
iteration of the loop, and guarantees the assertion when the loop terminates.
Since we are interested in partial correctness, we are not concerned with the case
when the loop does not terminate. This principle is naturally encoded as three
Constrained Horn Clauses, shown in the in Fig. 1. The uninterpreted predicate
Inv represents the inductive invariant. The program is correct, hence the CHCs
are satisfiable. The satisfying model extends the theory of arithmetic with the
following definitions of Inv:

InvM = {2z ] 2 <5} (3)

The CHCs also have a solution in the quantifier free theory of Linear Integer
Arithmetic. In particular, Inv can be defined as follows:

Inv=MXz-2<5 (4)

where the notation function with argument  and body .

The CHCs in this example can be expressed as an SMT-LIB script, shown
in Fig.2, and solved by SPACER engine of Z3. Note that the script uses some
Z3-specific extensions, including logic HORN and several option that disable pre-
processing (which is not necessary for such a simple example).

O

Ezxample 2. Figure 3 shows a similar program, however, with a function inc that
abstracts away the increment operation. The corresponding CHCs are also shown
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(set-logic HORN)

(set-option :fp.xform.inline_linear false)
(set-option :fp.xform.inline_eager false)
(declare-fun Inv ( Int ) Bool)

(assert (forall ((x Int)) (=> (<= x @) (Inv x))))

(assert (forall ((x Int)) (=> (< x 5) (Inv (+ x 1)))))

(assert (forall ((x Int)) (=> (and (Inv x) (>= x 5) (>= x 10)) false)))
(check-sat)

(get-model)

Fig. 2. CHCs from Fig.1 in SMT-LIB format.

int inc(int z) { return z + 1; }

assume(x <= 0); Vz,r-r=z+1 = Inc(z,r)

while (x. < (5)) { Vo -z <0 = Inv(z)
x = inc(x);

} Ve,y - Inv(z) Az < 5A Inc(y,z) = Inv(y)

assert(x < 10); Vz - Inv(z) A =(x < 5) A =(z < 10) = false

Fig. 3. A program with a function and its verification conditions in CHC.

in Fig.3. There are two unknowns, Inv that represents the desired inductive
invariant, and Inc that represents the summary (i.e., pre- and post-conditions,
or an over-approximation) of the function inc. Since the program still satisfies
the assertion, the CHCs are satisfiable, and have

InwM={z]2<5}=Xz-2<5 (5)
IncM ={(z,r) |r=z2+1}=Xzg,r-r<z+1 (6)
The corresponding SMT-LIB script is shown in Fig. 4. a

Ezample 3. In this last example, consider a set of CHCs shown in Fig.5. They
are similar to CHCs in Fig. 1, with one exception. These CHCs are unsatisfiable.
There is no interpretation of Inv to satisfy them. This is witnessed by a refutation
— a resolution proof — shown in Fig.6. The corresponding SMT-LIB script in
shown in Fig. 7. O

3 Solving CHC Modulo Theories

The logic of CHC can be seen as a convenient modelling language. That is, it does
not restrict or impose a preference on a decision procedure used to solve the prob-
lem. In fact, a variety of solvers and techniques are widely available, including
SPACER [28] (that is available as part of Z3), FreqHorn [12], and ELDARICA [22].
There is also an annual competition, CHC-COMP!, to evaluate state-of-the-art
solvers. In the rest of this section, we give a brief overview of the algorithm
underlying SPACER.

! https://chc-comp.github.io/.
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(set-logic HORN)

(set-option :fp.xform.inline_linear false)
(set-option :fp.xform.inline_eager false)
(declare-fun Inv ( Int ) Bool)
(declare-fun Inc ( Int Int ) Bool)

(assert (forall ((z Int)) (Inc z (+ z 1))))

(assert (forall ((x Int)) (=> (<= x @) (Inv x))))

(assert (forall ((x Int) (y Int)) (=> (and (< x 5) (Inc x y)) (Inv y))))
(assert (forall ((x Int)) (=> (and (Inv x) (>= x 5) (>= x 10)) false)))
(check-sat)

(get-model)

Fig. 4. CHCs from Fig. 3 in SMT-LIB format.

Ve -z <0 = Inv(x)
Va,y - Inv(z) Ao <5Ay=2+1 = Inv(y)
Va - Inv(xz) A —(x > 1) = false

Fig. 5. An example of unsatisfiable CHCs.

SPACER is an extension and generalization of SAT-based Model Checking
algorithms to CHC modulo SMT-supported theories. On propositional transition
systems, SPACER behaves similarly to IC3 [6] and PDR [11], and can be seen as
an adaptation of these algorithms. For other first-order theories, SPACER extends
Generalized PDR of Hoder and Bjgrner [21].

Given a CHC system @, SPACER works by iteratively looking for a bounded
derivation of false from &. It explores @ in a top-down (or backwards) direction.
Each time SPACER fails to find a derivation of a fixed bound N, the reasons for
failure are analyzed to derive consequences of @ that explain why a derivation
of false must have at least N + 1 steps. This process is repeated until either (a)
false is derived and @ is shown to be unsatisfiable, (b) the consequences form a
solution to @, thus, showing that & satisfiable, or (c) the process continues indefi-
nitely, but continuously ruling out impossibility of longer and longer refutations.
Thus, even though the problem is in general undecidable, SPACER always makes
progress trying to show that @ is unsatisfiable or that there is no short proof of
unsatisiability.

SPACER is a procedure for solving linear and non-linear CHCs. For conve-
nience of the presentation, we restrict ourselves to a special case of non-linear
CHCs that consists of the following three clauses:

Init(X) = P(X) (7)
P(X) = Bad(X) (8)
P(X)AP(X°) A Tr(X,X°, X') = P(X') (9)
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Vz-z >0 = Inv(x)
_o Inv(0) Vo - Inv(z) N <5 = Inv(z+1)
—0 Inv(1) Vo Inv(z) Nx > 1 = false
false

T =

Fig. 6. Refutation proof for CHCs in Fig. 5.

(set-logic HORN)

(set-option :produce-proofs true)
(set-option :fp.xform.inline_linear false)
(set-option :fp.xform.inline_eager false)
(declare-fun Inv ( Int ) Bool)

(assert (forall ((x Int)) (=> (<= x @) (Inv x))))

(assert (forall ((x Int)) (=> (< x 5) (Inv (+ x 1))

(assert (forall ((x Int)) (=> (and (Inv x) (>= x 5) (>= x 2)) false)))
(check-sat)

(get-proof)

Fig. 7. CHCs from Fig.5 in SMT-LIB format.

where, X is a set of free variables, X’ = {2/ | x € X} and X° = {z° | z € X}
are auxiliary free variables, Init, Bad, and Tr are FOL formulas over the free
variables (as indicated), and P is an uninterpreted predicate. Recall that all
free variables in each clause are implicitly universally quantified. Thus, the only
unknown to solve for is the uninterpreted predicate P. We call these three clauses
a safety problem, and write (Init(X), Tr(X, X°, X'), Bad(X)) as a shorthand to
represent them. It is not hard to show that satisfiability of arbitrary CHCs is
reducible to a safety problem. Thus, this simplification does not lose generality. In
practice, SPACER directly supports more complex CHCs with multiple unknown
uninterpreted predicates.

Before presenting the algorithm, we need to introduce two concepts from
logic: Craig Interpolation and Model Based Projection.

Craig Interpolation. Given two formulas A[Z, Z] and B[y, Z] such that A A B
is unsatisfiable, a Craig interpolant I[Z] = ITP(A[Z,Z], B[¥,Z]), is a formula
I[Z] such that A[Z, 2] = I|Z] and I[Z] = —B[y, Z]. We further require that the
interpolant is a clause. Intuitively, the interpolant I captures the consequences
of A that are inconsistent with B. If A is a conjunction of literals, the interpolant
can be seen as a semantic variant of an UNSAT core.

Model Based Projection. Let ¢ be a formula, U C Vars(y) a subset of variables
of ¢, and P a model of . Then, 1) = MBP(U, P, ¢) is a model based projection
if (a) ¢ is a monomial, (b) Vars(v) C Vars(p) \ U, (¢) P E ¢, (d) ¢ =
3V - . Intuitively, an MBP is an under-approximation of existential quantifier
elimination, where the choice of the under-approximation is guided by the model.
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Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @, where a cex ¢ € @ is a pair (m, ), m is a cube over
state variables, and 7 € N. A level N. A set of reachable states REACH.
A trace Fy, Fh,...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and F(A) = F(A, A)

Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = 0, REACH = Init

Require: Init — —Bad

repeat

Unreachable If there is an i < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Unfold If Fiy — —Bad, then set N +— N + 1 and Q < 0.

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,7+ 1) € Q and a model M s.t. M |= v, where
1 = F(VREACH) A m/. Then, add s to REACH, where s’ € MBP({X, X°}, ¢).

MustPredecessor If there is (m,i+ 1) € Q, and a model M s.t. M |= 1, where
v = F(F;, VREACH) A m/. Then, add s to @, where s € MBP({X°, X'}, ¢).

MayPredecessor If there is (m,i+ 1) € @ and a model M s.t. M =1, where
v = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'}, ¥).

NewLemma If there is an (m,i+ 1) € @, s.t. F(F;) Am/ is unsatisfiable. Then, add
o = ITP(F(F;),m’) to Fj, for all 0 < j <4+ 1.

ReQueue If (m,i) € Q, 0< i< N and F(F;_1) Am/ is unsatisfiable, then add
(m,i+1) to Q.

Push For 0 <i< N and a clause (¢ V) € F;, if o € Fir1, F(p A F;) — ¢, then
add ¢ to Fy, for all j <i4 1.

until oo;
Algorithm 1: Rule-based description of SPACER.

We present SPACER [27] as a set of rules shown in Algorithm 1. While the
algorithm is sound under any order on application of the rules, it is easy to see
that only some orders lead to progress. Since solving CHCs even over LIA is unde-
cidable, we are only concerned with soundness and progress, and do not discuss
termination. The algorithm is based on the core principles of IC3 [5], however,
it differs significantly in the details. The rules Unreachable and Reachable
detect termination, either by discovering an inductive solution, or by discovering
existence of a refutation, respectively. Unfold increases the exploration depth,
and Candidate constructs a new proof obligation based on the current depth
and the set Bad of bad states. Successor computes additional reachable states,
that is, an under-approximation of the model of the implicit predicate P. Note
that it used Model Based Projection to under-approximate forward predicate
transformer. The rules MustPredecessor and MayPredecessor compute a
new proof obligation that precedes an existing one. MustPredecessor does
the computation based on existing reachable states, while MayPredecessor
makes a guess based on existing over-approximation of P. In this case, MBP is
used again, but now to under-approximate a backward predicate transformer.
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The rule NewLemma computes a new over-approximation, called a lemma, of
what is derivable about P in ¢ + 1 by blocking a proof obligation. This is very
similar to the corresponding step in IC3. Note, however, that interpolation is
used to generalize the learned lemma beyond the literals of the proof obligation.
ReQueue allows pushing blocked proof obligations to higher level, and Push
allows pushing and inductively generalizing lemmas.

SPACER was introduced in [27]. Extension for convex linear arithmetic (i.e.,
discovering convex and co-convex solutions) is described in [3]. Support for
quantifier free solutions for CHC over the combined theories of arrays and
arithmetic is described in [26]. Extension for quantified solutions, which are
necessary for establishing interesting properties when arrays are involved is
described in [20]. More recently, the interpolation for lemma-generalization has
been replaced by more global guidance [14]. This made SPACER competitive with
other data-driven approaches that infer new lemmas based on numerical values
of blocked counterexamples. Machine Learning-based inductive generalization
has been suggested in [29]. The solver has also been extended to support Alge-
braic Data Types and Recursive Functions [16]. Work on improving support for
bit-vectors [15] and experimenting with support for uninterpreted functions is
ongoing.
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