
Explaining Hyperproperty Violations

Norine Coenen1(B) , Raimund Dachselt2 , Bernd Finkbeiner1 ,
Hadar Frenkel1 , Christopher Hahn1 , Tom Horak3 , Niklas Metzger1 ,

and Julian Siber1

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{norine.coenen,finkbeiner,hadar.frenkel,christopher.hahn,

niklas.metzger,julian.siber}@cispa.de
2 Interactive Media Lab, Technische Universität Dresden, Dresden, Germany

dachselt@acm.org
3 elevait GmbH & Co. KG, Dresden, Germany

tom.horak@elevait.de

Abstract. Hyperproperties relate multiple computation traces to each
other. Model checkers for hyperproperties thus return, in case a system
model violates the specification, a set of traces as a counterexample.
Fixing the erroneous relations between traces in the system that led
to the counterexample is a difficult manual effort that highly benefits
from additional explanations. In this paper, we present an explanation
method for counterexamples to hyperproperties described in the spec-
ification logic HyperLTL. We extend Halpern and Pearl’s definition of
actual causality to sets of traces witnessing the violation of a HyperLTL
formula, which allows us to identify the events that caused the violation.
We report on the implementation of our method and show that it signif-
icantly improves on previous approaches for analyzing counterexamples
returned by HyperLTL model checkers.

1 Introduction

While model checking algorithms and tools (e.g., [12,17,18,26,47,55]) have, in
the past, focused on trace properties, recent failures in security-critical systems,
such as Heartbleed [28], Meltdown [59], Spectre [52], or Log4j [1], have triggered
the development of model checking algorithms for properties that relate multiple
computation traces to each other, i.e., hyperproperties [21]. Although the coun-
terexample returned by such a model checker for hyperproperties, which takes
the shape of a set of traces, may aid in the debugging process, understanding
and narrowing down which features are actually responsible for the erroneous

This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC, by the
DFG as part of the Germany’s Excellence Strategy EXC 2050/1 - Project ID 390696704
- Cluster of Excellence “Centre for Tactile Internet” (CeTI) of TU Dresden, by the
European Research Council (ERC) Grant OSARES (No. 683300), and by the German
Israeli Foundation (GIF) Grant No. I-1513-407./2019.

c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 407–429, 2022.
https://doi.org/10.1007/978-3-031-13185-1_20

https://doi.org/10.6084/m9.figshare.19690858.v8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_20&domain=pdf
http://orcid.org/0000-0003-2066-1511
http://orcid.org/0000-0002-2176-876X
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-3566-0338
http://orcid.org/0000-0002-1243-4880
http://orcid.org/0000-0003-2896-5886
http://orcid.org/0000-0003-3184-6335
http://orcid.org/0000-0003-0842-0029
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-031-13185-1_20

408 N. Coenen et al.

relation between the traces in the counterexample requires significantly more
manual effort than for trace properties. In this paper, we develop an explana-
tion technique for these more complex counterexamples that identifies the actual
causes [44–46] of hyperproperty violations.

Existing hyperproperty model checking approaches (e.g., [33,35,49]), take a
HyperLTL formula as an input. HyperLTL is a temporal logic extending LTL
with explicit trace quantification [20]. For example, observational determinism,
which requires that all traces π, π′ agree on their observable outputs lo when-
ever they agree on their observable inputs li , can be formalized in HyperLTL
as ∀π.∀π′. (liπ ↔ liπ′) → (loπ ↔ loπ′). In case a system model violates
observational determinism, the model checker consequently returns a set of two
execution traces witnessing the violation.

A first attempt in explaining model checking results of HyperLTL specifi-
cations has been made with HyperVis [48], which visualizes a counterexample
returned by the model checker MCHyper [35] in a browser application. While
the visualizations are already useful to analyze the counterexample at hand, it
fails to identify causes for the violation in several security-critical scenarios. This
is because HyperVis identifies important atomic propositions that appear in the
HyperLTL formula and highlights these in the trace and the formula. For detect-
ing causes, however, this is insufficient: a cause for a violation of observational
determinism, for example, could be a branch on the valuation of a secret input
is, which is not even part of the formula (see Sect. 3 for a running example).

Defining what constitutes an actual cause for an effect (a violation) in a
given scenario is a precious contribution by Halpern and Pearl [44–46], who
refined and formalized earlier approaches based on counterfactual reasoning [58]:
Causes are sets of events such that, in the counterfactual world where they do
not appear, the effect does not occur either. One of the main insights of Halpern
and Pearl’s work, however, is that naive counterfactuals are too imprecise. If, for
instance, our actual cause preempted another potential cause, the mere absence
of the actual cause will not be enough to prevent the effect, which will be still
produced by the other cause in the new scenario. Halpern and Pearl’s definition
therefore allows to carefully control for other possible causes through the notion
of contingencies. In the modified definition [44], contingencies allow to fix certain
features of the counterfactual world to be exactly as they are in the actual world,
regardless of the system at hand. Such a contingency effectively modifies the
dynamics of the underlying model, and one insight of our work is that defining
actual causality for reactive systems also needs to modify the system under
a contingency. Notably, most works regarding trace causality [13,39] do not
consider contingencies but only counterfactuals, and thus are not able to find
true actual causes.

In this paper, we develop the notion of actual causality for effects described
by HyperLTL formulas and use the generated causes as explanations for coun-
terexamples returned by a model checker. We show that an implementation of
our algorithm is practically feasible and significantly increases the state-of-the-
art in explaining and analyzing HyperLTL model checking results.

Explaining Hyperproperty Violations 409

2 Preliminaries

We model a system as a Moore machine [62] T = (S, s0, AP, δ, l) where S is
a finite set of states, s0 ∈ S is the initial state, AP = I ∪· O is the set of
atomic propositions consisting of inputs I and outputs O, δ : S × 2I → S is the
transition function determining the successor state for a given state and set of
inputs, and l : S → 2O is the labeling function mapping each state to a set of
outputs. A trace t = t0t1t2 . . . ∈ (2AP)ω of T is an infinite sequence of sets of
atomic propositions with ti = A ∪ l(si), where A ⊆ I and δ(si, A) = si+1 for
all i ≥ 0. We usually write t[n] to refer to the set tn at the (n + 1)-th position
of t. With traces(T), we denote the set of all traces of T . For some sequence of
inputs a = a0a1a2 . . . ∈ (2I)ω, the trace T (a) is defined by T (a)i = ai ∪ l(si)
and δ(si, ai) = si+1 for all i ≥ 0. A trace property P ⊆ T is a set of traces. A
hyperproperty H is a lifting of a trace property, i.e., a set of sets of traces. A
model T satisfies a hyperproperty H if the set of traces of T is an element of the
hyperproperty, i.e., traces(T) ∈ H.

2.1 HyperLTL

HyperLTL is a recently introduced logic for expressing temporal hyperproperties,
extending linear-time temporal logic (LTL) [64] with trace quantification:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∧ ψ | ψ | ψ Uψ

We also consider the usual derived Boolean (∨, →, ↔) and temporal operators
(ϕRψ ≡ ¬(¬ϕU¬ψ), ϕ ≡ true Uϕ, ϕ ≡ falseRϕ). The semantics of Hyper-
LTL formulas is defined with respect to a set of traces Tr and a trace assignment
Π : V → Tr that maps trace variables to traces. To update the trace assignment
so that it maps trace variable π to trace t, we write Π[π
→ t].

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕUψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π
→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π
→ t], i �Tr ϕ

We explain counterexamples found by MCHyper [24,35], which is a model
checker for HyperLTL formulas, building on ABC [12]. MCHyper takes as
inputs a hardware circuit, specified in the Aiger format [8], and a Hyper-
LTL formula. MCHyper solves the model checking problem by computing the
self-composition [6] of the system. If the system violates the HyperLTL for-
mula, MCHyper returns a counterexample. This counterexample is a set of
traces through the original system that together violate the HyperLTL formula.
Depending on the type of violation, this counterexample can then be used to
debug the circuit or refine the specification iteratively.

410 N. Coenen et al.

2.2 Actual Causality

A formal definition of what actually causes an observed effect in a given context
has been proposed by Halpern and Pearl [45]. Here, we outline the version later
modified by Halpern [44]. Causality is defined with respect to a causal model
M = (S,F), given by a signature S and set of structural equations F , which
define the dynamics of the system. A signature S is a tuple (U ,V,D), where U
and V are disjoint sets of variables, termed exogenous and endogenous variables,
respectively; and D defines the range of possible values D(Y) for all variables
Y ∈ U ∪ V. A context �u is an assignment to the variables in U ∪ V such that
the values of the exogenous variables are determined by factors outside of the
model, while the value of some endogenous variable X is defined by the associated
structural equation fX ∈ F . An effect ϕ in a causal model is a Boolean formula
over assignments to endogenous variables. We say that a context �u of a model M
satisfies a partial variable assignment �X = �x for �X ⊆ U ∪ V if the assignments
in �u and in �x coincide for every variable X ∈ �X. The extension for Boolean
formulas over variable assignments is as expected. For a context �u and a partial
variable assignment �X = �x, we denote by (M, �u)[�X ← �x] the context �u′ in which
the values of the variables in �X are set according to �x, and all other values are
computed according to the structural equations.

The actual causality framework of Halpern and Pearl aims at defining what
events (given as variable assignments) are the cause for the occurrence of an
effect in a specific given context. We now provide the formal definition.

Definition 1 ([44,45]). A partial variable assignment �X = �x is an actual cause
of the effect ϕ in (M, �u) if the following three conditions hold.

AC1: (M, �u) � �X = �x and (M, �u) � ϕ, i.e., both cause and effect are true in the
actual world.

AC2: There is a set �W ⊆ V of endogenous variables and an assignment �x′ to the
variables in �X s.t. if (M, �u) � �W = �w, then (M, �u)[�X ← �x′, �W ← �w] � ¬ϕ.

AC3: �X is minimal, i.e. no subset of �X satisfies AC1 and AC2.

Intuitively, AC2 states that in the counterfactual world obtained by interven-
ing on the cause �X = �x in the actual world (that is, setting the variables in �X to
�x′), the effect does not appear either. However, intervening on the possible cause
might not be enough, for example when that cause preempted another. After
intervention, this other cause may produce the effect again, therefore clouding
the effect of the intervention. To address this problem, AC2 allows to reset values
through the notion of contingencies, i.e., the set of variables �W can be reset to
�w, which is (implicitly) universally quantified. However, since the actual world
has to model �W = �w, it is in fact uniquely determined. AC3, lastly, enforces
the cause to be minimal by requiring that all variables in �X are strictly neces-
sary to achieve AC1 and AC2. For an illustration of Halpern and Pearl’s actual
causality, see Example 1 in Sect. 3.

Explaining Hyperproperty Violations 411

3 Running Example

Consider a security-critical setting with two security levels: a high-security level
h and a low-security level l. Inputs and outputs labeled as high-security, denoted
by hi and ho respectively, are confidential and thus only visible to the user itself,
or, e.g., admins. Inputs and outputs labeled as low-security, denoted by li and
lo respectively, are public and are considered to be observable by an attacker.

Fig. 1. State graph representa-
tion of our example system.

Our system of interest is modeled by the
state graph representation shown in Fig. 1,
which is treated as a black box by an attacker.
The system is run without any low-security
inputs, but branches depending on the given
high-security inputs. If in one of the first two
steps of an execution, a high-security input hi is
encountered, the system outputs only the high-
security variable ho directly afterwards and in
the subsequent steps both outputs, regardless of
inputs. If no high-security input is given in the
first step, the low-security output lo is enabled
and after the second step, again both outputs
are enabled, regardless of what input is fed into
the system.

A prominent example hyperproperty is observational determinism from the
introduction which states that any sequence of low-inputs always produces
the same low-outputs, regardless of what the high-security level inputs are.
ϕ = ∀π.∀π′. (liπ ↔ liπ′) → (loπ ↔ loπ′). The formula states that all traces π
and π′ must agree in the low-security outputs if they agree in the low-security
inputs. Our system at hand does not satisfy observational determinism, because
the low-security outputs in the first two steps depend on the present high-security
inputs. Running MCHyper, a model checker for HyperLTL, results in the follow-
ing counterexample: t1 = {}{lo}{ho, lo}ω and t2 = {hi}{hi , ho}{ho, lo}ω. With
the same low-security input (none) the traces produce different low-security out-
puts by visiting s1 or s2 on the way to s3.

In this paper, our goal is to explain the violation of a HyperLTL formula
on such a counterexample. Following Halpern and Pearl’s explanation frame-
work [46], an actual cause that is considered to be possibly true or possibly false
constitutes an explanation for the user. We only consider causes over input vari-
ables, which can be true and false in any model. Hence, finding an explanation
amounts to answering which inputs caused the violation on a specific counterex-
ample. Before we answer this question for HyperLTL and the corresponding
counterexamples given by sets of traces (see Sect. 4), we first illustrate Halpern
and Pearl’s actual causality (see Sect. 2.2) with the above running example.

Example 1. Finite executions of a system can be modeled in Halpern and Pearl’s
causal models. Consider inputs as exogenous variables U = {hi0, hi1} and out-
puts as endogenous variables V = {lo1, lo2, ho1, ho2}. The indices model at

412 N. Coenen et al.

which step of the execution the variable appears. We omit the inputs at the
third position and the outputs at the first position because they are not rel-
evant for the following exposition. We have that D(Y) = {0, 1} for every
Y ∈ U ∪ V. Now, the following manually constructed structural equations
encode the transitions: (1) lo1 = ¬hi0, (2) ho1 = hi0, (3) lo2 = ¬hi1 ∨ ¬lo1

and (4) ho2 = lo1 ∨ ho1. Consider context �u = {hi0 = 0, hi1 = 1}, effect
ϕ ≡ lo1 = 1∨ lo2 = 1, and candidate cause hi0 = 0. Because of (1), we have that
(M, �u) � hi0 = 0 and (M, �u) � lo1 = 1, hence AC1 is satisfied. Regarding AC2,
this example allows us to illustrate the need for contingencies to accurately
determine the actual cause: If we only consider intervening on the candidate
cause hi0 = 0, we still have (M, �u)[hi0 ← 1] � ϕ, because with lo1 = 0 and
(3) it follows that (M, �u) � lo2 = 1. However, in the actual world, the second
high input has no influence on the effect. We can control for this by consid-
ering the contingency lo2 = 0, which is satisfied in the actual world, but not
after the intervention on hi0. Because of this contingency, we then have that
(M, �u)[hi0 ← 1, lo2 ← 0] � ¬ϕ, and hence, AC2 holds. Because a singleton set
automatically satisfies AC3, we can infer that the first high input hi0 was the
actual cause for any low output to be enabled in the actual world. Note that,
intuitively, the contingency allows us to ignore some of the structural equations
by ignoring the value they assign to lo2 in this context. Our definitions in Sect. 4
will allow similar modifications for counterexamples to hyperproperties.

4 Causality for Hyperproperty Violations

Our goal in this section is to formally define actual causality for the violation
of a hyperproperty described by a general HyperLTL formula ϕ, observed in
a counterexample to ϕ. Such a counterexample is given by a trace assignment
to the trace variables appearing in ϕ. Note that, for universal quantifiers, the
assignment of a single trace to the bounded variable suffices to define a coun-
terexample. For existential quantifiers, this is not the case: to prove that an
existential quantifier cannot be instantiated we need to show that no system
trace satisfies the formula in its body, i.e., provide a proof for the whole sys-
tem. In this work, we are interested in explaining violations of hyperproperties,
and not proofs of their satisfaction [16]. Hence, we limit ourselves to instan-
tiations of the outermost universal quantifiers of a HyperLTL formula, which
can be returned by model checkers like MCHyper [24,35]. Since our goal is to
explain counterexamples, restricting ourselves to results returned by existing
model checkers is reasonable. Note that MCHyper can still handle formulas of
the form ∀n∃mϕ where ϕ is quantifier free, including interesting information flow
policies like generalized noninterference [61]. The returned counterexample then
only contains n traces that instantiate the universal quantifiers, the existential
quantifiers are not instantiated for the above reason. In the following, we restrict
ourselves to formulas and counterexamples of this form.

Definition 2 (Counterexample). Let T be a transition system and denote
Traces(T) := Tr, and let ϕ be a HyperLTL formula of the form ∀π1 . . . ∀πkψ,

Explaining Hyperproperty Violations 413

where ψ is a HyperLTL formula that does not start with ∀. A counterexample to ϕ
in T is a partial trace assignment Γ : {π1, . . . , πk} → Tr such that Γ, 0 �Tr ¬ψ.

For ease of notation, we sometimes refer to Γ simply as the tuple of its
instantiations Γ = 〈Γ (π1), . . . , Γ (πk)〉. In terms of Halpern and Pearl’s actual
causality as outlined in Sect. 2.2, a counterexample describes the actual world at
hand, which we want to explain. As a next step, we need to define an appropriate
language to reason about possible causes and contingencies in our counterexam-
ple. We will use sets of events, i.e., values of atomic propositions at a specific
position of a specific trace in the counterexample.

Definition 3 (Event). An event is a tuple e = 〈la, n, t〉 such that la = a or
la = ¬a for some atomic proposition a ∈ AP , n ∈ N is a point in time, and
t ∈ (2AP)ω is a trace of a system T . We say that a counterexample Γ = 〈t1, . . . tk〉
satisfies a set of events C, and denote Γ � C, if for every event 〈la, n, t〉 ∈ C the
two following conditions hold:

1. t = ti for some i ∈ {1, . . . , k}, i.e., all events in C reason about traces in Γ ,
2. la = a iff a ∈ ti[n], i.e., a holds on trace ti of the counterexample at time n.

We assume that the set AP is a disjoint union of input an output propositions,
that is, AP = I ∪· O. We say that 〈la, n, t〉 is an input event if a ∈ I, and we call
it an output event if a ∈ O. We denote the set of input events by IE and the
set of output events by OE . These events have a direct correspondence with the
variables appearing in Halpern and Pearl’s causal models: we can identify input
events with exogenous variables (because their value is determined by factors
outside of the system) and output events with endogenous variables.

We define a cause as a set of input events, while an effect is a possibly infinite
Boolean formula over OE. Note that, similar to [37], every HyperLTL formula
can be represented as a first order formula over events, e.g. ∀π∀π′ (aπ ↔ aπ′) =
∀π∀π′ ∧

n∈N
(〈a, n, π〉 ↔ 〈a, n, π′〉). For some set of events S, let +Sk

π = {a ∈
AP | 〈a, k, π〉 ∈ S} denote the set of atomic propositions defined positively by
S on trace π at position k. Dualy, we define −Sk

π = {a ∈ AP | 〈¬a, k, π〉 ∈ S}.
In order to define actual causality for hyperproperties we need to formally

define how we obtain the counterfactual executions under some contingency
for the case of events on infinite traces. We define a contingency as a set of
output events. Mapping Halpern and Pearl’s definition to transition systems,
contingencies reset outputs in the counterfactual traces back to their value in the
original counterexample, which amounts to changing the state of the system, and
then following the transition function from the new state. For a given trace of the
counterexample, we describe all possible behaviors under arbitrary contingencies
with the help of a counterfactual automaton. The concrete contingency on a trace
is defined by additional input variables. In the following, let IC = {oC | o ∈ O}
be a set of auxiliary input variables expressing whether a contingency is invoked
at the given step of the execution and c : O → IC be a function s.t. c(o) = oC .

Definition 4 (Counterfactual Automaton). Let T = (S, s0,AP , δ, l) be a
system with S = 2O , i.e., every state is uniquely labeled, and there exists a state

414 N. Coenen et al.

for every combination of outputs. Let π = π0 . . . πi(πj . . . πn)ω ∈ traces(T) be a
trace of T in a finite, lasso-shaped representation. The counterfactual automaton
TC

π = (S×{0 . . . n}, (s0, 0), (IC ∪· I)∪· (O∪· {0 . . . n}), δC , lC) is defined as follows:

– δC((s, k), Y) = (s′, k′) where k′ = j if k = n, else k′ = k + 1, and
l(s′) = {o ∈ O | (o ∈ δ(s, Y ∩ I) ∧ c(o) �∈ Y) ∨ (o ∈ πk′ ∧ c(o) ∈ Y)},

– lC(s, k) = l(s) ∪ {k}.

A counterfactual automaton is effectively a chain of copies of the original
system, of the same length as the counterexample. An execution through the
counterfactual automaton starts in the first copy corresponding to the first posi-
tion in the counterexample trace, and then moves through the chain until it
eventually loops back from copy n to copy j. A transition in the counterfactual
automaton can additionally specify setting as a contingency some output vari-
able o if the auxiliary input variable oC is enabled. In this case, the execution
will move to a state in the next automaton of the chain where all the outputs
are as usual, except o, which will have the same value as in the counterexample
π. Note that, under the assumption that all states of the original system are
uniquely labeled and there exists a state for every combination of output vari-
ables, the function δC is uniquely determined.1 A counterfactual automaton for
our running example is described in the full version of this paper [22].

Next, we need to define how we intervene on a set of traces with a candidate
cause given as a set of input events, and a contingency given as a set of out-
put events. We define an intervention function, which transforms a trace of our
original automaton to an input sequence of an counterfactual automaton.

Definition 5 (Intervention). For a cause C ⊆ IE, a contingency W ⊆ OE
and a trace π, the function intervene : (2AP)ω × 2IE × 2OE → (2I∪IC)ω returns
a trace such that for all k ∈ N the following holds: intervene(π, C,W)[k] =
(π[k] \ +Ck

π) ∪ −Ck
π ∪ {c(o) | o ∈ +Wk

π ∪ −Wk
π}. We lift the intervention

function to counterexamples given as a tuple Γ = 〈π1, . . . , πk〉 as follows:
intervene(Γ, C,W) = 〈TC

π1
(intervene(π1, C,W)), . . . , TC

πk
(intervene(πk, C,W))〉.

Intuitively, the intervention function flips all the events that appear in the
cause Γ : If some a ∈ I appears positively in the candidate cause C, it will appear
negatively in the resulting input sequence, and vice-versa. For a contingency W,
the intervention function enables their auxiliary input for the counterfactual
automaton at the appropriate time point irrespective of their value, as the coun-
terfactual automaton will take care of matching the atomic propositions value
to the value in the original counterexample Γ .

1 The same reasoning can be applied to arbitrary systems by considering for contingen-
cies largest sets of outputs for which the assumption holds, with the caveat that the
counterfactual automaton may model fewer contingencies. Consequently, computed
causes may be less precise in case multiple causes appear in the counterexample.

Explaining Hyperproperty Violations 415

4.1 Actual Causality for HyperLTL Violations

We are now ready to formalize what constitutes an actual cause for the violation
of a hyperproperty described by a HyperLTL formula.

Definition 6 (Actual Causality for HyperLTL). Let Γ be a counterexam-
ple to a HyperLTL formula ϕ in a system T . The set C is an actual cause for
the violation of ϕ on Γ if the following conditions hold.

SAT Γ � C.
CF There exists a contingency W and a non-empty subset C′ ⊆ C such that:

Γ � W and intervene(Γ, C′,W) �traces(T) ϕ.
MIN C is minimal, i.e., no subset of C satisfies SAT and CF.

Unlike in Halpern and Pearl’s definition (see Sect. 2.2), the condition SAT
requires Γ to satisfy only the cause, as we already know that the effect ¬ϕ,
i.e., the violation of the specification, is satisfied by virtue of Γ being a coun-
terexample. CF is the counterfactual condition corresponding to AC2 in Halpern
and Pearl’s definition, and it states that after intervening on the cause, under a
certain contingency, the set of traces satisfies the property. (Note that we use a
conjunction of two statements here while Halpern and Pearl use an implication.
This is because they implicitly quantify universally over the values of the vari-
ables in the set W (which should be as in the actual world) where in our setting
the set of contingencies already defines explicit values.) MIN is the minimality
criterion directly corresponding to AC3.

Example 2. Consider our running example from Sect. 3, i.e., the system from
Fig. 1 and the counterexample to observational determinism Γ = 〈t1, t2〉. Let us
consider what it means to intervene on the cause C1 = {〈hi , 0, t2〉}. Note that
we have Γ � C1, hence the condition SAT is satisfied. For CF, let us first con-
sider an intervention without contingencies. This results in intervene(Γ, C1, ∅) =
〈t′1, t′2〉 = 〈t1, {}{hi , lo}{ho}{ho, lo}ω〉. However, intervene(Γ, C1, ∅) �traces(T)

¬ϕ, because the low outputs of t′1 and t′2 differ at the third position: lo ∈ t′1[2]
and lo �∈ t′2[2]. This is because now the second high input takes effect, which
was preempted by the first cause in the actual counterexample. The contin-
gency W2 = {〈lo, 2, t2〉〉} now allows us to control this by modyfing the state
after taking the second high input as follows: intervene(Γ, C2,W2)) = 〈t′′1 , t′′2〉 =
〈t1, {}{hi , lo}{ho, lo}{ho, lo}ω〉. Note that t′′2 is not a trace of the model depicted
in Fig. 1, because there is no transition that explains the step from t′′2 [1] to t′′2 [2].
It is, however, a trace of the counterfactual automaton TC

t2 (see full version [22]),
which encodes the set of counterfactual worlds for the trace t2. The fact that
we consider executions that are not part of the original system allows us to
infer that only the first high input was an actual cause in our running exam-
ple. Disregarding contingencies, we would need to consider both high inputs as
an explanation for the violation of observational determinism, even though the
second high input had no influence. Our treatment of contingencies corresponds
directly to Halpern and Pearl’s causal models, which allow to ignore certain
structural equations as outlined in Example 1.

416 N. Coenen et al.

Remark: With our definitions, we strictly generalize Halpern and Pearl’s actual
causality to reactive systems modeled as Moore machines and effects expressed as
HyperLTL formulas. Their structural equation models can be encoded in a one-
step Moore machine; effect specifying a Boolean combination of primitive events
can be encoded in the more expressive logic HyperLTL. Just like for Halpern and
Pearl, our actual causes are not unique. While there can exist several different
actual causes, the set of all actual causes is always unique. It is also possible
that no actual cause exists: If the effect occurs on all system traces, there may
be no actual cause on a given individual trace.

4.2 Finding Actual Causes with Model Checking

In this section, we consider the relationship between finding an actual cause for
the violation of a HyperLTL formula starting with a universal quantifier and
model checking of HyperLTL. We show that the problem of finding an actual
cause can be reduced to a model checking problem where the generated formula
for the model checking problem has one additional quantifier alternation. While
there might be a reduction resulting in a more efficient encoding, our current
result suggests that causality checking is the harder problem. The key idea of
our reduction is to use counterfactual automata (that encode the given coun-
terexample and the possible counterfactual traces) together with the HyperLTL
formula described in the proof to ensure the conditions SAT, CF, and MIN on
the witnesses for the model checking result.

Proposition 1. We can reduce the problem of finding an actual cause for the
violation of an HyperLTL formula starting with a universal quantifier to the
HyperLTL model checking problem with one additional quantifier alternation.

Proof. Let Γ = 〈t1, . . . tk〉 be a counterexample for the formula ∀π1 . . . ∀πk.ϕ
where ϕ is a HyperLTL formula that does not have a universal first quantifier.
We provide the proof for the case of Γ = 〈t1, t2〉 for readability reasons, but
it can be extended to any natural number k. We assume that t1, t2 have some
ω-regular representation, as otherwise the initial problem of computing causality
is not well defined. That is, we denote ti = ui(vi)ω such that |ui · vi| = ni.

In order to find an actual cause, we need to find a pair of traces t′1, t
′
2 that are

counterfactuals for t1, t2; satisfy the property ϕ; and the changes from t1, t2 to
t′1, t

′
2 are minimal with respect to set containment. Changes in inputs between

ti and t′i in the loop part vi should reoccur in t′i repeatedly. Note that the
differences between the counterexample 〈t1, t2〉 and the witness of the model
checking problem 〈t′1, t′2〉 encode the actual cause, i.e. in case of a difference,
the cause contains the event that is present on the counterexample. To reason
about these changes, we use the counterfactual automaton TC

i for each ti, which
also allows us to search for the contingency W as part of the input sequence
of TC

i . Note that each TC
i consists of ni copies, that indicate in which step the

automaton is with respect to ti and its loop vi. For m > |ui|, we label each state
(si,m) in TC

i with the additional label Lsm,i, to indicate that the system is now

Explaining Hyperproperty Violations 417

in the loop part of ti. In addition, we add to the initial state of TC
i the label

li, and we add to the initial state of the system T the label lor . The formula
ψi

loop below states that the trace π begins its run from the initial state of TC
i

(and thus stays in this component through the whole run), and that every time
π visits a state on the loop, the same input sequence is observed. This way we
enforce the periodic input behavior of the traces t1, t2 on t′1, t

′
2.

ψi
loop(π) := li,π ∧

∧

Lsm,i

∨

A⊆I

(Lsm,i,π → (
∧

a∈A

aπ ∧
∧

a/∈A

¬aπ))

For a subset of locations N ⊆ [1, ni] and a subset of input propositions A ⊆ I
we define ψi

diff [N,A](π) that states that π differs from ti in at least all events
〈la,m, ti〉 for a ∈ A,m ∈ N ; and the formula ψi

eq [N,A](π) that states that for
all events that are not defined by A and N , π is equal to ti.

ψi
diff [N,A](π) =

∧

j∈N,a∈A

j(aπ �↔ ati)

ψi
eq [N,A](π) =

∧

j /∈N,a∈I

j(aπ ↔ ati) ∧
∧

j∈[1,ni],a/∈A

j(aπ ↔ ati)

We now define the formula ψi
min that states that the set of inputs (and

locations) on which trace π differs from ti is not contained in the corresponding
set for π′. We only check locations up until the length ni of ti.

ψi
min(π, π′) :=

∧

N⊆[i,ni]

∧

A⊆I

((
ψi

diff [N,A](π) ∧ ψi
eq [N,A](π)

)
→ ¬ψi

eq [N,A](π′)
)

Denote ϕ := Q1τ1 . . . Qnτn. ϕ′(π1, π2) where Qi ∈ {∀,∃} and τi are trace
variables for i ∈ [1, n]. The formula ψcause described below states that the two
traces π′

1 and π′
2 are part of the systems TC

1 , TC
2 , and have the same loop struc-

ture as t1 and t2, and satisfy ϕ. That is, these traces can be obtained by changing
the original traces t1, t2 and avoid the violation.

ψcause(π′
1, π

′
2) := ϕ′(π′

1, π
′
2) ∧

∧

i=1,2

ψi
loop(π′

i)

Finally, ψactual described below states that the counterfactuals π′
1, π

′
2 corre-

spond to a minimal change in the input events with respect to t1, t2. All other
traces that the formula reasons about start at the initial state of the original
system and thus are not affected by the counterfactual changes. We verify ψactual

against the product automaton T × TC
1 × TC

2 to find these traces π′
i ∈ TC

i that
witness the presence of a cause, counterfactual and contingency.

ψactual := ∃π′
1∃π′

2. ∀π′′
1π′′

2 . Q1τ1 . . . Qnτn. ψcause(π′
1, π

′
2) ∧

∧

i=1,2

(li,π′
i
∧ li,π′′

i
)

∧
∧

i∈[1,n]

lor ,τi ∧

⎛

⎝ψcause(π′′
1 , π′′

2) →

⎛

⎝
∧

i=1,2

ψi
min(π′

i, π
′′
i)

⎞

⎠

⎞

⎠

418 N. Coenen et al.

Then, if there exists two such traces π′
1, π

′
2 in the system T × TC

1 × TC
2 ,

they correspond to a minimal cause for the violation. Otherwise, there are no
traces of the counterfactual automata that can be obtained from t1, t2 using
counterfactual reasoning and satisfy the formula ϕ. ��

We have shown that we can use HyperLTL model checking to find an actual
cause for the violation of a HyperLTL formula. The resulting model checking
problem has an additional quantifier alternation which suggests that identifying
actual causes is a harder problem. Therefore, we restrict ourselves to finding
actual causes for violations of universal HyperLTL formulas. This keeps the
algorithms we present in the next section practical as we start without any
quantifier alternation and need to solve a model checking problem with a single
quantifier alternation. While this restriction excludes some interesting formulas,
many can be strengthened into this fragment such that we are able to handle close
approximations (c.f. [25]). Any additional quantifier alternation from the original
formula carries over to an additional quantifier alternation in the resulting model
checking problem which in turn leads to an exponential blow-up. The scalability
of our approach is thus limited by the complexity of the model checking problem.

5 Computing Causes for Counterexamples

In this section, we describe our algorithm for finding actual causes of hyperprop-
erty violations. Our algorithm is implemented on top of MCHyper [35], a model
checker for hardware circuits and the alternation-free fragment of HyperLTL. In
case of a violation, our analysis enriches the provided counterexample with the
actual cause which can explain the reason for the violaiton to the user.

We first provide an overview of our algorithm and then discuss each step in
detail. First, we compute an over-approximation of the cause using a satisfiability
analysis over transitions taken in the counterexample. This analysis results in
a set of events C̃. As we show in Proposition 2, every actual cause C for the
violation is a subset of C̃. In addition, in Proposition 3 we show that the set
C̃ satisfies conditions SAT and CF. To ensure MIN, we search for the smallest
subset C ⊆ C̃ that satisfies SAT and CF. This set C is then our minimal and
therefore actual cause.

To check condition CF, we need to check the counterfactual of each candidate
cause C, and potentially also look for contingencies for C. We separate our dis-
cussion as follows. We first discuss the calculation of the over-approximation C̃
(Sect. 5.1), then we present the ActualCause algorithm that identifies a minimal
subset of C̃ that is an actual cause (Sect. 5.2), and finally we discuss in detail
the calculation of contingencies (Sect. 5.3). In the following sections, we use a
reduction of the universal fragment of HyperLTL to LTL, and the advantages of
the linear translation of LTL to alternating automata, as we now briefly outline.

Explaining Hyperproperty Violations 419

HyperLTL to LTL. Let ϕ be a ∀n-HyperLTL formula and Γ be the counterexam-
ple. We construct an LTL formula ϕ′ from ϕ as follows [31]: atomic propositions
indexed with different trace variables are treated as different atomic propositions
and trace quantifiers are eliminated. For example ∀π, π′.aπ ∧ aπ′ results in the
LTL formula aπ∧aπ′ . As for Γ , we use the same renaming in order to zip all traces
into a single trace, for which we assume the finite representation t′′ = u′′ · (v′′)ω,
which is also the structure of the model checker’s output. The trace t′′ is a vio-
lation of the formula ϕ′, i.e., t′′ satisfies ¬ϕ′. We denote ϕ̄ := ¬ϕ′. We can then
assume, for implementation concerns, that the specification (and its violation)
is an LTL formula, and the counterexample is a single trace. After our causal
analysis, the translation back to a cause over hyperproperties is straightforward
as we maintain all information about the different traces in the counterexample.
Note that this translation works due to the synchronous semantics of HyperLTL.

Finite Trace Model Checking Using Alternating Automata. In verifying condi-
tion CF (that is, in computing counterfactuals and contingencies), we need to
apply finite trace model checking, as we want to check if the modified trace in
hand still violates the specification ϕ, that is, satisfies ϕ̄. To this end, we use
the linear algorithm of [36], that exploits the linear translation of ϕ̄ to an alter-
nating automaton Aϕ̄, and using backwards analysis checks the satisfaction of
ϕ̄. An alternating automaton [68] generalizes non-deterministic and universal
automata, and its transition relation is a Boolean function over the states. The
run of alternating automaton is then a tree run that captures the conjunctions in
the formula. We use the algorithm of [36] as a black box (see App. A.2 in [22] for
a formal definition of alternating automata and App. A.3 in [22] for the transla-
tion from LTL to alternating automata). For the computation of contingencies
we use an additional feature of the algorithm of [36] – the algorithm returns
an accepting run tree T of Aϕ̄ on t′′, with annotations of nodes that represent
atomic subformulas of ϕ̄ that take part in the satisfaction of ϕ̄. We use this
feature also in Sect. 5.1 when calculating the set of candidate causes.

5.1 Computing the Set of Candidate Causes

The events that might have been a part of the cause to the violation are in
fact all events that appear on the counterexample, or, equivalently, all events
that appear in u′′ and v′′. Note that due to the finite representation, this is
a finite set of events. Yet, not all events in this set can cause the violation.
In order to remove events that could not have been a part of the cause, we
perform an analysis of the transitions of the system taken during the execution
of t′′. With this analysis we detect which events appearing in the trace locally
cause the respective transitions, and thus might be part of the global cause.
Events that did not trigger a transition in this specific trace cannot be a part
of the cause. Note that causing a transition and being an actual cause are two
different notions - actual causality is defined over the behaviour of the system,

420 N. Coenen et al.

not on individual traces. We denote the over-approximation of the cause as C̃.
Formally, we represent each transition as a Boolean function over inputs and
states. Let δn denote the formula representing the transition of the system taken
when reading t′′[n], and let ca,n,i be a Boolean variable that corresponds to the
event 〈ati , n, t′′〉.2 Denote ψt

n =
∧

ati
∈t′′[n] ca,n,i ∧

∧
ati

/∈t′′[n] ¬ca,n,i, that is, ψt
n

expresses the exact set of events in t′′[n]. In order to find events that might
trigger the transition δn, we check for the unsatisfiable core of ψn = (¬δn) ∧ ψt

n.
Intuitively, the unsatisfiable core of ψn is the set of events that force the system
to take this specific transition. For every ca,n,i (or ¬ca,n,i) in the unsatisfiable
core that is also a part of ψt

n, we add 〈a, n, ti〉 (or 〈¬a, n, ti〉) to C̃.
We use unsatisfiable cores in order to find input events that are necessary in

order to take a transition. However, this might not be enough. There are cases
in which inputs that appear in formula ϕ̄ are not detected using this method,
as they are not essential in order to take a transition; however, they might be
considered a part of the actual cause, as negating them can avoid the violation.
Therefore, as a second step, we apply the algorithm of [36] on the annotated
automaton Aϕ̄ in order to find the specific events that affect the satisfaction of
ϕ̄, and we add these events to C̃. Then, the unsatisfiable core approach provides
us with inputs that affect the computation and might cause the violation even
though they do not appear on the formula itself; while the alternating automaton
allows us to find inputs that are not essential for the computation, but might
still be a part of the cause as they appear on the formula.

Proposition 2. The set C̃ is indeed an over-approximation of the cause for the
violation. That is, every actual cause C for the violation is a subset of C̃.

Proof (sketch). Let e = 〈la, n, t〉 be an event such that e is not in the unsatisfiable
core of ψn and does not directly affect the satisfaction of ϕ̄ according to the
alternating automata analysis. That is, the transition corresponding to ψt

n is
taken regardless of e, and thus all future events on t remain the same regardless
of the valuation of e. In addition, the valuation of the formula ϕ̄ is the same
regardless of e, since: (1) e does not directly affect the satisfaction of ϕ̄; (2) e
does not affect future events on t (and obviously it does not affect past events).
Therefore, every set C′ such that e ∈ C′ is not minimal, and does not form a
cause. Since the above is true for all events e �∈ C, it holds that C ⊆ C̃ for every
actual cause C. ��

Proposition 3. The set C̃ satisfies conditions SAT and CF.

Proof. The condition SAT is satisfied as we add to C̃ only events that indeed
occur on the counterexample trace. For CF, consider that C̃ is a super-set of
the actual cause C, so the same contingency and counterfactual of C will also
apply for C̃. This is since in order to compute counterfactual we are allowed
to flip any subset of the events in C, and any such subset is also a subset of C̃.

2 That is, ¬ca,n,i corresponds to the event 〈¬ati , n, t′′〉. Recall that the atomic propo-
sitions on the zipped trace t′′ are annotated with the original trace ti from Γ .

Explaining Hyperproperty Violations 421

Algorithm 1: ActualCause(ϕ, Γ, C̃)
Input: Hyperproperty ϕ, counterexample Γ violating ϕ, and a set of candidate

causes C̃ for which conditions SAT and CF hold.
Output: A set of input events C which is an actual cause for the violation.

1 for i ∈ [1, . . . , |C̃| − 1] do

2 for C ⊂ C̃ with |C| = i do

3 let Γ f = intervene(Γ, C, ∅);

4 if Γ f � ϕ then
5 return C;
6 else

7 W̃ = ComputeContingency(ϕ, Γ, C);

8 if W̃ �= ∅ then
9 return C;

10 return C̃;

In addition, in computing contingencies, we are allowed to flip any subset of out-
puts as long as they agree with the counterexample trace, which is independent in
C̃ and C. ��

5.2 Checking Actual Causality

Due to Proposition 2 we know that in order to find an actual cause, we only
need to consider subsets of C̃ as candidate causes. In addition, since C̃ satisfies
condition SAT, so do all of its subsets. We thus only need to check conditions
CF and MIN for subsets of C̃. Our actual causality computation, presented in
Algorithm 1 is as follows. We start with the set C̃, that satisfies SAT and CF.
We then check if there exists a more minimal cause that satisfies CF. This is
done by iterating over all subsets C′ of C̃, ordered by size and starting with the
smallest ones, and checking if the counterfactual for the C′ manages to avoid the
violation; and if not, if there exists a contingency for this C′. If the answer to
one of these questions is yes, then C′ is a minimal cause that satisfies SAT, CF,
and MIN, and thus we return C′ as our actual cause. We now elaborate on CF
and MIN.

CF. As we have mentioned above, checking condition CF is done in two stages –
checking for counterfactuals and computing contingencies. We first show that we
do not need to consider all possible counterfactuals, but only one counterfactual
for each candidate cause.

Proposition 4. In order to check if a candidate cause C̃ is an actual cause it
is enough to test the one counterfactual where all the events in C̃ are flipped.

Proof. Assume that there is a strict subset C of C̃ such that we only need to flip
the valuations of events in C in order to find a counterfactual or contingency,
thus C satisfies CF. Since C is a more minimal cause than C̃, we will find it during
the minimality check. ��

422 N. Coenen et al.

Algorithm 2: ComputeContingency(ϕ, Γ, C)
Input: Hyperproperty ϕ, a counterexample Γ and a potential cause C.
Output: a set of output events W which is a contingency for ϕ, Γ and C, or ∅ if

no contingency found.
1 let t′′ be the zipped trace of Γ , ϕ′ be the LTL formula obtained from ϕ, and

ϕ̄ = ¬ϕ′;
2 let Aϕ̄ be the alternating automaton for ϕ̄;

3 let tf be the counterfactual trace obtained from t′′ by flipping all events in C;

4 let N be the sets of events derived from the annotated run tree of Aϕ̄ on tf ;

5 let O′ := {〈lat , n, t′′〉 ∈ OE | at ∈ t′′[n] ↔ at /∈ tf [n]};
6 for every subset W ′ ⊆ (N ∩ O′), and then for every other subset W ′ ⊆ O′ do
7 tm := intervene(t′′, C, W ′);
8 if tm � ϕ′ then
9 return W ′;

10 return ∅;

We assume that CF holds for the input set C̃ and check if it holds for any
smaller subset C ⊂ C̃. CF holds for C if (1) flipping all events in C is enough to
avoid the violation of ϕ or if (2) there exists a non-empty set of contingencies
for C that ensures that ϕ is not violated. The computation of contingencies is
described in Algorithm 2. Verifying condition CF involves model checking traces
against an LTL formula, as we check in Algorithm1 (line 3) if the property ϕ is
still violated on the counterfactual trace with the empty contingency, and on the
counterfactual traces resulting from the different contingency sets we consider
in Algorithm 2 (line 7). In both scenarios, we apply finite trace model checking,
as described at the beginning of Sect. 5 (as we assume lasso-shaped traces).

MIN. To check if C̃ is minimal, we need to check if there exists a subset of C̃
that satisfies CF. We check CF for all subsets, starting with the smallest one,
and report the first subset that satisfies CF as our actual cause. (Note that we
already established that C̃ and all of its subsets satisfy SAT.)

5.3 Computing Contingencies

Recall that the role of contingencies is to eliminate the effect of other possible
causes from the counterfactual world, in case these causes did not affect the
violation in the actual world. More formally, in computing contingencies we look
for a set W of output events such that changing these outputs from their value in
the counterfactual to their value in the counterexample t′′ results in avoiding the
violation. Note that the inputs remain as they are in the counterfactual. We note
that the problem of finding contingencies is hard, and in general is equivalent
to the problem of model checking. This is since we need to consider all traces
that are the result of changing some subset of events (output + time step) from
the counterfactual back to the counterexample, and to check if there exists a
trace in this set that avoids the violation. Unfortunately, we are unable to avoid

Explaining Hyperproperty Violations 423

an exponential complexity in the size of the original system, in the worst case.
However, our experiments show that in practice, most cases do not require the
use of contingencies.

Our algorithm for computing contingencies (Algorithm2) works as follows.
Let tf be the counterfactual trace. As a first step, we use the annotated run tree
T of the alternating automaton Aϕ̄ on tf to detect output events that appear
in ϕ̄ and take part in satisfying ϕ̄. Subsets of these output events are our first
candidates for contingencies as they are directly related to the violation (Algo-
rithm2 lines 4–9). If we were not able to find a contingency, we continue to check
all possible subsets of output events that differ from the original counterexample
trace. We test the different outputs by feeding the counterfactual automaton of
Definition 4 with additional inputs from the set IC . The resulted trace is then
our candidate contingency, which we try to verify against ϕ. The number of dif-
ferent input sequences is bounded by the size of the product of the counterfactual
automaton and the automaton for ϕ̄, and thus the process terminates.

Theorem 1 (Correctness). Our algorithm is sound and complete. That is, let
Γ be a counterexample with a finite representation to a ∀n-HyperLTL formula
ψ. Then, our algorithm returns an actual cause for the violation, if such exists.

Proof. Soundness. Since we verify each candidate set of inputs according to
the conditions SAT, CF and MIN, it holds that every output of our algorithm
is indeed an actual cause. Completeness. If there exists a cause, then due to
Proposition 2, it is a subset of the finite set C̃. Since in the worst case we test
every subset of C̃, if there exists a cause we will eventually find it. ��

6 Implementation and Experiments

We implemented Algorithm 1 and evaluated it on publicly available example
instances of HyperVis [48], for which their state graphs were available. In the
following, we provide implementation details, report on the running time and
show the usefulness of the implementation by comparing to the highlighting out-
put of HyperVis. Our implementation is written in Python and uses py-aiger [69]
and Spot [27]. We compute the candidate cause according to Sect. 5.1 with py-
sat [50], using Glucose 4 [3,66], building on Minisat [66]. We ran experiments on
a MacBook Pro with a 3, 3 GHz Dual-Core Intel Core i7 processor and 16 GB
RAM3.

Experimental Results. The results of our experimental evaluation can be found in
Table 1. We report on the size of the analyzed counterexample |Γ |, the size of the
violated formula |ϕ|, how long it took to compute the first, over-approximated
cause (see time(C̃)) and state the approximation C̃ itself, the number of computed
minimal causes #(C) and the time it took to compute all of them (see time(∀C)).
The Running Example is described in Sect. 3, the instance Security in & out

3 Our prototype implementation and the experimental data are both available at:
https://github.com/reactive-systems/explaining-hyperproperty-violations.

https://github.com/reactive-systems/explaining-hyperproperty-violations

424 N. Coenen et al.

Table 1. Experimental results of our implementation. Times are given in ms.

Instance |Γ | |ϕ| time(C̃) C̃ #(C) time(∀C)
Running example 10 9 19 ¬hi0t1

, hi0t2
2 55

Security in & out 35 19 292 hi2t1
, ¬hi0t1

, ¬hi3t1
, ¬hi1t1

8 798

hi2t2
, hi0t2

, hi1t2
, hi3t2

Drone example 1 24 19 33 bound2t1
, ¬bound1t1

, up1t1
, ¬up2t1

5 367

bound2t2
, ¬bound1t2

, ¬up1t2

Drone example 2 18 36 31 bound1t1
, ¬bound1t2

, up1t2
3 256

Asymmetric arbiter ’19 28 35 53 see App. A.4 in [22] 10 490

Asymmetric arbiter 72 35 70 see App. A.4 in [22] 24 1480

refers to a system which leaks high security input by not satisfying a noninter-
ference property, the Drone examples consider a leader-follower drone scenario,
and the Asymmetric Arbiter instances refer to arbiter implementations that do
not satisfy a symmetry constraint. Specifications can be found in the full version
of this paper [22].

Our first observation is that the cause candidate C̃ can be efficiently com-
puted thanks to the iterative computation of unsatisfiable cores (Sect. 5.1). The
cause candidate provides a tight over-approximation of possible minimal causes.
As expected, the runtime for finding minimal causes increases for larger coun-
terexamples. However, as our experiments show, the overhead is manageable,
because we optimize the search for all minimal causes by only considering every
subset in C̃ instead of naively going over every combination of input events (see
Proposition 2). Compared to the computationally heavy task of model check-
ing to get a counterexample, our approach incurs little additional cost, which
matches our theoretical results (see Proposition 1). During our experiments, we
have found that computing the candidate C̃ first has, additionally to providing
a powerful heuristic, another benefit: Even when the computation of minimal
causes becomes increasingly expensive, C̃ can serve as an intermediate result for
the user. By filtering for important inputs, such as high security inputs, C̃ already
gives great insight to why the property was violated. In the asymmetric arbiter
instance, for example, the input events 〈¬tb secret , 3, t0〉 and 〈tb secret , 3, t1〉 of
C̃, which cause the violation, immediately catch the eye (c.f App. A.4 in [22]).

Comparison to HyperVis. HyperVis [48] is a tool for visualizing counterexam-
ples returned from the HyperLTL model checker MCHyper [35]. It highlights the
events in the trace that it considers responsible for the violation based on the
formula and the set of traces, without considering the system model. However,
violations of many relevant security policies such as observational determinism
are not caused by events whose atomic propositions appear in the formula, as can
be seen in our running example (see Sect. 3 and Example 2). When running the
highlight function of HyperVis for the counterexample traces t1, t2 on Running
example, the output events 〈lo, 1, t1〉 and 〈¬lo, 1, t2〉 will be highlighted, neglect-
ing the decisive high security input hi. Using our method additionally reveals

Explaining Hyperproperty Violations 425

the input events 〈¬hi, 0, t1〉 and 〈hi, 0, t2〉, i.e., an actual cause (see Table 1).
This pattern can be observed throughout all considered instances in our experi-
ments. For instance in the Asymmetric arbiter instance mentioned above, the
input events causing the violation also do not occur in the formula (see App. A.5
in [22]) and thus HyperVis does not highlight this important cause for the vio-
lation.

7 Related Work

With the introduction of HyperLTL and HyperCTL∗ [20], temporal hyper-
properties have been studied extensively: satisfiability [29,38,60], model check-
ing [34,35,49], program repair [11], monitoring [2,10,32,67], synthesis [30],
and expressiveness studies [23,37,53]. Causal analysis of hyperproperties has
been studied theoretically based on counterfactual builders [40] instead of
actual causality, as in our work. Explanation methods [4] exist for trace prop-
erties [5,39,41,42,70], integrated in several model checkers [14,15,19]. Min-
imization [54] has been studied, as well as analyzing several system traces
together [9,43,65]. There exists work in explaining counterexamples for function
block diagrams [51,63]. MODCHK uses a causality analysis [7] returning an over-
approximation, while we provide minimal causes. Lastly, there are approaches
which define actual causes for the violation of a trace property using Event Order
Logic [13,56,57].

8 Conclusion

We present an explanation method for counterexamples to hyperproperties
described by HyperLTL formulas. We lift Halpern and Pearl’s definition of actual
causality to effects described by hyperproperties and counterexamples given as
sets of traces. Like the definition that inspired us, we allow modifications of the
system dynamics in the counterfactual world through contingencies, and define
these possible counterfactual behaviors in an automata-theoretic approach. The
evaluation of our prototype implementation shows that our method is prac-
tically applicable and significantly improves the state-of-the-art in explaining
counterexamples returned by a HyperLTL model checker.

References

1. Log4j vulnerabilities. https://logging.apache.org/log4j/2.x/security.html
2. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties

in hyperltl. In: CSF 2016. https://doi.org/10.1109/CSF.2016.24
3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.

In: IJCAI 2009. http://ijcai.org/Proceedings/09/Papers/074.pdf
4. Baier, C., et al.: From verification to causality-based explications. In: ICALP 2021.

https://doi.org/10.4230/LIPIcs.ICALP.2021.1

https://logging.apache.org/log4j/2.x/security.html
https://doi.org/10.1109/CSF.2016.24
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2021.1

426 N. Coenen et al.

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: POPL 2003. https://doi.org/10.1145/604131.604140

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

8. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech-
nical report 07/1, Inst. f. Form. Model. u. Verifikation, Johannes Kepler University
(2007)

9. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Paths to property violation: a
structural approach for analyzing counter-examples. In: HASE 2010. https://doi.
org/10.1109/HASE.2010.15

10. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: CSF 2018. https://doi.org/10.1109/CSF.2018.00019

11. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties. In: Chen,
Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 423–441.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3 25

12. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

13. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable properties.
In: CREST@ETAPS 2018. https://doi.org/10.4204/EPTCS.286.1

14. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004)

15. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In:
ACM SIGSOFT Foundations of Software Engineering (2004). https://doi.org/10.
1145/1029894.1029908

16. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Trans. Comput. Log. 9(3), 20:1–20:26 (2008). https://doi.org/
10.1145/1352582.1352588

17. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

18. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981. https://doi.org/10.1007/BFb0025774

19. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

20. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

22. Coenen, N., et al.: Explaining hyperproperty violations. CoRR (2022). https://doi.
org/10.48550/ARXIV.2206.02074, full version with appendix

23. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019. https://doi.org/10.1109/LICS.2019.8785713

https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1109/HASE.2010.15
https://doi.org/10.1109/HASE.2010.15
https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.48550/ARXIV.2206.02074
https://doi.org/10.48550/ARXIV.2206.02074
https://doi.org/10.1109/LICS.2019.8785713

Explaining Hyperproperty Violations 427

24. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

25. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 4

26. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

27. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

28. Durumeric, Z., et al.: The matter of heartbleed. In: IMC 2014. https://doi.org/10.
1145/2663716.2663755

29. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR 2016. https://
doi.org/10.4230/LIPIcs.CONCUR.2016.13

30. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesis from
hyperproperties. Acta Informatica 57(1-2), 137–163 (2020). https://doi.org/10.
1007/s00236-019-00358-2

31. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

32. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproper-
ties. Formal Methods Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/
s10703-019-00334-z

33. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

34. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent workflows with loops. In: CCS 2017. https://doi.org/10.1145/3133956.
3134080

35. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

36. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004). https://doi.org/10.1023/B:FORM.
0000017718.28096.48

37. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In:
STACS 2017. https://doi.org/10.4230/LIPIcs.STACS.2017.30

38. Fortin, M., Kuijer, L.B., Totzke, P., Zimmermann, M.: HyperLTL satisfiability is
Σ1

1-complete, HyperCTL∗ satisfiability is Σ2
1-complete. In: MFCS 2021. https://

doi.org/10.4230/LIPIcs.MFCS.2021.47
39. Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality.

In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 11

https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.1007/978-3-319-07602-7_11

428 N. Coenen et al.

40. Gössler, G., Stefani, J.: Causality analysis and fault ascription in component-based
systems. Theor. Comput. Sci. 837, 158–180 (2020). https://doi.org/10.1016/j.tcs.
2020.06.010

41. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006). https://doi.org/
10.1007/s10009-005-0202-0

42. Groce, A., Kroening, D., Lerda, F.: Understanding Counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 35

43. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

44. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: IJCAI
2015. http://ijcai.org/Abstract/15/427

45. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005). http://www.jstor.org/
stable/3541870

46. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005). http://www.jstor.
org/stable/3541871

47. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

48. Horak, T., et al.: Visual analysis of hyperproperties for understanding model check-
ing results. IEEE Trans. Vis. Comput. Graph. 28(1), 357–367 (2022). https://doi.
org/10.1109/TVCG.2021.3114866

49. Hsu, T.-H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-
properties. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651,
pp. 94–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 6

50. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018.
LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94144-8 26

51. Jee, E., et al.: FbdVerifier: interactive and visual analysis of counterexample in
formal verification of function block diagram. J. Res. Pract. Inf. Technol. 42(3),
171–188 (2010)

52. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: SP 2019.
https://doi.org/10.1109/SP.2019.00002

53. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-
ification and verification of hyperproperties. In: MFCS 2018. https://doi.org/10.
4230/LIPIcs.MFCS.2018.10

54. Lahtinen, J., Launiainen, T., Heljanko, K., Ropponen, J.: Model checking method-
ology for large systems, faults and asynchronous behaviour: SARANA 2011 work
report. No. 12 in VTT Tech., VTT Tech. Research Centre of Finland (2012)

55. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2) (1997). https://doi.org/10.1007/s100090050010

56. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 16

https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
http://ijcai.org/Abstract/15/427
http://www.jstor.org/stable/3541870
http://www.jstor.org/stable/3541870
http://www.jstor.org/stable/3541871
http://www.jstor.org/stable/3541871
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16

Explaining Hyperproperty Violations 429

57. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality com-
putation. Int. J. Crit. Comput. Based Syst. 4(2), 119–143 (2013). https://doi.org/
10.1504/IJCCBS.2013.056492

58. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973)
59. Lipp, M., et al.: Meltdown: reading kernel memory from user space. Commun.

ACM 63(6), 46–56 (2020)
60. Mascle, C., Zimmermann, M.: The keys to decidable HyperLTL satisfiability: small

models or very simple formulas. In: CSL 2020. https://doi.org/10.4230/LIPIcs.
CSL.2020.29

61. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings. 1988 IEEE Symposium on Security and Privacy, pp. 177–186 (1988)

62. Moore, E.F.: Gedanken-experiments on sequential machines. Aut. stud. 34 (1956)
63. Pakonen, A., Buzhinsky, I., Vyatkin, V.: Counterexample visualization and expla-

nation for function block diagrams. In: INDIN 2018. https://doi.org/10.1109/
INDIN.2018.8472025

64. Pnueli, A.: The temporal logic of programs. In: FOCS 1977 (1977)
65. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of

LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 493–509. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 32

66. Sörensson, N.: Minisat 2.2 and minisat++ 1.1. SAT Race 2010
67. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of

hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

68. Vardi, M.Y.: Alternating automata: unifying truth and validity checking for tem-
poral logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6 19

69. Vazquez-C., M., Rabe, M.: py-aiger. https://github.com/mvcisback/py-aiger
70. Wang, C., Yang, Z., Ivančić, F., Gupta, A.: Whodunit? Causal analysis for coun-

terexamples. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
82–95. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914 9

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/3-540-63104-6_19
https://github.com/mvcisback/py-aiger
https://doi.org/10.1007/11901914_9
http://creativecommons.org/licenses/by/4.0/

	Explaining Hyperproperty Violations
	1 Introduction
	2 Preliminaries
	2.1 HyperLTL
	2.2 Actual Causality

	3 Running Example
	4 Causality for Hyperproperty Violations
	4.1 Actual Causality for HyperLTL Violations
	4.2 Finding Actual Causes with Model Checking

	5 Computing Causes for Counterexamples
	5.1 Computing the Set of Candidate Causes
	5.2 Checking Actual Causality
	5.3 Computing Contingencies

	6 Implementation and Experiments
	7 Related Work
	8 Conclusion
	References

