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Abstract. The most widely used Zero-Knowledge (ZK) protocols
require provers to prove they know a solution to a computational problem
expressed as a Rank-1 Constraint System (R1CS). An R1CS is essentially
a system of non-linear arithmetic constraints over a set of signals, whose
security level depends on its non-linear part only, as the linear (additive)
constraints can be easily solved by an attacker. Distilling the essential
constraints from an R1CS by removing the part that does not contribute
to its security is important, not only to reduce costs (time and space) of
producing the ZK proofs, but also to reveal to cryptographic program-
mers the real hardness of their proofs. In this paper, we formulate the
problem of distilling constraints from an R1CS as the (hard) problem of
simplifying constraints in the realm of non-linearity. To the best of our
knowledge, it is the first time that constraint-based techniques developed
in the context of formal methods are applied to the challenging problem
of analysing and optimizing ZK protocols.

1 Introduction

Zero-Knowledge (ZK) protocols [8,15,17,27] enable one party, called prover, to
convince another one, called verifier, that a statement is true without reveal-
ing any information beyond the veracity of the “statement”. In this context, we
understand a statement as a relation between an instance, a public input known
to both prover and verifier, and a witness, a private input known only to the
prover, which belongs to a language L in the nondeterministic polynomial time
(NP) complexity class [5,15]. The most popular, efficient and general-purpose ZK
protocols are ZK-SNARKs: ZK Succinct Non-interactive ARguments of Knowl-
edge. While a proof guarantees the existence of a witness in a language L, and
argument of knowledge proves that, with very high probability, the prover knows
a concrete valid witness in L. A ZK-SNARK does not require interaction between
the prover and the verifier, and regardless of the size of the statement being
proved, the size of the proof is succinct. These appealing properties of ZK-
SNARKs have made them become crucial tools in many real-world applications
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with strong privacy issues. A prominent such example is Zcash [4]. ZK proto-
cols are also being used in conjunction with smart contracts, in the so-called
ZK-rollups for enhancing the scalability of distributed ledgers [18].

Like most ZK systems, ZK-SNARKs operate in the model of arithmetic cir-
cuits, meaning that the NP language L is that of satisfiable arithmetic circuits.
The gates of an arithmetic circuit consist of additions and multiplications mod-
ulo p, where p is typically a large prime number of approximately 254 bits [3].
The wires of an arithmetic circuit are called signals, and can carry any value
from the prime finite field Fp. In the ZK context, there is usually a set of public
inputs known both to the prover and the verifier, and the prover proves that she
knows a valid assignment to the rest of signals that satisfies the circuit (i.e., the
witness). Most ZK-SNARK protocols draw from a classical algebraic form for
encoding circuits and wire assignment called rank-1 constraint system (R1CS).
An R1CS encodes a circuit as a set of quadratic constraints over its variables,
so that a correct execution of a circuit is equivalent to finding a satisfying vari-
able assignment. This way, a valid witness for an arithmetic circuit translates
naturally into a solution of its R1CS representation.

Although ZK protocols guarantee that a malicious verifier cannot extract a
witness from a proof, they do not prevent the verifier from attacking the state-
ment directly. Hence, it is important that the prover is aware of the difficulty of the
statement being proved. In this regard, it is challenging for cryptographic develop-
ers that apply ZK protocols to complex computations to assess the real hardness
of the produced computational problem, being hence also difficult to verify and
audit the systems. It is partly because a syntactic assessment (e.g. based on count-
ing the number of non-linear constraints) can be inaccurate and misleading. This
is the case if the R1CS contains redundant constraints, i.e., constraints that can be
deduced from others or constraints that follow from linear constraints, since they
do not contribute to the hardness of the computational statement. Distilling the
relevant constraints is important on one hand for efficiency, to reduce costs (time
and space) of producing the ZK proofs, and also because redundancy can mislead
developers to believe that the statement is far more complex than it really is. It
is clear that when arithmetic circuits are defined over a finite field of small order,
the problem can be attacked by brute-force, or if the system consists only of linear
constraints, a solution can be found in polynomial time [25]. Moreover, in R1CS-
based systems like [17] only multiplication gates add complexity to the statement.
Also note that linear constraints induce a way to compute the value of one signal
from a linear combination of the others, and hence we can easily extend a witness
for the other signals to a witness for all the signals. As a result, the difficulty of
finding a solution to a system relies mostly in the number of non-redundant non-
linear constraints.

Contributions. This case study paper applies techniques developed in the con-
text of formal methods to distill constraints from the R1CS systems used by
ZK protocols. The main challenges are related, on the one hand, to reasoning
with non-linear information in a finite field and, on the other hand, to dealing
with very large constraint systems. Briefly, our main contributions are: (1) we
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present a formal framework to reason on circuit reduction which generalizes the
application of different existing optimizations and the reduction strategy in which
they are applied, (2) we introduce a concrete new optimization technique based on
Gaussian elimination that allows deducing linear constraints from the non-linear
constraints, (3) we implement our approach within circom [21] (a novel domain-
specific language and compiler for defining arithmetic circuits) and also develop an
interface for using it on the R1CS generated by ZoKrates [12], (4) we experimen-
tally evaluate its performance on multiple real-world circuits (including templates
from the circom library [22] and from [12], on implementations of different SHA-2
hash functions, on elliptic curve operations, etc.).

2 Preliminaries

This section introduces some preliminary notions and notation. We consider Fp

a finite field of prime order p. As usual, F
n
p is a sequence of n values in Fp.

We drop p from F when it is irrelevant. An arithmetic circuit (over the field F)
consists of wires (represented by means of signals si ∈ F) connected to gates
(represented by quadratic constraints). Signals can be public or private. We now
define the concepts of quadratic constraints and R1CS over a set of signals.

Definition 1 (R1CS). A quadratic constraint over a set of signals {s1, . . . , sn}
is an equation of the form Q : A × B − C = 0, where A,B,C ∈ F[s1, ..., sn] are
linear polynomials over the variables s1, ..., sn, i.e., A = a0 + a1s1 + · · · + ansn,
B = b0 + b1s1 + · · · + bnsn, and C = c0 + c1s1 + · · · + cnsn, where ai, bi, ci ∈ F

for all i ∈ {0, . . . , n}. A rank-1 constraint system (R1CS) over a set of signals
T is a collection of quadratic constraints over T .

We say that a quadratic constraint Q is linear when A or B only have the
constant term, i.e., ai = 0 ∀i ∈ {1, . . . , n} or bi = 0 ∀i ∈ {1, . . . , n}, and is non-
linear otherwise. As R1CS systems only contain quadratic constraints, in what
follows, we simply call them constraints, and specify if they are linear or not
where needed. We use the standard notation S |= c to indicate that a constraint
c is deducible from a set of constraints S and |S| for the number of constraints.

Definition 2 (arithmetic circuit and witness). An (arithmetic) circuit is
a tuple C = (U, V, S) where U represents the set of public signals, V represents
the set of private signals, and the R1CS S={Q1, . . . , Qm} over the signals U ∪V
represents the circuit operations. Given an assignment u for U , a witness for C
is an assignment v for V s.t. u together with v are a solution to the R1CS S.

We use the terms circuit and, R1CS or just constraint system, indistinctly when
the signals used in the circuit are clear. Given a circuit C and a public assignment
for U , a ZK protocol is a mechanism that allows a prover to prove to a verifier
that she knows a private assignment for V that, together with those for U , satisfy
the R1CS system describing C. ZK protocols guarantee that the proof will not
reveal any information about V .
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Example 1. We consider a circuit C1 = (U, V, S1) over a finite field F, with
U = {v, w}, V = {x, y, z}, and S1 given by the following constraint system:

Q1 : w × (y + z) − 4x − 10 = 0, Q2 : w × z − w − 3 = 0,
Q3 : (x − w + 1) × v − v + 1 = 0, Q4 : y − z − 2 = 0.

This circuit contains 3 non-linear constraints (Q1, Q2, and Q3) and a linear one
(Q4). Because of its small size, we can easily solve the system (i.e., give the
value of each signal in terms of only one of them) and find the set of solutions:

W = {(v, w, x, y, z) �→ (1, w, w − 1, 3w−1 + 3, 3w−1 + 1) | w ∈ F \ {0}}.

A cryptographic problem can be modeled by different circuits producing the
same solutions. This relation among circuits can be formalized as circuit equiv-
alence, which is a natural extension of the constraint system equivalence. We
say that two circuits C = (U, V, S) and C′ = (U, V, S′) are equivalent, written
C � C′, if S and S′ have the same set of solutions. Consequently, if C and C′ are
equivalent, they have the same set of solutions and hence of witnesses.

Example 2. The circuit C2 = (U, V, S2) with the same sets of public and private
signals U and V as C1, and the R1CS S2 given by the constraints:

Q′
1 : w×y−3w−3 = 0, Q′

2 : y−z−2 = 0, Q′
3 : v−1 = 0, Q′

4 : x−w+1 = 0,

has the same set of solutions (and thus witnesses) as C1. Hence, C1 � C2.

3 A Formal Framework for R1CS Reduction

R1CS optimizations are applied within state-of-the-art compilers like circom
[21] or ZoKrates [12]. Common to such existing compiler optimizations is the
application of rules to simplify and eliminate linear constraints and/or to deduce
information from them. As our first contribution, we present a formal framework
for R1CS reduction based on a rule-based transformation system which is general
enough to be a formal basis for developing specific simplification techniques
and reduction strategies. In particular, the simplifications already applied in the
above compilers are instantiations of our framework.

The notion of reduction that our framework formalizes is key to define the secu-
rity level of circuits. When two circuits model the same problem, they provide the
same level of security. However, an assessment of their security level based on syn-
tactically counting the number of non-linear constraints in the circuits can lead to
a wrong understanding/estimation of their security. For instance, circuits C1 and
C2 (see Examples 1-2) model the same problem, although C2 needs a single non-
linear constraint to define its set of solutions (instead of three as C1). This happens
because some of the non-linear constraints of C1 are not essential and can be sub-
stituted by linear constraints. Besides, we can observe in C2 that signals x and z
are only involved in linear constraints instead of being on non-linear constraints
like in C1. In other words, having a circuit with more private signals involved in
non-linear constraints (e.g., C1) does not ensure further security if these private
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signals can be deduced from linear combinations of the others. We build our notion
of circuit reduction upon this concept.

Definition 3 (circuit-reduction). Let C = (U, V, S) be a circuit with
U ∪ V = {s1, . . . , sn}, and C′ = (U, V ′, S′) another circuit with V ⊆ V ′.

(i) We say that C′ linearly follows from C, denoted by C |=l C′, if ∀s ∈ V ′ \ V ,
∃λs

0, λ
s
1, ..., λ

s
n ∈ F, s.t. given an assignment for U , every witness φ for C

extended with s �→ λs
0 +

∑n
i=1 λs

i ∗ φ(si) is a witness for C′.
(ii) We say that C′ reduces to C, written C′ ≥ C, if C |=l C′, |S′| ≥ |S| and every

witness of C′ restricted to V is a witness for C for the same assignment of U .
We say that C′ strictly reduces to C, written C′ > C if |S′| > |S| or V ⊂ V ′.

Intuitively, we have that for every signal defined in V , the values of the two
witnesses match, and for the signals defined in V ′ \V , the value of the witness of
C ′ can be obtained from a linear combination of the values from the assignment
for U and φ.

Example 3. Let C3 be ({v, w}, {y}, S3) with S3 = {Q′′
1 : w × y − 3w − 3 = 0,

Q′′
2 : v − 1 = 0}. Let us show that C1 (from Example 1) strictly reduces to C3.

From Example 2, we have that every solution of C1 restricted to {v, w, y} is also
a solution of C3 (since S3 ⊆ S2 and C2 � C1) and that in every witness φ′ of
C2 we have that φ′(x) = φ′(w) − 1 and φ′(z) = φ′(y) − 2. Therefore, taking
λx
0 = −1, λx

pos(w) = 1, λz
0 = −2, λz

pos(y) = 1 (where function pos(si) abstracts
the index i of the variable si in the set of signals), we have that C3 |=l C1. Finally,
since {y} ⊂ {x, y, z} and, given an assignment for {v, w}, every witness of C1

restricted to {y} is a witness for C3, and we can conclude.

We now present a set of transformation rules that ensure circuit reducibility.
The transformation is based on finding linear consequences of the constraint
system to guarantee that the transformed set of constraints linearly follows from
the original system. Our transformation rules operate on pairs in K×SL, where K
is the set of arithmetic circuits and SL is the set of linear constraint systems. As
usual, we use infix notation, writing (C, SL) ⇒ (C′, SL

′), and denote respectively
by ⇒+ and ⇒∗, its transitive and reflexive-transitive closure. Given a circuit C,
if (C, ∅) ⇒∗ (C′, SL), then C′ is a reduction for C, and the linear system SL shows
how to prove that C′ |=l C. In the following, we assume that there exists a total
order < among the private signals in V which is used to select a signal among
the private signals of a constraint c, denoted by V (c).

Fig. 1. Circuit transformation rules.
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The remove rule allows us to remove redundant constraints. The deduce
rule is needed to extract from S linear relations among the signals. Finally, the
simplify rule allows us to safely remove a signal s from V by replacing it by an
equivalent linear combination of public and (strictly) smaller private signals in
S. The fact that we replace a private signal by strictly smaller ones prevents this
rule from being applied infinitely many times. When no constraint or private
signal can be removed from a circuit (e.g., from C3) after applying a sequence
of reduction rule steps, the circuit is considered irreducible and we call it a
normal form. Note that the linear constraints in SL with signals not belonging
to U ∪ V are the ones that track how to obtain the missing signals from the
remaining ones.

The three rules from Fig. 1 are terminating and they are contained in the
circuit reducibility relation (Definition 3) when projected to the first component
(the circuit). Regarding confluence, we have that if (C, SL) ⇒∗ (C1, SL1) and
(C, SL) ⇒∗ (C2, SL2), then we have that (C1, SL1) ⇒∗ (C′

1, SL
′
1) and (C2, SL2) ⇒∗

(C′
2, SL

′
2) such that C′

1 and C′
2 are equivalent (see Appendix).

Example 4. Let us apply our reduction system to find a normal form of (C1, ∅)
which corresponds to its reduction. At each step we label the arrow with the
applied rule and show only the component that is modified from the previous
step (we use to indicate the value of the component as in the previous step):

((U, V, S1), ∅)
deduce⇒ (( , , ), {L1 : z = y − 2})

simplify⇒ ( , \ {z}, [z �→ y − 2]), )
remove⇒ (( , , \ {0 = 0}), )

deduce⇒ (( , , ), ∪ {L2 : x = w − 1})
simplify⇒ (( , \ {x}, [x �→ w − 1]), )
remove⇒ (( , , \ {Q : w × (2y − 2) − 4w − 6 = 0}), )

Here (C3, {L1, L2}) is a normal form of (C1, ∅) and, as we have already seen in
Example 3, C3 is a reduction for C1. Note that {L1, L2} shows how to obtain the
values of the removed signals as a linear combination.

4 Circuit Reduction Using Constraint Simplification

In this section, we introduce different strategies to apply the transformation rules
described in Fig. 1, and also to approximate the deduction relation S |= c in rules
remove and deduce. Note that the classical representation of our problem is
undecidable, but since we work in a finite field, it becomes decidable. However,
as the order of F is large, it is still impractical and approximation is required.

As an example, let us show how the simplification techniques applied in
ZoKrates and circom fit in our framework. In both languages, besides the
removal of tautologies, all simplification steps are made using linear constraints
that are part of the set of constraints. In particular, in a first step both lan-
guages handle the so-called redefinitions (i.e., constraints of the form x = y),
and in a second step all the remaining linear constraints are eliminated applying
the necessary substitutions. In our framework, these simplification steps can be
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described as a sequence of deduce to obtain the linear constraints that will be
applied as substitutions, followed by a sequence of simplify, and a sequence of
remove to delete the tautologies obtained after the substitutions. The whole
sequence can be repeated until no linear constraints are left in the circuit. The
specific strategy followed to perform the sequence of deduce steps to obtain
the substitutions used to simplify the circuit from its linear constraints has a
big impact in the efficiency of the process. For instance, circom considers all
maximal clusters of linear constraints (sharing signals) in the system and then
infers in one go all the substitutions to be applied for every cluster, using a lazy
version of Gauss-Jordan elimination. This process can be very expensive when
the number of constraints in the R1CS is very large (e.g. hundreds of millions in
ZK-Rollups like Hermez [20]).

Similar techniques based on analyzing the linear constraints are applied in
other circuit-design languages. However, up to our knowledge, no language uses
the non-linear part of the circuit to infer new linear constraints, or to remove
redundant constraints, and this constitutes the second main contribution of this
work. In the remaining of this section, we present a new approach inspired by
techniques used in program analysis and SMT-solving like [9,11], where the
non-linear reasoning is reduced to linear-reasoning. We can assume that we have
applied first the aforementioned strategies to obtain an R1CS containing only
non-linear constraints (or linear constrains with only public signals). Then, in our
framework, the problem of inferring new linear constraints from non-linear R1CS
can be formalized as a synthesis problem as follows: “given a circuit (U, V, S),
where U ∪ V = {s1, . . . , sn}, our goal is to find a linear expression l = c0 +
c1s1 + . . . + cnsn with c0, c1, . . . , cn ∈ F such that S |= l = 0.” In order to solve
this problem, we follow an efficient approach in which we restrict ourselves to
the case where l = 0 can be expressed as a linear combination of constraints
in S, i.e., of the form

∑
λk ∗ Qk with Qk ∈ S and λk ∈ F. It is clear that any

constraint l = 0 obtained using this approach satisfies S |= l = 0, but we are only
interested in the ones that are linear. In the following two stages, we describe
how to obtain linear expressions l, and hence, infer the constraints.

Stage 1. First, for each constraint Qk : Ak×Bk−Ck = 0, k ∈ {1, . . . , m}, we
expand the multiplication Ak ×Bk, obtaining the expression

∑
1≤i≤j≤n Qk[i, j]∗

sisj+Lk, where Qk[i, j] for 1 ≤ i ≤ j ≤ n denotes the coefficient of the monomial
sisj in the constraint Qk, and Lk is the linear part of Ak × Bk.

Example 5. Let us consider the circuit from Example 4 after applying the first
three transformation rules, i.e. after removing the linear constraints. We denote
the resulting circuit C4 = (U, V4, S4), where U ∪ V4 = {v, w, x, y} and S4 is
given by:

Q1 : w × (2y − 2) − 4x − 10 = 0, Q2 : w × (y − 2) − w − 3 = 0,
Q3 : (x − w + 1) × v − v + 1 = 0.

Here, we have for Q1 that A1 = w, B1 = 2y − 2 and C1 = 4x + 10 (recall that
we consider A1 × B1 − C1 = 0). Then, we expand the multiplication A1 × B1 =
2wy − 2w, so that L1 = −2w and Q1[2, 4] = 2 (for wy), where the later is
the only non-zero coefficient of a quadratic monomial. Similarly, for Q2 we have
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C2 = w + 3, Q2[2, 4] = 1 (also for wy) and L2 = −2w. Finally, for Q3 we have
C3 = v − 1, and Q3[1, 3] = 1 (for vx) and Q3[1, 2] = −1 (for vw) and L3 = v.

Stage 2. Now, we can model a sufficient condition of linearity using the
previous ingredients: if there exist λ1, . . . , λm ∈ F such that, for every i, j with
1 ≤ i ≤ j ≤ n, we have that

∑m
k=1 λk ∗Qk[i, j] = 0, then l =

∑m
k=1 λk ∗(Lk−Ck)

is linear and S |= l = 0. Moreover, assuming that S is consistent, we have that
either l = 0 is a tautology 0 = 0 or it is a non-trivial linear constraint. In the
first case, any of the constraints Qk with λk �= 0 follows from the rest of the
constraints and we can apply the remove rule. In the second case, we can apply
deduce and later simplify if l has at least one private signal. Note that, after
applying simplify one of the constraints Qk with λk �= 0 will follow from the
rest, and we will be able to finally apply remove.

Example 6 (continued). Following the example, we need to find λ1, λ2, λ3 such
that (considering only the non-zero coefficients Q[i, j]) 2λ1+λ2 = 0 (for Q[2, 4]),
2λ3 = 0 (for Q[1, 3]), and −λ3 = 0 (for Q[1, 2]). Since the monomials vx and vw
occur only once, the only solution for λ3 is 0. Now solving 2λ1 + λ2 = 0, we get
that λ2 = −2λ1. Hence, we take the solution λ1 = 1 and λ2 = −2. With this
solution, l = 1 ∗ (−2w − (4x + 10)) + (−2) ∗ (−2w − (w + 3)) + 0 ∗ (v − (v − 1)).
Hence, we obtain 4w − 4x − 4 = 0, which is equivalent to x − w + 1 = 0 that is
the deduced linear constraint used in Example 4 to reduce the original circuit.

To conclude, finding λ1, . . . , λm ∈ F such that for every i, j with 1 ≤ i ≤ j ≤
n, then

∑m
k=1 λk ∗ Qk[i, j] = 0, is a linear problem that can be solved using

Gaussian elimination or similar techniques. Note that we are only interested in
solutions with at least one λk �= 0. Therefore, we can efficiently synthesize new
linear constraints or show that some constraint follows from the others using
this approach.

Regarding the practical application of our technique, since sometimes we
are handling very large sets of non-linear constraints, additional engineering
is needed to make it work. For instance, we need to remove those constraints
that have a quadratic monomial that appears in no other constraint, and after
that, compute maximal clusters sharing the same quadratic monomials. We have
observed in our experimental evaluation that, in general, even for large circuits,
each cluster remains small. Thanks to this, we obtain rather small independent
sets of constraints that can be solved in parallel using Gaussian elimination.

5 Experimental Results

This section describes our experimental evaluation on two settings: On one hand
(Sect. 5.1), we have implemented them within circom [21], a novel domain-
specific language and compiler for defining arithmetic circuits, fully written in
Rust. The circom compiler generates executable code (WebAssembly or C++) to
compute the witness, together with the R1CS, since both are later needed by ZK
tools to produce ZK proofs. The implementation is available in a public fork of



438 E. Albert et al.

the compiler [1]; On the other hand (Sect. 5.2), we have decoupled the constraint
optimization module from the circom compiler in a new project, which is acces-
sible online [2], in order to be able to use it after other cryptographic-language
compilers that produce R1CS, in our case with ZoKrates [12]. ZoKrates is a
high-level language that allows the programmer to abstract the technicalities
of building arithmetic circuits. The input to our optimizer is the R1CS in the
smtlib2 format generated by ZoKrates. The goal of our experiments is two fold:
(1) assess the scalability of the approach when applied to real-world circuits
used in industry and (2) evaluate its impact on code already highly optimized
–such as circom’s libraries developed on a low-level language by experienced
programmers– and on code automatically compiled from a high-level language
such as ZoKrates. In both cases, the optimizations of linear constraints that
the compilers include (see Sect. 4) are enabled so that the reduction gains are
due only to our optimization. Experimental results have been obtained using an
AMD Ryzen Threadripper PRO 3995WX 64-Cores Processor with 512 GB of
RAM (Linux Kernel Debian 5.10.70-1).

5.1 Results on circom Circomlib

circom is a modular language that allows the definition of parameterizable small
circuits called “templates” and has its own library called circomlib [22]. This
library is widely used for cryptographic purposes and contains hundreds of tem-
plates such as comparators, hash functions, digital signatures, binary and deci-
mal converters, and many more. Our experiments have been performed on the
available test cases from circomlib. Many of them have been carefully pro-
grammed by experienced cryptographers to avoid unnecessary non-linear con-
straints and our optimization cannot deduce new linear constraints. Still, we are
able to reduce 26% of the total tests (12 out of 46).

Table 1 shows the results for the five circuits that we optimize the most. For
each of them, we show: (#C) the number of generated constraints, (#R) the
number of removed constraints, (G%) the gains expressed as #R/#C x 100,
and (T(s)) the compilation time. The largest gain is for pointbits loopback,
where circom generates 2.333 constraints and we remove 381 of them, our gain

Table 1. Results on circomlib.

Circuit #C #R G% T(s)
sha256 2 test 30134 32 0.11% 15.6s
eddsamimc test 5712 46 0.81% 1.9s
eddsaposeidon test 4217 46 1.09% 1.7s
eddsa test 7554 556 7.36% 4.8s
pointbits loopback 2333 381 16.33% 13.4s

is 16.33% and the compilation
time is 13.4s. As explained in
Sect. 4, for each linear con-
straint deduced by our tech-
nique, we are always able
to remove a non-linear con-
straint and, in general, also
a signal. Note that we some-
times produce new linear con-
straints in which all the involved signals are public and thus, none of them can
be removed. Importantly, in spite of the manual simplifications already made
in most of the circuits in circomlib, our techniques detect further redundant
constraints in a short time. Such small reductions in templates of circomlib
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can produce larger gains, since they are repeatedly used as subcomponents in
industrial circuits.

5.2 Results on ZoKrates Stdlib

Table 2. Results on stdlib.

Circuit #C #R G% T(s)
sha256bit 25730 288 1.1% 35.0s
sha512bit 26838 544 2.0% 37.8s
sha1024bit 54284 1312 2.4% 82.4s
sha1536bit 81730 2080 2.6% 128s
Poseidon 3912 851 21.8% 0.3s
EdwardsAdd 17 4 23.6% 0.07s
EdwardsOrderCheck 56 15 26.8% 0.07s
EdwardsScalarMult 9989 2304 23.1% 0.2s
ProofOfOwnership 9984 2306 23.0% 0.5s

We have used two kind of
circuits from the ZoKrates
stdlib for our experimental
evaluation: (1) The first four
circuits shaXbit are implemen-
tations of different SHA-2 hash
functions [19], where X indi-
cates the size of the output.
SHA-2 hashes are constructed
from the repeated use of simple
computation units that heavily
use bit operations. Bit opera-
tions are very inefficient inside
arithmetic circuits [13] and, as a result, the number of constraints describing
these circuits is very large, see in Table 2. The number of constraints deduced is
quite low for this kind of circuits since specialized optimization for bitwise oper-
ation is required (other compilers like xJsnark [23] are specialized on this). This
also happens in the circom implementation of SHA-256-2 (row 1 of Table 1).
However, Poseidon [16] is a recent hash function that was designed taking into
account the nature of arithmetic circuits in a prime field F, and as a result,
the function can be described with many less constraints. Our approach is able
to optimize the current implementation of Poseidon by more than 20%, which
represents a very significant reduction. (2) The second kind are the last four
circuits: they correspond to the ground for implementing elliptic curve cryp-
tography inside circuits. Our optimizer detects, in a negligible time, that more
than 23% of constraints are redundant and can be removed. Verifying if a pair
of public/private keys matches (ProofOfOwnership) is fundamental in almost
every security situation, hence the optimization of this circuit becomes particu-
larly relevant for saving blockchain space. For this reason, we have parameterized
ProofOfOwnership to the number of pairs public/private keys to be verified and
we have measured the performance impact (time and memory consumption) of
snarkjs setup step of these circuits without simplification (Table 3) and after
simplification (Table 4). The results show the effect of our reduction when the
constraints are later used by snarkjs to produce ZK proofs.



440 E. Albert et al.

Table 3. Results on different instantiations of ProofOfOwnership from stdlib without
nonlinear simplification. The generated ERROR in last row is an out-of-memory-error.

Circuit Generation snarkjs

T(s) #C Size T(s) Memory

ProofOfOwnership-400 1m58.1s 3,902,378 582MB 7m26.8s 14.4GB

ProofOfOwnership-1000 4m54.7s 9,740,978 1.5GB 37m50.0s 33.1GB

ProofOfOwnership-1200 6m09.6s 11,687,178 1.7GB 47m15.7s 36.2GB

ProofOfOwnership-1400 6m50.1s 13,633,378 2.0GB ERROR ERROR

Table 4. Results on different instantiations of ProofOfOwnership from stdlib with
nonlinear simplification.

Circuit Generation snarkjs

T(s) #C Size T(s) Memory

ProofOfOwnership-400 3m11.0s 2,970,072 451MB 5m00.1s 12.7GB

ProofOfOwnership-1000 8m05.1s 7,413,672 1.1GB 23m40.8s 24.6GB

ProofOfOwnership-1200 9m43.8s 8,894,872 1.4GB 31m46.8s 30.7GB

ProofOfOwnership-1400 11m06.4s 10,376,072 1.6GB 38m31.0s 32.7GB

The impact of our simplification on the setup step of snarkjs is relevant and
goes beyond the increase in the compilation time. However, this step is applied
only once. We have also measured the impact in performance when generating a
ZK-proof for a given witness using snarkjs after the setup step. This action that
is the one repeated many times when used in a real context. Our experiments
show that, e.g., with ProofOfOwnership-400 we improve from 41 s to 35 s and
with ProofOfOwnership-1000 we improve from 1 m 53 s to 1 m 12 s.

In conclusion, our experiments show that the higher the level of abstraction
is, the more redundant constraints the compiler introduces in the R1CS. Our
proposed techniques are an efficient and effective solution to enhance the perfor-
mance in this setting. On the other hand, circuits written in a low-level language
by security experts (usually optimized by hand), or circuits using bitwise oper-
ations, leave small room for optimization by applying our techniques.

6 Related Work and Conclusions

We have proposed the application of (non-linear) constraint reasoning techniques
to the new application domain of ZK protocols. Our approach has wide appli-
cability as, in the last few years, much effort has been put in developing new
programming languages that enable the generation and verification of ZK proofs
and that also focus on the design of arithmetic circuits and the constraint encod-
ing. Among the different solutions, we can distinguish: libraries (bellman [7],
libsnark [29], snarky [28]), programming-focused languages (ZoKrates [12],
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xJsnark [23], zinc [24], Leo [10]), and hardware-description languages (circom).
As opposed to the initial library approach, both programming and hardware-
description languages put focus on the design of arithmetic circuits and the con-
straint encoding. In this regard, ZoKrates, xJsnark, and the circom compiler
implement one simple but powerful R1CS-specific optimization called linearity
reduction: it consists in substituting the linear constraints to generate a new
circuit whose system only consists of non-linear constraints. However, they do
not deduce new constraints to detect further redundancies in the system. Linear
reduction is a particular case of our reduction rules in which the only linear
constraints that can be deduced and added to the linear system are those that
follow from linear constraints present in the constraint system. On the other
side, the constraint system generated by Leo is only optimized at the level of its
intermediate representation not at R1CS-level, as our method works.

Finally, there has been a joint effort towards standardizing and allowing
the interoperability between different programs, like CirC [26], an infrastructure
for building compilers to logical constraint representation. Currently, CirC only
applies the linearity reduction explained above. Recently, an interface called
zkInterface [6] has been built to improve the interoperability among several
frontends, like ZoKrates and snarky. It provides means to express statements
in a high-level language and compile them into an R1CS representation; and
several backends that implement ZK protocols like Groth16 [17] and Pinocchio
[27] that use the R1CS representation to produce ZK proofs. zkInterface could
benefit from our optimization to apply our reduction to every circuit generated
by any of the accepted frontends. zkInterface is also written in Rust, then our
optimizer could be easily integrated as a new gadget for the tool in the future.
Finally, we believe that the techniques presented in this paper can lead us to
new reduction schemes to be applied over PlonK [14] constraint systems.
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