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Abstract. The analysis of legacy systems requires the automated
extraction of high-level specifications. We propose a framework, called
Abstraction Modulo Stability, for the analysis of transition systems oper-
ating in stable states, and responding with run-to-completion transac-
tions to external stimuli. The abstraction captures the effects of external
stimuli on the system state, and describes it in the form of a finite state
machine. This approach is parametric on a set of predicates of interest
and the definition of stability. We consider some possible stability defini-
tions which yield different practically relevant abstractions, and propose
a parametric algorithm for abstraction computation. The obtained FSM
is extended with guards and effects on a given set of variables of interest.
The framework is evaluated in terms of expressivity and adequacy within
an industrial project with the Italian Railway Network, on reverse engi-
neering tasks of relay-based interlocking circuits to extract specifications
for a computer-based reimplementation.

Keywords: Timed Transition Systems · Property extraction ·
Simulations · Relay-based circuits

1 Introduction

The maintenance of legacy systems is known to be a very costly task, and the lack
of knowledge hampers the possibility of a reimplementation with more modern
technologies. Legacy systems may have been actively operating for decades, but
their behavior is known only to a handful of people. It is therefore important to
have automated means to reverse-engineer and understand their behavior, for
example in the form of state machines or temporal properties.

We focus on understanding systems that exhibit self-stabilizing behaviors, i.e.
that are typically in a stable state, and respond to external stimuli by reaching
stability in a possibly different state. As an industrially relevant example, con-
sider legacy Railway Interlocking Systems based on Relay technology (RRIS):
these are electro-mechanical circuits for the control of railway stations, with
thousands of components that respond to the requests of human operators to
activate the shunting routes for the movement of the trains. They support a
computational model based on “run-to-completion”, where a change in a part
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of the circuit (e.g. a switch closing) may change the power in another part of
the circuit, and in turn operate other switches, until a stable condition is (hope-
fully) reached. This is very different in spirit from typical “cycle-based” control
implemented in computer-based systems such as SCADA.

In this paper, we tackle the problem of extracting abstract specifications of
the possible behaviors of an infinite-state timed transition system. The idea is
to understand how the system evolves from a stable state, in response to a given
stimulus, to the next stable state. In addition, we are interested in knowing
under which conditions the transitions are possible and which are the effects
on selected state variables. All this information is presented in the form of an
extended finite state machine, which can be seen as a collection of temporal
specifications satisfied by the system.

We make the following contributions. First, we propose the general framework
of Abstraction Modulo Stability, a white-box analysis of self-stabilizing systems
with run-to-completion behavior. The set of abstract states is the grid induced by
a set of given predicates of interest. The framework is generic and parameterized
with respect to the notion of stability. Different notions of stability are possible,
depending on several factors: remaining in a region is possible (for some paths)
or necessary (for all paths); whether the horizon of persistence in the stable
region is unbounded, or lower-bounded on the number of discrete transitions
and/or on the actual time. The framework also takes into account the notion
of reachability in the concrete space, in order to limit the amount of spurious
behaviors in the abstract description. We illustrate the relations holding between
the corresponding abstractions, depending on the strength of the selected notion
of stability.

Second, we present a practical algorithm to compute stability abstractions.
We face two key difficulties. In the general case, one abstract transition is asso-
ciated to a sequence of concrete transitions, of possibly unbounded length, so
that a fix point must be reached. Furthermore, we need to make sure that the
sequence is starting from a reachable state. Contrast this with the standard
SMT-based computation of predicate abstractions [15], where one transition in
the abstract space corresponds to one concrete transition, and reachability is not
considered.

Third, we show how to lift to the abstract space other relevant variables from
the concrete space, so that each abstract transition is associated with guards and
effects. This results in a richer abstraction where the abstract states (typically
representing control modes) are complemented by information on the data flow
of the additional variables (typically representing the actual control conditions
in a given mode).

We experimentally evaluate the approach on several large RRIS implement-
ing the control logic for shunting routes and switch controls. This research is
strongly motivated by an ongoing activity on the migration of the Italian Rail-
way Network from relay-based interlocking to computer-based interlocking [3].
Stability abstraction is the chosen formalism to reverse engineer the RRIS, and
to automatically provide the actual specifications for computer-based interlock-
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ing. We demonstrate the effectiveness of the proposed algorithms, and the crucial
role of reachability in terms of precision of the abstractions.

Related Works. This work has substantial differences with most of the lit-
erature in abstraction. For example, Predicate Abstraction (PA) [11] can be
directly embedded within the framework; furthermore, PA does not take into
account concrete reachability; finally, an abstract transition is the direct result
of a concrete transition, and not, as in our case, of a sequence of concrete tran-
sitions.

In [5] the authors propose to analyze abstract transitions between invariant
regions with an approximated approach. In comparison, we propose a general
framework, parameterized on the notion of stability. Additionally, we propose
effective algorithms to construct automata from concrete behaviors only, and
that represent symbolically the guards and the effects of the transitions.

The idea of weak bisimilarity [19], proposed for the comparison of observable
behaviors of CCS, is based on collapsing sequences of silent, internal actions.
The main difference with our approach is that weak bisimilarity is not used
to obtain an abstraction for reverse engineering. Furthermore, in Abstraction
Modulo Stability, observability is a property of states, and the silent actions are
collapsed only when passing through unobservable (i.e., unstable) states.

Somewhat related are the techniques for specification mining, that have
been extensively studied, for example in hardware and software. For example,
DAIKON [9] extracts candidate invariant specifications from simulations. In our
approach, the abstraction directly results in temporal properties that are guar-
anteed to hold on the system being abstracted. Yet, simulation-based techniques
might be useful to bootstrap the computation of Abstraction Modulo Stability.

The work in [1] proposes techniques for the analysis of RRIS, assuming that
a description of the stable states is already given. There are two key differences:
first, the analysis of transient states is not considered; second, the extraction of
a description in terms of stable states is a manual (and thus inefficient and error
prone) task. For completeness, we mention the vast literature on the application
of formal methods to railways interlocking systems (see e.g. [6,12,13,17,18]).
Aside from the similarity in the application domain, these works are not directly
related, given their focus on the verification of the control algorithms.

Structure of the Paper. In Sect. 2 we present the background notions. In
Sect. 3 we present the framework of Abstraction Modulo Stability. In Sect. 4
we present the algorithms for computing abstraction. In Sect. 5 we present the
experimental evaluation. In Sect. 6 we draw some conclusions and present the
directions of future work.

2 Background

We work in the setting of Satisfiability Modulo Theories (SMT) [4], with
quantifier-free first order formulae interpreted over the theory of Linear Real
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Arithmetic (LRA). We use P,Q to denote sets of Boolean variables, p, q to
denote truth assignments, and the standard Boolean connectives ∧,∨,¬,→ for
conjunction, disjunction, negation and implication. � and ⊥ define true and
false respectively. For a set of variables V , let ΨT (V ) denote the set of first-order
formulae over a theory T with free variables in V . When clear from context we
omit the subscript. Let V ′ .= {v′ | v ∈ V }. For a formula φ ∈ Ψ(V ), let φ′ denote
φ[V/V ′], i.e. the substitution of each variable v ∈ V with v′.

A finite state automaton is a tuple A = 〈Q,L,Q0, R〉 where: Q is a finite set
of states; L is the alphabet; Q0 ⊆ Q is the set of initial states; R ⊆ (Q × L × Q)
is the labeled transition relation. We also consider automata with transitions
annotated by guards and effects expressed as SMT formulae over given sets
of variables. For (q1, �, q2) ∈ R, we write q1

�−→A q2. Let A1 and A2 be two
automata defined on the same set of states Q and on the same alphabet L
including a label τ : we say that A1 weakly simulates A2, and we write A1 � A2,
if whenever q

�−→A1 q′, then q
�−→A2

τ−→∗
A2

q′, where τ−→∗
is a (possibly null)

sequence of transitions labeled with τ .
A symbolic timed transition system is a tuple M = 〈V,C,Σ, Init, Invar,

Trans〉, where: V is a finite set of state variables; C ⊆ V is a set of clock variables;
Σ is a finite set of boolean variables encoding the alphabet; Init(V ), Invar(V ),
Trans(V,Σ, V ′) are SMT formulae describing the initial states, the invariant and
the transition relation respectively. The clocks in C are real-valued variables. We
restrict the formulae over clock variables to atoms of the form c �� k, for c ∈ C,
k ∈ R and ��∈ {≤, <,≥, >,=}. The clock invariants are convex. We allow the
other variables in V to be either boolean or real-valued.

A state is an assignment for the V state variables, and let S denote the set of
all the interpretations of V . We assume a distinguished clock variable time ∈ C
initialized with time = 0 in Init, representing the global time.

The system evolves following either a discrete or a timed step. The timed
transition entails that there exists δ ∈ R+ such that c′ = c + δ for each clock
variable c ∈ C, and v′ = v for all the other variables1. The discrete transition
entails that time ′ = time and can change the other variables instantaneously.

A valid trace π is a sequence of states (s0, s1, . . . ) that all fulfill the Invar
condition, such that s0 |= Init and for all i, (si, �i, si+1) |= Trans(V,Σ, V ′) for
some �i assignment to Σ. We denote with Reach(M) the set of states that are
reachable by a valid trace in M. We adopt a hyper-dense semantics: in a trace π,
time is weakly monotonic, i.e. si.time ≤ si+1.time. We disregard Zeno behaviors,
i.e. every finite run is a prefix of a run in which time diverges.

The states in which time cannot elapse, i.e. which are forced to take an instan-
taneous discrete transition, are called urgent states. We assume the existence of
a boolean state variable urg ∈ V which is true in all and only the urgent states.
Namely, for every pair of states (si, si+1) in a path π where si.urg is true, then
(si.time = si+1.time).

1 We abuse the notation and write P = Q for P ↔ Q when P and Q are Boolean
variables.
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We consider CTL+P [16], a branching-time temporal logic with the future
and past temporal operators. A history h = (s0, ..., sn) for M is a finite prefix
of a trace of M. For a CTL+P formula ψ, write M, h |= ψ meaning that after
h, sn satisfies ψ in M. Operators AGψ, E(ψ1 U ψ2), Hψ are used with their
standard interpretations (in every future ψ will always hold, there exists a future
in which ψ1 holds until ψ2, in the current history ψ always held, respectively).

3 The Framework of Abstraction Modulo Stability

3.1 Overview

We tackle the problem of abstracting a concrete system in order to mine relevant
high-level properties about its behavior.

We are interested in how the system reacts to stimuli: when an action is
performed, we want to skip the intermediate steps that are necessary to accom-
plish an induced effect, and evaluate how stable conditions are connected to each
other. The definition of stability is the core filter that defines which states we
want to observe when following a run-to-completion process, i.e., the run trig-
gered by a stimulus under the assumption that the inputs remain stationary. In
practice, several definitions of stability are necessary, each of them corresponding
to a different level of abstraction.

An additional element of the desired abstraction is that relevant properties
regard particular evaluations of the system. We consider a defined abstract space
which intuitively holds the observable evaluations on the system, on which we
will project the concrete states.

In this section we describe a general framework for Abstraction Modulo Sta-
bility, which is parametric with respect to the abstract domain and the definition
of stability. The result will be a finite state system which simulates the original
model, by preserving only the stable way-points on the abstract domain, and by
skipping the transient (i.e., unstable and unobservable) states.

Finally, we define how the obtained abstract automata can be enriched with
guards and effects for each transition.

Example 1. Consider as running example the timed transition system S shown
in the right hand side of Fig. 1 which models a tank receiving a constant incoming
flow of water, with an automatic safety valve.

S has a clock variable c which monitors the velocity of filling and emptying
processes, and reads an input boolean variable in.flow. The status of this variable
is controlled by the environment E , shown in the left hand side of the figure. In the
transition relation of E , the variables in Σ encode the labels for the stimuli, which
are variations of the input variable in.flow. In particular, if Σ = τ , then in.flow is
unchanged, and we say that the system S is not receiving any stimulus. S reacts
accordingly to the updated in.flow′. The discrete transitions of S are labeled
with guards and with resetting assignments on the clock variable (in the form
[guards]/resets). The system starts in the Empty location. A discrete transition
reacts to a true in.flow jumping in Filling and resetting c′ := 0. The invariant c ≤
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M S

TransS(V, in.flow′, V ′)

E

TransE(in.flow, Σ, in.flow′)

Σ = τ → (in.flow′ = in.flow)
Σ = open → in.flow′

Σ = close → ¬in.flow′
Empty

Filling
c ≤ 10

Warning, urg

Full

Emptying
c ≤ 2

[in.flow′]
/ c′ := 0

[in.flow′]
[c = 10]

[in.flow′]
/ c′ := 0

[¬in.flow′]
/ c′ := 0

[¬in.flow′]
[c = 2]

/ c′ := 0
[in.flow′]

/ c′ := 0
[¬in.flow′]

Fig. 1. A timed transition system representing a tank of water.

10 of Filling forces the system to transit to a Warning location after 10 time units,
corresponding to the time needed to reach a critical level. Warning is urgent: as
soon as S reaches this state, it is forced to take the next discrete transition. The
urgency of location Warning models the causality relation between the evaluation
on the level of water and the instantaneous opening of a safety valve. Due to
the latter, in location Full the system dumps all the incoming water and keeps
the level of water stable. If the input is closed, S transits in Emptying. In this
condition, water is discharged faster: after 2 time units the system is again in
Empty. Transitions between Filling and Emptying describe the system’s reaction
to a change of the input while in charging/discharging process.

We consider as predicates of interest exactly the five locations of the system.
The stability abstraction of the composed system is meant to represent the stable
conditions reached after the triggering events defined by Σ.

3.2 Abstraction Modulo Stability

Consider a symbolic timed transition system M = 〈X,C,Σ, Init, Invar,Trans〉
whose discrete transitions are labeled by assignments to Σ representing stim-
uli. A stimulus corresponds to a variation of some variables I ⊆ V which we
call input variables. Namely, we can picture M as a closed system partitioned
into an environment E which changes the variables I, and a open system S
which reads the conditions of the updated variables I and reacts accordingly:
Trans(X,Σ,X ′) = TransE(I,Σ, I ′) ∧ TransS(V, I ′, V ′), with V = X \ I.

In particular, we assume a distinguished assignment τ to the labels Σ, cor-
responding to the absence of stimuli: TransE [Σ/τ ] = (I ↔ I ′). The transition
labeled with τ is the silent or internal transition. It corresponds to the discrete
changes which keep the inputs stationary (i.e., unchanged) and the timed tran-
sitions. We write Mτ for the restriction of M which evolves only with the silent
transition τ , i.e., under the assumption that no external interrupting action is
performed on S, so that I ↔ I ′ is entailed by the transition relation. We assume
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that M is never blocked waiting for an external action: this makes Mτ always
responsive to τ transition. Moreover, we assume that Zeno behaviors are not
introduced by this restriction.

We define a framework for abstracting M parametric on an abstract domain
Φ and a stability definition σ.

Abstract Domain. Between the variables of the system M, consider a set
of boolean variables P ⊆ X representing important predicates. The abstract
domain Φ is the domain of the boolean combinations of P variables.

Stability Definition. Let σ(X) be a CTL+P formula providing a stability crite-
rion.

Definition 1 (σ-Stability). A concrete state s with history h = (s0, . . . , s) is
σ-stable if and only if

Mτ , h |= σ.

Note that the stability is evaluated in Mτ , i.e. under the assumption that the
inputs are stationary: at the reception of an external stimulus, a σ-stable might
move to a new concrete state which does not satisfy σ. We say that a state s is
σ-stable in a region p ∈ Φ if it is σ-stable and s |= p.

The states for which Mτ , (s0, . . . , s) �|= σ, are said σ-unstable. These states
might be transient during a convergence process which leads to the next stable
state. In the following we will omit the prefix σ when clear from context.

Definition 2 (Abstraction Modulo σ-Stability). Given a concrete system
M = 〈X,C,Σ, Init, Invar,Trans〉, with P ⊆ X boolean variables, the abstraction
modulo σ-stability of M is a finite state automaton Aσ = 〈Φ, 2Σ , Initσ,Transσ〉.
For each p0 ∈ Φ, p0 |= Initσ if and only if there exists a state s0 ∈ S such that
s0 |= Init, and with h0 = (s0)

Mτ , h0 |= E(¬σ U (σ ∧ p0)).

For each p1, p2 ∈ Φ, � ∈ 2Σ, the triple (p1, �, p2) |= Transσ if and only if there
exist states s0, s1, s2 ∈ S and histories h1 = (s0, . . . , s1), h2 = (s2) such that
(s1, �, s2) |= Trans, and such that

Mτ , h1 |= σ ∧ p1, Mτ , h2 |= E(¬σ U (σ ∧ p2)).

Abstract automaton Aσ simulates with a single abstract transition a run of the
concrete system M that connects two σ-stable states with a single event and
possibly multiple steps of internal τ transitions. We call such convergence process
a run-to-completion triggered by the initial event.

Observe that the abstraction is led by the definition of σ-stability. It preserves
only the abstract regions in which there is a σ-stable state. The transient states
are not exposed, hence disregarding also the behaviors of M in which a new
external stimuli interrupts a convergence still in progress. In other words, it
represents the effects of stimuli accepted only in stable conditions.

In this way, Aσ satisfies invariant properties that would have been violated
in σ-unstable states, transient along an internal run-to-completion.
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Reachability-Aware Abstraction. Abstractions modulo stability can be tightened
by considering only concrete reachable states in M. In fact, in the setting of
reverse engineering, considering unreachable states may result in an abstraction
that includes impossible behaviors that have no counterpart in the concrete
space. This is done by enforcing that the first state of h1 in Definition 2 to
be reachable in M. This is an orthogonal option to the choice of the stability
definition σ.

3.3 Instantiating the Framework

The level of abstraction of Aσ, i.e., the disregarded behaviors, is directly induced
by the chosen definition of σ. Its adequacy depends on both the application
domain and the objective of the analysis. We now explore some possibilities that
we consider relevant in practice.

Predicate Abstraction. Firstly, we show that the Abstraction Modulo Stability
framework is able to cover the known predicate abstraction [11,14]. With a trivial
stability condition

σ1
.= �,

every concrete state s is stable and is projected in the abstract region it belongs
to (p = ∃(X \ P ) . s). In this way, all concrete transitions (including the timed
ones) are reflected in the corresponding Aσ1 .

Non-urgent Abstraction. Urgent states are the ones in which time cannot elapse,
and are forced to transit with a discrete transition. They are usually exploited
to decompose a complex action made of multiple steps and to faithfully model
the causality along a cyclical chain of events. Unfortunately, by construction,
urgent states introduce transient conditions which may be physically irrelevant.
In practice, in the analysis of the system’s behaviors, one may want to disregard
the intermediate steps of a complex instantaneous action.

To this aim, we apply the Abstraction Modulo Stability framework and keep
only the states in which time can elapse for an (arbitrarily small) time bound T .

σ2(X) .= ¬urg .

The obtained abstract automaton Aσ2 has transitions that correspond to
instantaneous run-to-completion processes, skipping urgent states until time is
allowed to elapse.

Example 2. On the left hand side of Fig. 2 we show the abstraction of the tank
system obtained using σ1. An abstract transition connects two predicates (recall
that in this example predicates correspond to concrete locations) if they are
connected in S, by either a discrete or a timed transition.

On the right hand side of Fig. 2 we show the abstraction obtained using σ2.
With respect to Aσ1 , here location Warning is missing, since time cannot elapse
in it, and an abstract transition connects directly Filling to Full.
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(Aσ1)

E

Fing W

FEing

τ ττ

τ

open, [in.f]

τ

τ

close
[¬in.f]

τ

close
[¬in.f]

open
[in.f]

(Aσ2)

E

Fing

FEing

τ ττ

τ

open, [in.f] τ

close
[¬in.f]

τ

close
[¬in.f]

open
[in.f]

Fig. 2. Abstractions modulo σ1 and σ2 on the tank running example.

Eq-predicate Abstractions. Let Eq(P ) be a formula expressing implicitly that the
interpretations of the abstract predicates are not changing during a transition
(either a discrete or a timed step).

We now address the intuitive definition: “a stable state is associated with
behaviors that preserve the abstract predicates for enough time, i.e., if the sys-
tem is untouched, then the predicates do not change value for a sufficient time
interval”. One can choose to measure the permanence of s in p ∈ Φ in terms of
number of steps (e.g., at least K concrete steps, with K ∈ N+), or in terms of
continuous-time (e.g., for at least T time, with T ∈ R+), or both.

This intuitive definition can be interpreted both backward and forward. In
this paragraph we illustrate the backward perspective.

Consider the doubly bounded definition

σT,K
3 (X) .= H>T,>KEq(P ),

where: Mτ , h |= σT,K
3 , if and only if h = (s0 . . . si), with i ≥ K and for some

p ∈ 2P (
∀j ∈ [(i − K), i] : sj |= p ∧
si.time − si−K .time > T

)
.

Such characterization of stability captures the states that have been in the same
predicate assignment for at least K steps and at least T time has elapsed in
such frame. Several variants of this definition are possible, e.g. by using only one
bound.

This definition is referred to as backward since we consider the history of the
system: a stable state has a past trajectory that remained in the same abstract
region for enough time/steps. It is practically relevant in contexts where it is
useful to highlight the dwell time of the system in a given condition. The only
visible behaviors are the ones that were exposed for sufficient time/steps.

It can be easily seen that if a history h satisfies σT2,K
3 , then it also satisfies

σT1,K
3 , with T1 ≤ T2.

Notably, for the instantiations of σ3 with K = 1, a state is stable if it has
just finished a timed transition elapsing at least T time. In the following, we
omit the superscript K from σT,K

3 when K = 1. We have that if a history h
satisfies σT

3 , then it also satisfies σ2. Namely, while every urgent state (i.e., a
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(AσT=7
3

)

E

Fing

F
τ τ

τ

open, [in.f]
close,

[¬in.f]

τ

close, [¬in.f]

(Aσ4)

E F
τ τ

open, [in.f]

close, [¬in.f]

Fig. 3. Abstractions modulo σT=7
3 and σ4 on the tank running example.

transient state for σ2) is transient also for σT
3 , for σT

3 also become transient the
non-urgent states that are accidentally traversed in 0 time, for example because
an exiting discrete transition is immediately enabled.

Future Eq-predicate Abstractions. In contrast to the backward evaluation of σ3,
one can think of assessing stability forward, by looking at the future(s)2 of the
state. A possible definition in this perspective would be

σ4(X) .= AGEq(P ),

asking that, as long as only τ transitions are taken, the system will never change
the evaluation of predicates. Namely, once a state is σ4-stable, it can change the
predicates only with an external event, and the abstract states in Aσ4 are closed
under τ transitions. This is similar in spirit to the notion of P -stable abstraction
of [5], with the difference that in the latter arbitrary regions are considered.

Within this perspective, alternative definitions can be obtained by inter-
changing the existential/universal path quantifiers (e.g., EGEq(P ) characterizes
a state for which there exists a future that never changes the predicate evalu-
ations), or by bounding the “globally” operator (e.g., AG>KEq(P ) captures a
state which is guaranteed to expose the same evaluations of predicates in the next
K steps). Observe that all these variants would assess σ-stability of a state before
it has actually proven to expose the same predicates for enough time/steps.

Example 3. On the left hand side of Fig. 2 we show the abstraction obtained
with σT,K

3 definition, using T = 7 and K = 1. State Emptying is unstable, since
time cannot elapse in it more than T time: namely, from Full, at the reception
of the stimulus which opens in.flow, all the τ -paths lead to Empty in less than T
time. On the other hand, Fing is kept, since the system may stay in this location
for enough time to be considered relevant.

On the right hand side of Fig. 2 we show the abstraction obtained with σ4.
Here, the stable states are only Empty and Full: the others are abstracted since
they are not invariant for the τ internal transition. Each external event directly
leads to the end of a timed process which converges in the next stable state. Note
that in this setting, an abstract transition labeled with τ can only be self loops.
2 Note that, in contrast to the backward case where the past is unique, in the forward

case we adopt a branching time view with multiple futures.
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Here, Aσ4 corresponds to the P -stable abstraction because the chosen abstract
domain Φ is able to express the “minimally stable” regions [5] of M.

Observe that Aσ4 would be also obtained by increasing the time bound of
σT
3 , e.g., with T = 15.

As the examples show, different stability definitions induce abstract automata
with different numbers of states and transitions. The following proposition states
what is the effect on the abstract automata of making stricter the stability
definition. Let us write p1

�−→σ p2 meaning that (p1, �, p2) |= Transσ in Aσ.

Proposition 1. Let σ and σ′ be two stability definitions such that every his-
tory that is σ-stable, is also σ′-stable, and let Aσ and Aσ′ be the corresponding
abstractions modulo stability of the same concrete model M. Then, Aσ weakly
simulates Aσ′ .

Proof. By definition, if p1
�−→σ p2, then there exists (s1, �, s2) |= Trans with (1)

Mτ , h1 |= σ ∧ p1, and (2) Mτ , h2 |= E(¬σ U (σ ∧ p2), with h1 = (s0 . . . , s1) and
h2 = (s2). Since every σ-stable history is also σ′-stable, from (1) we obtain that
Mτ , h1 |= σ′ ∧ p1, and from (2) we derive

Mτ , h2 |= EF(σ ∧ p2) =⇒ Mτ , h2 |= EF(σ′ ∧ p2)
=⇒ Mτ , h2 |= E(¬σ′ U (σ′EX(¬σ′... U (σ′ ∧ p2)...)))

Hence, p1
�−→σ′

τ−→∗
σ′ p2 and Aσ � Aσ′ .

Corollary 1. For every bounds T1 ≤ T2 ∈ R+

A
σ

T2
3

� A
σ

T1
3

� Aσ2 � Aσ1

3.4 Extending with Guards and Effects

Abstract transitions in Aσ are labeled with the stimulus that has triggered the
abstracted run-to-completion process. Recall that a stimulus � ∈ 2Σ is connected
to a (possibly null) variation of the inputs I by TransE(I,Σ, I ′). A guard for an
abstract transition (p1, �, p2) is a formula on I ′ variables entailed by TransE [Σ/�]
which describes the configurations of inputs that, starting from p1 with event
�, lead to p2. In order to enrich the description of the effects of an abstract
transition, we also consider a subset of state variables O ⊆ V , called output
variables. Observe that an abstract transition may be witnessed by multiple
concrete paths, each with its own configuration of inputs and outputs. Hence,
we can keep track of a precise correlation between guards and effects with a
unique relational formula on I and O variables. This formula is obtained as a
disjunction of all the configurations of inputs and outputs in the concrete states
accomplishing stability in p2 (since the configuration of I set by the stimulus is
preserved by τ along the run-to-completion process).

Example 4. The stability abstractions shown in Figs. 2 and 3 are equipped with
guard constraints, as evaluations on the original input variable in.flow, (shown
in square brackets near the label of the stimuli).
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4 Algorithms for Stability Abstractions

In order to build the abstract automaton structure we have to check whether
there exists a (reachable) σ-stable state in p1, with (s1, �, s2) |= Trans and
Mτ , s2 |= E(¬σ U (σ ∧ p2)), for every pair (p1, p2) ∈ Φ × Φ. Reachability
analysis and (C/)LTL model checking for infinite state systems are undecidable
problems. The work in [5] computes overapproximations of the regions that are
invariant for silent transitions (i.e., addresses an unbounded stability criterion
AGφ), exploiting the abstract interpretation framework. This approach also over-
approximates multiple stable targets that may be given by the non-determinism
of the concrete system.

Here, instead, we deal precisely with the non-determinism of the underlying
concrete system by collecting information about actual, visible consequences of
an action, by focusing on bounded stability definitions. In fact, we consider sta-
bility criteria that do not require fixpoint computations in the concrete system,
and we under-approximate the reachability analysis fixing a bound for unstable
paths. Namely, our algorithm follows an iterative deepening approach, which
considers progressively longer unstable run-to-completion paths, seeking for the
next stable condition.

Intuitively we search for concrete witnesses for an abstract transition
(p1, �, p2) by searching for a concrete path connecting a concrete σ-stable state
s1 in p1 and a σ-stable state in p2, with a bounded reachability analysis from
s1.

Notice that the algorithm builds a symbolic characterization for the stability
automaton. In fact, instead of enumerating all (p1, p2) ∈ Φ × Φ and check if
they are connected by some concrete path, we incrementally build a formula
characterizing all the paths of Mτ connecting two σ-stable states. Then, we
project such formula on the P variables, hence obtaining symbolically all the
abstract transitions having a witness of that length. This intuition is similar
to [15] to efficiently compute predicate abstractions.

Moreover, having a formula representing finite paths of Mτ connecting two
σ-stable states, we can extract guards and effects with a projection on I and O
variables. Namely, while checking the existence of an abstract transition, we also
synthesize the formula on I and O annotating it.

A significant characteristic of our approach, also with respect to the classical
instantiation of predicate abstraction, is that we refine the abstract transitions
by forcing the concrete states to be reachable from the initial condition.

In the following we describe the general algorithm for computing abstractions
parametric on the stability definition σ, and then show how the criteria proposed
in Sect. 3.3 can be actually passed as parameter.

4.1 Symbolic Algorithm for Bounded Stability

Consider the symbolic encoding of automaton M = 〈X,C,Σ, Init, Invar,
Trans〉,3 and a classification of the variables in X distinguishing P boolean pred-
icates variables, I input variables, O output variables.
3 For exposition purposes, let Trans entails both Invar and Invar′.
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We address the computation of the formulae Initσ(P ) and Transσ(P, I,
O, P ′), for a stability definition provided as a formula σ(X0, . . . , Xn) with n ∈ N.

The algorithm performs a reachability analysis based on two bounds:

– U ∈ N, as the bound for the length for unstable paths.
– L ∈ N, with L ≥ n + 1, as the bound for the length of the run witnessing an

abstract transition, starting from the initial state, used for the reachability-
aware refinement.

Pseudocode 1. Reachability-aware symbolic computation of the abstract tran-
sition relation Transσ

1: function extract-abstract-trans(Init, Trans)
2: Transσ := ⊥;
3: S := new solver();
4: S.assert(Init(X0));
5: for all j ∈ [0, L) do
6: S.assert(Trans(Xj , Σj , Xj+1));
7: if j < n + 1 then continue;

8: S.push();
9: S.assert(σ(Xj−n, . . . , Xj)); � stable slot at j

10: for all i ∈ reversed[j − 1 − U, j) do
11: if i + 1 < j then
12: S.assert(Ii+1 = Ii+2 ∧ ¬σ(Xi+1−n, . . . , Xi+1)); � unstable path

13: S.push();
14: S.assert(σ(Xi−n, . . . , Xi) ∧ ∧

i−n≤h<i Ih = Ih+1); � stable slot at i

15: S.assert(¬Transσ[P/Pi, I/Ij , O/Oj , P
′/Pj ]);

16: Trans
(i,j)
σ ← S.project-on(Pi, Ij , Oj , Pj);

17: Transσ ← Transσ ∨ Trans
(i,j)
σ [Pi/P, Ij/I, Oj/O, Pj/P ′];

18: S.pop();

19: S.pop();
return Transσ

Computation of Transσ. Pseudocode 1 shows the algorithm for extraction of the
transition relation Transσ. It builds a formula

Init(X0) ∧
∧

0≤h≤j

Trans(Xh, Xh+1) ∧

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(Xi−n, ..., Xi) ∧
∧

i−n≤h<i

Ih = Ih+1 ∧
∧

i<h<j

(Ih = Ih+1 ∧ ¬σ(Xh−n, ..., Xh)) ∧

σ(Xj−n, ..., Xj)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for each i, j with 0 ≤ j − i ≤ U and j < L. The procedure exploits the incre-
mentality of the SMT solvers which organize assertions in a stack: the push/pop
interface allows the addition of layers, in which to insert new formulae with the
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assert primitive. In this way, we can progressively build the path and avoid its
recomputation for every pair i, j. Namely, for each j < L, firstly we build the
path until j (line 6) and assert σ-stability in j (line 9). Then we progressively
try i going backward (in order to better exploit incrementality), constrain the I
variables to be unchanged, and σ-unstability (lines 11–12).

Function S.project-on() (line 16) performs an existential quantification of
the formula currently present in the solver stack. We preserve variables Pi and Pj ,
which characterize the two stable states connected by the transition. Variables
Ij and Oj are also preserved: in this way, we extract the guards and the effects
formulae directly within the building of the abstract transition. Notice that, due
to the input stability hypothesis preserved during the unstable path, the input
configuration read in j is the same read immediately following the external event
in i + 1.

Every found contribute Trans(i,j)σ is then merged in a single Transσ, after
substitution of the variables in P, I,O, P ′. Observe that an important optimiza-
tion is to block the negation of the already computed formula Transσ (shifted
in the current i, j indices) before each projection (line 15), in order to avoid
recomputing the same transitions.

Reachability-Awareness. A reachability-unaware version would drop the first
part of the formula characterizing the path from 0 to i − n.

The described algorithm is reachability-aware, meaning that every considered
stable state is, by construction, reachable from the initial condition Init. This is
important to extract actually concretizable behaviors, and is a main difference
with respect to the classical predicate abstraction technique: it is well known that
mere the projection on the boolean predicates of the single transition relation
may introduce several spurious behaviors.

Note that the reachability-aware improvement is based on concrete reacha-
bility. In contrast, the algorithm of [5], exploits abstract reachability until fix-
point in the abstract automaton, possibly incurring in further overapproxima-
tions induced by the use of convergence accelerators.

Computation of Initσ. The algorithm for the extraction of the initial state Initσ

is similar: it builds a formula

Init(X0) ∧
∧

0≤h≤i

(Trans(Xh,Xh+1) ∧ Ih = Ih+1) ∧ σ(Xi−n, ...,Xi)

for every i ≤ U . Initσ is the collection of the contributes Init(i)σ , obtained by
fixing a stable slot in the last position i and projecting on Pi variables.

4.2 Instantiating the Algorithm

The bounded stability definitions presented in Sect. 3 can be unrolled and
expressed in the form σ(X0, . . . , Xn)
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Predicate Abstraction. σ1(X0) = � trivially needs only the current variables.
Observe that in this case we can use a U = 1 bound, since the unstability
constraint is always unsatisfiable.

Non-urgent Abstraction. Having a classification of urgent conditions, also
σ2(X0) = ¬urg0 can be established looking only at the current variables (it
only needs n = 0).

Eq-predicate Abstraction. More generally, given K and T bounds, we encode
that the abstract region has not changed for the last K steps and that at least
T time has elapsed using n = K and

σT,K
3 (X0 . . . XK) =

∧
h<K

(Ph = Ph+1) ∧ (time0 + T < timeK).

5 Experimental Evaluation

We evaluate the applicability and the adequacy of stability abstractions for the
reverse engineering of real-world Relay-based Railway Interlocking Systems.

Relay-Based Railway Interlocking Systems (RRIS). RRIS are complex electro-
mechanical circuits used for the control stations and train traffic. Such systems
receive stimuli from an external environment, including both human operators
(e.g., performing actions on buttons) and physical entities (e.g., a train passing
on some sensors). In response, they control railway elements, like signaling lights
or railway switches. Internally, they use relays to propagate signals: relays are
electro-mechanical components which, when activated, change the position of an
associated contact after a (possibly null) delay.

The controlling logic implemented by RRIS is hidden by complex legacy
internal optimizations performed over the years by numerous electro-mechanical
engineers. For this reason, it is hard to understand their high-level behavior and
highlight the connections between stimuli and observable railway properties.

The experimental evaluation is based on real-world RRIS schematics that are
intended to control level crossing and shunting routes. Using the tool norma [2],
the considered RRIS have been modeled and automatically converted in timed
transition systems in the syntax of Timed nuXmv [7]. The obtained models
involve several real-valued variables (modeling voltages and currents in the cir-
cuits), changing accordingly to the configuration of the boolean variables (mod-
eling the switches of the circuit). The discrete state changes when an external
event updates the position of a switch, or as a consequence of the activation of an
internal relay. Hence, these systems react to an external variation with a chain of
internal transitions. The duration of the triggered run-to-completion process is
important: urgent states are widely used to model the causality relation between
the activation of an instantaneous relay and the action performed on the associ-
ated switch; timed relays may impose a low delay, so that the internal response
is actually very fast and almost non observable.
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Table 1. Result of the abstraction of routesN RRIS benchmarks with different stability
definitions.

reach. unaware reach. aware

test X I O P Φ σ Aσstates Aσtrans time Aσstates Aσtrans time

routes01 54 2 1 3 8 σ1 8 40 01s 7 13 26s

σ2 4 6 20s 3 4 3m 09s

σ3,T=1 3 4 15s 2 2 1m 57s

σ3,T=7 3 4 15s 2 2 1m 57s

routes02 90 4 2 6 48 σ1 48 768 22s 11 22 1m 02s

σ2 7 13 46s 6 11 6m 16s

σ3,T=1 5 9 38s 4 7 4m 32s

σ3,T=7 5 9 38s 4 7 4m 20s

routes04 166 8 3 12 4096 σ1 – – to 49 97 3h 7m 03s

σ2 29 83 1h 42m 29s 25 48 2h 56m 46s

σ3,T=1 17 52 1h 41m 17s 13 24 2h 42m 04s

σ3,T=7 17 52 1h 41m 10s 13 24 2h 41m 55s

Abstraction Modulo Stability of RRIS. The Timed nuXmv model checker was
used to convert the models produced by norma in untimed transition systems
in SMV. The algorithm presented in Sect. 4 has been implemented using the
pySMT library [10] and the MathSAT5 SMT solver [8]. It requires in input
a classification of the variables X, selecting the predicates P , the inputs I and
the outputs O, which can be directly provided by railway domain experts. We
choose as P the status of some relays or (boolean variables associated with)
linear predicates on the electrical variables, representing, as an example, the
status of a lamp.

Table 1 and 2 report the number of variables X, P , I, O for each bench-
mark. Column Φ reports the size of the resulting abstract domain, obtained by
considering all the consistent combinations of P predicates (with respect to the
invariant of the model).

We show the results of the Abstraction Modulo Stability considering the
stability definitions described in Sect. 3.3, using the algorithm of Sect. 4 with
bounds L = 40 and U = 15. All the experiment ran on a 2.4 GHz CPU, with
time out (to) set to 15 h, and memory limit set to 20 GB.

Columns “Aσstates” and “Aσtrans” hold the number of abstract states and
transitions respectively, computed counting the configurations of the predicate
variables in the abstract automaton Aσ. As stated in Corollary 1, the corre-
sponding abstract automata have progressively less states.

Stability abstractions were used by railway experts from the Italian Railway
Network company (RFI) to understand two main families of legacy RRIS.

Routes. routesN is a RRIS regulating the activation/deactivation of N shunt-
ing routes concurring for the same resources. The implemented logic takes care
of avoiding the simultaneous activation of conflicting routes. In such RRIS
the inputs are the switches controlled by a human operator, attempting to
enable/disable a route; the outputs are the status of some internal entities that
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we want to monitor; the predicates are the status of lamps representing whether
the routes have been registered.

In the routes benchmarks the delays used in the run-to-completion processes
are very small, so that in the abstract automata obtained (Table 1) there is no
difference between σT=1

3 and σT=7
3 (i.e., if a state has stayed in the same predicate

for 1 time unit, then it can also stay there for 7). These abstract automata clearly
highlight what are the consequences of the requests of a human operator with
respect to the active/inactive status of the routes involved. As an example, the
abstraction routes02 (a circuit handling two routes) has only 4 stable states
which show that the routes are incompatible and one of them has priority on
the other, and disregards all the intermediate steps that the concrete system
needs to progressively check the availability of the resources. These steps are
visible with a less strict stability definition, like σ1 or σ2.

Table 1 also evaluates the effectiveness of the reachability refinement. When
dropping the prefix starting from the initial states of the concrete system, the
algorithm would consider several spurious behaviors. Especially in these bench-
marks, the resulting abstract automaton would also show the unreachable states
(e.g., the ones in which two routes are in conflict), therefore reducing the rele-
vance for the reverse engineering purpose. Moreover, the reach.unaware compu-
tation may be harder to compute as it has to explore more transitions and more
models in the guards and effects formulae.

Railway Switch. r-switch is a RRIS modeling a railway switch. It has sev-
eral externally controlled switches and only 4 relevant observations, defining its
abstract state. The schema can be instantiated as nominal (N) or faulty (F), by
injecting faulty behaviors in some physical components. We consider three ver-
sions: r-switch1 interacts with a free environment, showing a wide number of
circuit configurations; r-switch2 and r-switch3, instead, exploit some assump-
tions on the environment and expose less inputs, and, although using different
internal implementations, are supposed to guarantee the same controlling logic.

Table 2 reports the features of the abstract automata obtained for these
benchmarks. Here, during a run-to-completion process, some states dwell in the
same predicate for a time 1 ≤ t ≤ 7, so that are visible in σT=1

3 but skipped by
σT=7
3 when reporting the corresponding abstract transition.

Again, the reach.unaware option reports more transitions. The difference is
especially evident in the nominal versions, as the faulty concrete system already
covers more behaviors. Even when the number of abstract transitions is the
same, the reach.aware option reports more precise guards and effects, i.e., each
annotating formula on I and O has less models.

By looking at the abstract automata, the user could recover what are the
triggering reasons that make the system reach certain states (e.g., the ones that
are shown in r-switch1 and not in r-switch2). Namely, Aσ could highlight the
enabling conditions for certain behaviors, which may apply far from the final
observable consequence and were hard to inspect by hand. In this way, the user
could also collect what assumptions are needed to avoid certain behaviors (e.g.,
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Table 2. Result of the abstraction of r-switch RRIS benchmarks with different sta-
bility definitions.

reach. unaware reach. aware

test X I O P Φ σ Aσstates Aσtrans time Aσstates Aσtrans time

r-switch1-N 128 18 3 4 12 σ1 – – to 12 78 8h 12m

σ2 12 112 4h 12m 12 94 2h 42m

σ3,T=1 12 112 7h 47m 12 86 2h 30m

σ3,T=7 12 112 7h 24m 12 66 2h 07m

r-switch1-F 128 18 3 4 12 σ1 – – to – – to

σ2 – – to 12 112 7h 60m

σ3,T=1 12 112 13h 12m 12 112 5h 24m

σ3,T=7 12 112 14h 05m 12 112 4h 45m

r-switch2-N 127 17 3 4 12 σ1 12 102 8h 18m 12 74 3h 29m

σ2 10 86 1h 56m 10 74 1h 18m

σ3,T=1 10 86 2h 12m 10 66 1h 10m

σ3,T=7 10 86 2h 31m 10 54 58m

r-switch2-F 127 17 3 4 12 σ1 – – to 12 90 10h 34m

σ2 10 86 4h 21m 10 86 2h 42m

σ3,T=1 10 86 4h 30m 10 86 2h 12m

σ3,T=7 10 86 4h 33m 10 86 1h 39m

r-switch3-N 121 16 3 4 12 σ1 12 102 3h 28m 12 74 2h 08m

σ2 10 86 52m 10 74 52m

σ3,T=1 10 86 1h 34m 10 66 51m

σ3,T=7 10 86 1h 32m 10 54 44m

r-switch3-F 121 16 3 4 12 σ1 – – to 12 90 4h 21m

σ2 10 86 2h 46m 10 86 1h 38m

σ3,T=1 10 86 2h 01m 10 86 1h 22m

σ3,T=7 10 86 2h 16m 10 86 1h 24m

in understanding what changes were made from r-switch1 to r-switch2 or
r-switch3 schemas).

Finally, as expected, r-switch2 and r-switch3 have exactly the same
abstract automata for every stability definition and nominal/faulty configura-
tion, since they are two different implementations for the same observable prop-
erties.

P-Stable Abstractions. We also tried the implementation of [5], for approximated
P -stable abstractions (σ4), which uses BDDs and convex polyhedra. On small
handcrafted models like the tank system used as running example we could
run all the approaches and confirm the output automata described in Sect. 3.
Nonetheless, in the analysis of RRIS the approach of [5] turned out to be imprac-
tical, and was unable to deal with any of the considered RRIS models, due to
the high number of variables.

More importantly, in our case studies, σ4 would likely result in abstractions
that are too aggressive, hiding states that are practically interesting, such as
the ones that emerge from the analysis of run-to-completion processes with non
negligible duration.



Abstraction Modulo Stability for Reverse Engineering 487

6 Conclusions

In this paper we presented a framework for the reverse engineering of legacy
systems. Starting from a symbolic timed transition system, the framework sup-
ports the construction of abstractions in the form of state machines with guards
and effects over transitions. The abstractions are parameterized on the notion
of stability. We propose an SMT-based algorithm for abstraction computation,
and we instantiate it over several notions of stability.

The results have been evaluated within an industrial project with the Italian
Railway Network, on reverse-engineering tasks of complex relay-based interlock-
ing circuits. The experimental analysis demonstrated that the approach is prac-
tical, and able to construct abstractions for complex real-world circuits. Taking
reachability into account allowed us to produce tighter, more informative repre-
sentations of the system under inspection. Railway signaling engineers involved
in the project considered the proposed approach adequate in terms of expres-
siveness and able to provide substantial support in understanding the legacy
RRIS.

In the future, we will define an “anytime” version of algorithms, so that the
abstraction can be incrementally visualized as the computation proceeds, and
leverage parallelization to increase the efficiency. Given the positive feedback
from the RFI experts, we plan to integrate the proposed abstraction techniques
abstraction within a RRIS modeling front-end, and to apply them on a larger
set of interlockings.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
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