
RINO: Robust INner and Outer
Approximated Reachability of Neural

Networks Controlled Systems

Eric Goubault(B) and Sylvie Putot

LIX, Ecole Polytechnique, CNRS and Institut
Polytechnique de Paris, 91128 Palaiseau, France

{eric.goubault,sylvie.putot}@polytechnique.edu

Abstract. We present a unified approach, implemented in the RINO
tool, for the computation of inner and outer-approximations of reach-
able sets of discrete-time and continuous-time dynamical systems, pos-
sibly controlled by neural networks with differentiable activation func-
tions. RINO combines a zonotopic set representation with generalized
mean-value AE extensions to compute under and over-approximations
of the robust range of differentiable functions, and applies these tech-
niques to the particular case of learning-enabled dynamical systems.
The AE extensions require an efficient and accurate evaluation of the
function and its Jacobian with respect to the inputs and initial condi-
tions. For continuous-time systems, possibly controlled by neural net-
works, the function to evaluate is the solution of the dynamical system.
It is over-approximated in RINO using Taylor methods in time cou-
pled with a set-based evaluation with zonotopes. We demonstrate the
good performances of RINO compared to state-of-the art tools Verisig
2.0 and ReachNN* on a set of classical benchmark examples of neural
network controlled closed loop systems. For generally comparable preci-
sion to Verisig 2.0 and higher precision than ReachNN*, RINO is always
at least one order of magnitude faster, while also computing the more
involved inner-approximations that the other tools do not compute.

Keywords: Neural networks verification · Reachability analysis ·
Robustness · Inner-approximation

1 Introduction

Over the last few years, neural networks have emerged as an increasingly classical
choice for the control of autonomous systems, in particular due to their properties
as universal function approximators. However, their adoption in safety-critical
systems, the inherent uncertainties from the dynamic environment, and their
sensitivity to adversarial examples make it crucial to establish their safety and
robustness. This verification is challenging because of the complex non-linear
characteristics of neural networks. Recent works come up with some approaches
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and tools to bound the output uncertainty of neural networks with respect to
input perturbations. However, many of them are restricted to the analysis of
networks with ReLU activation functions. Moreover, the approaches considering
general differentiable activation functions and systems with general non linear
dynamics provide over-approximations, which conservatism is difficult to esti-
mate. RINO proposes a scalable and adaptive approach to compute both inner
(or under) and outer (or over) approximations for the closed loop reachabil-
ity problem of neural network controlled systems, with differentiable activation
functions. The outer-approximation allows for property verification, while the
inner-approximation allows for property refutation. Combined, the inner and
outer-approximations allow to assess the conservatism of the approximations.

As the behavior of a neural network controlled closed-loop system relies on
the interaction between the continuous dynamics and the neural network con-
troller, a good precision requires to not only compute the output range but also
describe the input-output mapping for the controller. In this work, we propose to
use a zonotope-based abstraction to compute in a unified way both the reachable
sets of neural networks and dynamical systems. This seamless integration of the
reachability of neural networks and dynamical systems presents the advantage of
a natural propagation of useful correlations through the different components of
the closed loop system, resulting in an efficient and precise approach compared
to many existing works which rely on external reachability tools.

Contributions

– RINO implements all ideas presented in [8–11] for the joint computation of inner
and outer approximations of robustly reachable sets of differentiable nonlin-
ear discrete-time or continuous-time systems (without neural networks in the
loop), possibly with constant delays. These previous works demonstrated the
good scaling properties of our approach on different examples including a full
nonlinear quadcoptor flight model but the tool was never presented as such.

– Additionally, we demonstrate here that an application of these ideas to the
case of neural networks enabled dynamical systems provides very competitive
results for the over-approximation compared to the state of the art (at least
similar precision and one order of magnitude faster) while also providing the
first approach for inner-approximation of the reachable sets of such systems,
which we use to falsify some safety properties.

– Finally, RINO also computes approximations of output ranges that are reach-
able robustly or adversarially with respect to a subset of inputs: while these
robust ranges are mostly used in this work to compute inner-approximations
of joint ranges of state variables instead of projections, we believe this sen-
sitivity information can be a useful tool in the future in particular to assess
global robustness properties of neural networks.

Related Work. The safety verification for DNNs has received considerable atten-
tion recently, with several threads of work being developed. We draw below a
non exhaustive panorama focusing on available tools for reachability analysis of
neural network controlled systems with smooth activation functions.
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Different approaches have been proposed to the reachability analysis closed-
loop systems with neural network controllers, often by a transformation to a
continuous or hybrid system reachability. Sherlock [6] targets both the open-
loop and closed-loop problems with ReLU activation functions, in particular
using the regressive polynomial rule inference approach [5] for the closed-loop,
and Flow* [3] for the reachability of the dynamical system. NNV [24] also targets
both the open loop and closed loop verification problems, with various activa-
tion functions and set representations such as polyhedra or star sets [23], and
different reachability algorithms for dynamical systems relying on CORA [1] and
the MPT toolbox [18]. ReachNN [13] and its successor ReachNN* [7] propose
a reachability analysis based on Bernstein polynomials for closed-loop systems
with general activation functions, also relying on Flow* [3] for the reachabil-
ity of the dynamical system. Verisig [14] handles NNCS with nonlinear plants
controlled by sigmoid-based networks, exploiting the fact that the sigmoid is
the solution to a differential equation to transform the neural network into an
equivalent hybrid system, which is then fed to Flow*. Verisig 2.0 [15] uses pre-
conditioned Taylor Models to propagate reachable sets in neural networks, and
also relies on Flow* for reachability of the hybrid system component.

The very recent works [21] and [12] implemented respectively over JuliaReach
and in POLAR are also closely related to our work. In [21], the authors imple-
ment a bridge between zonotope abstractions and Taylor model abstractions in
order to combine tools analyzing controllers (e.g. using zonotopes like deepZ
[22]) with tools analyzing ordinary differential equations (e.g. Flow* [3]). In [12],
the authors use a polynomial arithmetic made up of a combination of Berstein
polynomials and Taylor models to iteratively overapproximate networks layers,
according to whether the activation function is differentiable or not.

2 Problem Statement and Background

2.1 Robust Reachability of Closed-Loop Dynamical Systems

We consider in this work a closed-loop system consisting of a plant with states
x, modeled as a discrete-time or continuous-time system with time-varying dis-
turbances w and inputs u, where some components of the control inputs can be
the output a neural network h taking x as input. For notation’s simplicity, we
focus on continuous-time systems and define:{

ẋ(t) = f(x(t), u(t), w(t)) if t ≥ 0
x(t) = x0 if t = 0

(1)

where f is a sufficiently smooth function and at least C1, and controls u and
disturbances w are also supposed to be sufficiently smooth Ck for some k ≥ 0
stepwise. This allows discontinuous controls and disturbances, where the discon-
tinuities can only appear at discrete times tj .

The neural network h is a fully-connected feedforward NN with differentiable
activation functions, defined as the composition h(x) = hL ◦ hL−1 ◦ . . . h1(x) of
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L layers where each layer hi(x) = σ(Wix + bi) performs a linear transform
followed by a sigmoid or hyperbolic tangent activation σ. We assume the control
is decomposed as u(t) = (u1(t), u2(t)) where u2(t) is a control input defined in
U2 and u1(t) is the output of the neural network controller. This controller is
executed in a time-triggered fashion with control step T , so that u1(t) = h(x(tk)),
for t ∈ [tk, tk + T ), where tk = kT for positive integers k. System (1) can then
be rewritten as{

ẋ(t) = f(x(t), h(x(tk)), u2(t), w(t)) if t ∈ [tk, tk + T ), tk = kT, k ≥ 0
x(t) = x0 if t = 0

(2)

Let ϕf (t;x0, u2, w) for time t ∈ T denote the time trajectory of (2) with initial
state x(0) = x0, for input signal u2 and disturbance w.

We consider the problem of computing inner and outer-approximations of
robust reachable sets as introduced in [9], defined here as

Rf
AE(t;X0,U2,W) = {x | ∀w ∈ W,∃u2 ∈ U2, ∃x0 ∈ X0, x = ϕf (t;x0, u, w)}

Note that this notion of robust reachability extends the classical notions of mini-
mal and maximal reachability [20]. We use the subscript notation AE to indicate
that the reachable set is minimal with respect to the disturbances w (universal
quantification A) and maximal with respect to the input u2 (existential quan-
tification indicated by E), and that the universal quantification always precedes
the existential quantification.

2.2 Mean-Value Inner and Outer-Approximating Robust Extensions

A classical but often overly conservative way to overapproximate the image of a set
by a real-valued function f : Rm → R is the natural interval extension F : IRm →
IR, IR being the set of intervals with real bounds, which consists in replacing real
operations by their interval counterparts in the expression of the function.

A generally more accurate extension relies on a linearization by the mean-value
theorem. Mean-value extensions can be generalized to compute ranges that are
robust to disturbances, identified as a subset of the input components. Let f be
a continuously differentiable function from R

m to R with input decomposed as
x = (u,w) ∈ (U ,W) ⊆ IR

m. We define the robust range of function f on x,
robust with respect to component w ∈ W, as Rf

AE(U ,W) = {z | ∀w ∈ W, ∃u ∈
U , z = f(u,w)}.

For a continuously differentiable function f : R
m → R

n, we note ∇f =
(∇jfi)ij = ( ∂fi

∂xj
)1≤i≤n,1≤j≤m its Jacobian matrix. We note 〈x, y〉 the scalar

product of vectors x and y, and |x| the absolute value extended componentwise.
For a vector of intervals X = [X ,X ], we note c(X ) = (X + X )/2.0 and r(X ) =
(X − X )/2.0 its center and radius defined componentwise.

Theorem 1. ([8], slightly simplified version of Thm. 2). Let f be a con-
tinuously differentiable function from R

m to R and X = U × W ⊆ IR
m. Let F0,
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∇X
w and ∇X

u be vectors of intervals such that c(X ) ⊆ F0, {|∇wf(u,w)| , (u,w) ∈
X} ⊆ ∇X

w and {|∇uf(u,w)| , (u,w) ∈ X} ⊆ ∇X
u . We have:

[F0 − 〈∇X
u , r(U)〉 + 〈∇X

w , r(W)〉,F0 + 〈∇X
u , r(U)〉 − 〈∇X

w , r(W)〉] ⊆ Rf
AE(U ,W)

Rf
AE(U ,W) ⊆ [F0 − 〈∇X

u , r(U)〉 + 〈∇X
w , r(W)〉,F0 + 〈∇X

u , r(U)〉 − 〈∇X
w , r(W)〉]

Theorem 1 provides inner and outer-approximations of the robust range (or
of the classical range when there is no disturbance component w) of scalar-valued
functions, or of the projections on each component of vector-valued functions,
using bounds on the slopes on the input set. The result is useful to compute a
projected range that is robustly reachable with respect to the disturbances w, or
as a brick in computing an under-approximation of the image of a vector-valued
function, as stated in Theorem 3 in [8].

Note that the accuracy of the mean-value AE extension can be improved
with an evaluation by a quadrature formula ([10], Sect. 4.2). Alternatively, an
order 2 Taylor-based extension ([10], Sect. 3) can be used.

2.3 Reachability of Neural Network Controlled Closed-Loop
Systems

The inner and outer approximations defined in Sect. 2.2 can be computed for
f being a simple function, possibly involving a neural network evaluation, or f
being the function defined by the iterated values of a discrete systems, or finally
f being the solution flow of closed-loop system (2).

In both discrete-time and the continuous-time cases, and whether some neu-
ral network controller is present or not, the evaluation of an outer-approximation
of the image of the solution and its Jacobian with respect to inputs and distur-
bances over sets is needed in order to apply Theorem 1.

In our work and implementation, we advocate the use of a unique abstraction
by affine forms (or zonotopes for the geometric view of a tuple of variables repre-
sented by affine forms) for these sets and these evaluations, including performing
reachability of the neural network controller. This abstraction is very convenient
and versatile to over-approximate any smooth function, providing a good trade-
off between efficiency and precision in most cases (and for more precision, one
can consider extensions with e.g. polynomial zonotopes [2]).

For continuous-time systems, we use Taylor expansions in time of the solution
on a time grid. To build these Taylor expansions, we evaluate function f and its
(Lie) derivatives over affine forms by a combination of automatic differentiation
and numerical evaluation by affine arithmetic, as described in e.g. [9]. The neural
network is seen as a nonlinear function h, composed with f to build function g
for which we compute the solution flow. Theorem 1 is applied to this solution
flow. We build the abstraction of h and thus g by a simple propagation of affine
forms by affine arithmetic in the network: linear transformers are exact, and
we propagate affine forms through the activation functions seen as standard
nonlinear functions relying on the elementary exponential function, tanh(x) =
2/(1 + e−2x) − 1 and sig(x) = 1/(1 + e−x). For differentiating the activation
functions, we use tanh′(x) = 1.0 − tanh(x)2 and sig′(x) = sig(x)(1 − sig(x)).
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3 Implementation

As mentioned in the introduction, RINO implements all ideas presented in [8–11]
for the joint computation of inner and outer approximations of robustly reachable
sets of differentiable nonlinear discrete-time [8,10] or continuous-time systems
[8,9], possibly with constant delays [11]. For experiments with systems without
neural networks, we refer to the results presented in these works, obtained with
a previous version of RINO.

RINO is written in C++. Intervals and zonotopes are used for set represen-
tation: the tool relies on the FILIB++ library [19] for interval computations and
the aaflib library1 for affine arithmetic [4]. Ole Stauning’s FADBAD++ library2

is used for automatic differentiation: its implementation with template enables
us to easily evaluate the differentiation in the set representation of our choice
(affine forms or zonotopes mostly). The tool takes as inputs:

– an open-loop or closed loop system, either discrete time or continuous-time,
which for now is hard-coded in C++,

– an optional neural network, provided to the tool in a format directly inspired
from the format analyzed by Sherlock [6], which can be used as some inputs
of the closed-loop system,

– an optional configuration file to set initial values, input and disturbances
ranges, and some parameter of the analysis (such as time step, order of Taylor
expansion in time)

It computes inner and outer-approximations of the projection on each component
of ranges, as well as joint 2D and 3D inner-approximations (provided as yaml
file and Jupyter/python-produced figures). Additionally to the classical ranges,
RINO computes approximations of output ranges that are reachable robustly
or adversarially with respect to disturbances, specified as a subset of inputs.
In the experiments presented herafter, we consider examples only of classical
reachability, for which comparisons with existing work are available, but the
extension to robust reachability based on our previous work is straightforward.

4 Experiments

For space reasons, we focus here on the main novelty which is the extension
of this previous work to compute under and over-approximations of (robust)
reachable sets of neural network controlled systems (2).

Choice of Tools and Benchmark Examples. We compare RINO against
ReachNN* and Verisig 2.0 that are the most recent fully-fledged reachability
analyzers for neural network based control systems, and for which comparisons
with other tools on classical benchmarks are well documented in e.g. [15]. They
both improve on previous versions, Verisig and ReachNN, and on state of the art
1 http://aaflib.sourceforge.net.
2 http://www.fadbad.com.

http://aaflib.sourceforge.net
http://www.fadbad.com
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tools Sherlock, also based on Flow*, and NNV. As noted in e.g. [15]: “Firstly,
note that Verisig takes significantly more time to compute reachable sets (21
times slower in the case of the B5 benchmark). Furthermore, Verisig is unable
to verify some properties due to increasing error. Note that NNV is unable to
verify any of the properties considered in this paper due to high approximation
error.”. Remark though that there has been some amelioration to the internal
solvers used in NNV which should qualify the latter statement (see e.g. [16]). We
do not compare with the implementation in JuliaReach [21] since, first, timings
are difficult to compare with an interpreted framework, and second, because it
would require mixing several tools together, with many potential combinations.
We try to provide elements of comparison with POLAR [12], but in many ways
the latter addresses a different problem, with the emphasis on being able to
interpret e.g. ReLU activation functions.

Table 1. List of benchmarks (see [15])

Name Dynamics Initial set Horizon Control step

Mountain

Car

ẋ1 = x2

ẋ2 = 0.0015u − 0.0025 cos(3x1)

[ − 0.5,−0.48]

[0, 0.001]
T = 75 1

discrete MC

(stepsize 1)

xn+1
1 = xn

1 + xn
2

xn+1
2 = xn

2 + 0.0015un

−0.0025 cos(3xn
1 )

[ − 0.5,−0.48]

[0, 0.001]
T = 75 1

TORA

ẋ1 = x2

ẋ2 = −x1 + 0.1 ∗ sin(x3)

ẋ3 = x4

ẋ4 = u

[ − 0.77,−0.75]

[ − 0.45,−0.43]

[0.51, 0.54]

[ − 0.3,−0.28]

T = 5 0.1

ACC

ẋ1 = x2, ẋ4 = x5

ẋ2 = x3, ẋ5 = x6

ẋ3 = −4 − 0.0001x2
2 − 2x3

ẋ6 = 2u − 0.0001x2
5 − 2x6

x1 = [90, 91]

x2 = [32, 32.05]

x4 = [10, 11]

x5 = [30, 30.05]

T = 5 0.1

B1

(Ex 1 in [7])

ẋ1 = x2

ẋ2 = ux2
2 − x1

[0.8, 0.9]

[0.5, 0.6]
T = 7 0.2

B2

(Ex 2 in [7])

ẋ1 = x2 − x3
1

ẋ2 = u

[0.7, 0.9]

[0.7, 0.9]
T = 1.8 0.2

B3

(Ex 3 in [7])

ẋ1 = −x1(0.1 + (x1 + x2)2)

ẋ2 = (u+ x1)(0.1 + (x1 + x2)2)

[0.8, 0.9]

[0.4, 0.5]
T = 6 0.1

B4

(Ex 4 in [7])

ẋ1 = −x1 + x2 − x3

ẋ2 = −x1(x3 + 1) − x2

ẋ3 = −x1 + u

[0.25, 0.27]

[0.08, 0.1]

[0.25, 0.27]

T = 1 0.1

B5

(Ex 5 in [7])

ẋ1 = x3
3 − x2

ẋ2 = x3

ẋ3 = u

[0.38, 0.4]

[0.45, 0.47]

[0.25, 0.27]

T = 2 0.2
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We use a large subset (7/10) of the examples from Verisig 2.0 [15], which
are benchmarks used by most of the tools in the field, through e.g. the ARCH
competition [17]. We also consider the same settings in terms of initial sets and
the same time horizon. These are recalled in Table 1.

We indicate some of RINO’s reachability results on these benchmarks in
Table 2, before comparing the tightness and computing times with other tools.

Table 2. RINO’s results for time step 0.05 (except Mountain Car, step 1.)

Name over-approx under-approx t (s) t docker

Mountain Car

sigmoid (2 × 200)

[ − 0.78197,−0.64704]

[ − 0.019387,−0.0093975]
⊥ 31. 40.41

Discrete MC

sigmoid (2 × 200)

[ − 0.8711,−0.68326]

[ − 0.026888,−0.01411]

[ − 0.82466,−0.7297]

[ − 0.023716,−0.017282]
35 19.85

TORA

tanh (3 × 20)

[0.022471, 0.04829]

[ − 0.80790,−0.78039]

[ − 0.37201,−0.3433]

[0.30682, 0.33235]

[0.029133, 0.041776]

[ − 0.8037,−0.78452]

∅
∅

1.6 2.54

ACC

tanh

[229.05, 230.29]

[22.819, 22.868]

[ − 2.0285,−2.0284]

[159.88, 161.02]

[29.893, 30.006]

[ − 0.30836, 0.01398]

[229.05, 230.29]

[22.819, 22.868]

[ − 2.0285,−2.0284]

[160.03, 160.87]

∅
∅

6. 7.65

B1

tanh (3 × 20)

[0.012957, 0.1349]

[0.18089, 0.23235]

∅
∅ 0.7 0,92

B1

sigmoid (3 × 20)

[0.10155, 0.15331]

[0.17188, 0.20041]

[0.12092, 0.13398]

∅ 0.6 0.77

B2

sigmoid (3 × 20)

[ − 0.12356,−0.0811]

[0.16682, 0.26396]
⊥ 0.2 0.21

B3

tanh

[0.2256, 0.25296]

[ − 0.17777,−0.16092]

[0.23507, 0.24352]

∅ 1.3 1.67

B4

tanh

[ − 0.0017942, 0.010039]

[ − 0.03494,−0.02305]

[0.064524, 0.070953]

∅
[ − 0.032405,−0.02557]

∅
0.1 0,098

B5

tanh

[ − 0.42399,−0.38098]

[0.16388, 0.17547]

[ − 0.24869,−0.23363]

⊥ 2.7 3.8

Settings. All tools, Verisig 2.0 and ReachNN* and RINO, were run without
GPU support, under Ubuntu 18.04 docker, on a Mac running Mac OS Big Sur
11.2.3 on a 2.3 GHz Intel Core i9 processor with 16Gb of memory. Verisig 2.0
and ReachNN* were run with the Reproductibility Package of Verisig 2.0 [15].
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For fairness of timing results, we also run RINO with docker, and the running
ratios given in Table 3 are those using these docker versions. RINO was also
run natively on the same Mac. The performance degradation between the two
versions of RINO can be estimated from the full data given in Table 2 from none
to a 40% increase (with one exception at 80%), and most between 20 and 30%.
This is higher than generally observed with docker, but due to the fact that
docker on Macintosh is known to perform badly when it comes to IOs, using
the underlying file system. Therefore, the performance degrades more when the
system is of higher dimension and have more time steps to evaluate, since RINO
logs all estimated ranges for all variables in separate files.

Comparisons Results. We compare in Table 3 the running times of Verisig 2.0,
ReachNN* and RINO, and volumes of their final over-approximations, more
precisely the widths of the projections of each component at final time horizon.

The three tools depend on some parameters, in particular integration time
steps and order of approximation. RINO does not require tuning the integration
time steps and order of Taylor models so much, so we use one fixed time step
of 0.05 for all examples. We use for Verisig 2.0 and ReachNN* the settings of
the CAV Reproductibility package, that we suppose give good results. Verisig
2.0 and ReachNN* actually perform poorly on the same examples with a fixed
time steps of 0.05 s.

We experimented RINO with different time steps. The precision is relatively
stable and does not necessarily improve when decreasing the time step. Indeed,
as already noted [25], the improvement in approximation by Taylor models on
smaller time steps is balanced by the loss of precision due to set-based abstraction
being performed more often. Note also that the analysis time does not depend
linearly on the time step: the control step, which rules the frequency at which the
analysis of the neural net controller has to be performed, is fixed (see Table 1)
and does not depend on the integration time step.

Column 2 in Table 3 describes the relative width of the intervals given by
Verisig 2.0 for each variable at the final time and for each system, with respect
to the one given by RINO. Column 4 is the same, but for ReachNN*. Columns 3
and 5 give the ratio of the analysis time of Verisig 2.0 (respectively ReachNN*),
with respect to the analysis time of RINO.

In all cases, RINO is much faster than both Verisig 2.0 and ReachNN*, by
factors ranging from 13 to 638.5. Moreover, this includes for RINO the time
to compute the inner-approximations that Verisig 2.0 and ReachNN* do not
compute. ReachNN* could not analyze TORA because of lack of memory on
our platform, and timed out on ACC. Finally, interpolating the timings given
in Table 1 of [12], e.g. for B1 (sig), Verisig 2.0 is reported to take 47 s whereas
POLAR is reported to take 20 s on their platform. As Verisig 2.0 took 81.33 s on
our platform, we can infer that RINO is most certainly much faster, with e.g.
3.62 s for B1, than POLAR.

RINO’s precision is of the same order as Verisig 2.0, and always better than
ReachNN* by a factor of about 2 to 10. RINO is in fact even substantially more
precise than Verisig 2.0 in some cases (B1 and B2 in particular).
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Inner-Approximations. Let us take example B1 (with sigmoid-based controller),
and suppose we have a safety property that the value of x1 should never be
bigger than 1. Figure 1a represents in filled blue region the inner-approximation,
as plain black lines the bounds of the outer-approximation, and as purple dots
values actually reached, obtained by trajectories for sample initial conditions
The over-approximation alone does raise a potential alarm with respect to the
unsafe zone (in red), only the inner-approximation actually proves that the safety

Table 3. Precision and running time comparisons RINO [timestep=0.05] vs Verisig
2.0 [time steps of [15]] vs ReachNN* [time steps of [15]]

% width Verisig2 Ratio time % width ReachNN* Ratio time
Example over RINO Verisig2/RINO over RINO ReachNN*/RINO
TORA (tanh) 38,6 Mem full Mem full

TORA (sig) 43,4 Mem full Mem full

ACC (tanh) 500,8 Time out Time out

B1 (tanh) 88,8 85,1

B1 (sig) 105,4 86,8

B2 (sig) 77,6 121,9

B3 (tanh) 57,5 81,9

B3 (sig) 55,2 76,4

B4 (tanh) 187,9 214,6

B4 (sig) 154,4 173,5

B5 (tanh) 365,3 8,9

B5 (sig) 360,2 9,0
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property is falsified. We also note on this picture that the over-approximation
is very tight, given that samples give almost indistinguishable ranges. Figure 1b
represents the inner and outer approximations of joint range (x1, x2) as well as
estimation by sampling. As shown by the samples, (x1, x2) becomes almost a
1D curve after some time, making inner approximation extremely difficult to
estimate. Indeed our inner-approximation in orange is fairly precise for the first
time steps, and the corresponding inner skewed boxes are rotated to match the
curvy, 1D, shape of the samples. The green boxes printed on the picture are
the box enclosure of the actually computed outer-approximation. Note that the
inner-approximation of the projections on each component can be non-empty
while having an empty joint inner range, as some approximation is committed
in the joint inner range computation (as a skewed box) from the projected ranges.

Fig. 1. B1: inner-approximation, outer-approximation and sampling (purple dots)
(Color figure online)

5 Conclusion and Future Work

We presented the RINO tool, dedicated to the reachability analysis of dynam-
ical systems, possibly controlled by neural networks. While providing accurate
results, RINO is significantly faster than other state-of-the-art tools, which is
key in view to address real-life reachability problems, where the systems and
neural networks can be of high dimension. Moreover, as far as we are aware, it
is the only existing tool to propose inner-approximations of the reachable sets
of such systems. We currently handle only differentiable activation functions.
We are thinking of some abstractions to handle ReLU activations as well, even
though the approach is less natural in that case as it will introduce conservatism.
We also plan to improve the accuracy of our current results by further special-
izing this work to exploit the structure of neural network, such as monotonicity
of activation functions. Finally, robustness is a crucial property for neural net-
works enabled systems, and we plan to explore the possibilities offered by the
computation of robust reachable sets.
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