
Abstraction-Refinement for Hierarchical
Probabilistic Models

Sebastian Junges1(B) and Matthijs T. J. Spaan2

1 Radboud University, Nijmegen, The Netherlands
sjunges@cs.ru.nl

2 Delft University of Technology, Delft, The Netherlands

Abstract. Markov decision processes are a ubiquitous formalism for
modelling systems with non-deterministic and probabilistic behavior.
Verification of these models is subject to the famous state space explosion
problem. We alleviate this problem by exploiting a hierarchical structure
with repetitive parts. This structure not only occurs naturally in robotics,
but also in probabilistic programs describing, e.g., network protocols.
Such programs often repeatedly call a subroutine with similar behavior.
In this paper, we focus on a local case, in which the subroutines have
a limited effect on the overall system state. The key ideas to accelerate
analysis of such programs are (1) to treat the behavior of the subroutine
as uncertain and only remove this uncertainty by a detailed analysis if
needed, and (2) to abstract similar subroutines into a parametric tem-
plate, and then analyse this template. These two ideas are embedded into
an abstraction-refinement loop that analyses hierarchical MDPs. A pro-
totypical implementation shows the efficacy of the approach.

1 Introduction

Markov Decision Processes (MDPs) are the model for sequential decision making
under probabilistic uncertainty, and as such are central in modelling of random-
ized algorithms, distributed systems with lossy channels, or as the underlying
formalism in reinforcement learning. A key question in the verification of MDPs
is: What is the maximal probability that some error state is reached? In this ques-
tion, one accounts for the probabilistic nature as well as the inherit (potentially
adversarial) nondeterminism of the system. Various state-of-the-art probabilis-
tic model checkers, such as Storm [20], Prism [27] and Modest [17] implement
a variety of methods that automatically compute such maximal probabilities.
Most widespread are variations of value-iteration that iteratively apply a tran-
sition function to converge towards the requested probability.

Hierarchical Structure. Despite various successes, the state space explosion
remains a significant challenge to the model-based analysis of MDPs. To over-
come this challenge, some approaches exploit symmetries or the parallel composi-
tion of a system. Other approaches exploit that typically not all paths through a
system are equally likely and thus aim to find the essential or critical subsystem.
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 102–123, 2022.
https://doi.org/10.1007/978-3-031-13185-1_6

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_6&domain=pdf
http://orcid.org/0000-0003-0978-8466
https://doi.org/10.1007/978-3-031-13185-1_6

Abstraction-Refinement for Hierarchical Probabilistic Models 103

p = 0.5; time = 0; N=3;

repeat N times {

time += passToken(p);

if flip (0.5) {p = 0.8p}

else {p = 1.25p}

}; return time

(a) Repeated invocation of passToken(p)

passToken(p):

t = 1;

while (not flip(p)) {t++};

t++;

while (not flip(p)) {t++};

return t

(b) passToken(p): Pass succeed twice.

Fig. 1. Simplified example for sending a token over an unreliable channel.

While we exploit related ideas—a detailed comparison is given in the related
work, cf. Sect. 7—our approach is fundamentally different and instead exploits a
hierarchical decomposition natural in many system models. This decomposition
is captured naturally by probabilistic programs (over discrete bounded variables)
with non-nested subroutines, where some subroutines are called repeatedly with
similar arguments. Figure 1 shows an example in which we demonstrate our app-
roach in Sect. 2. More generally, we are interested in systems with an overall task
that is achieved by a suitable combination of a limited number of sub-tasks. Such
a setting occurs naturally, e.g. (i) in robotics, when multiple rooms in a floor
need to be inspected, or (ii) in routing, when multiple packets need to be routed
sequentially. The underlying problem structure is also exploited in hierarchical
planning [5,19,30], where the goal is to find a good but not necessarily optimal
policy (and induced value). We combine insights from hierarchical planning with
an abstraction-refinement perspective and then construct an anytime algorithm
with strict guarantees on the result.

Local Model-Based Analysis. An adequate operational model for the model-based
analysis of hierarchical systems is given by a hierarchical MDP, where the state
space of a hierarchical MDP can be partitioned into subMDPs. Abstractly, one
can represent a hierarchical MDP by the collection of subMDPs and a macro-
level MDP [19] where the probabilities of outgoing transitions at a state are
described by a corresponding subMDP, cf. Sect. 3.2. In this paper, we focus on
a hierarchical MDPs where the policies that are optimal in (only) a subMDP
are optimal (partial) policies in the hierarchical MDP. More intuitively, we can
solve the subMDPs individually, i.e., the solution (w.r.t. the fixed measure) for
the subMDP is part of the globally optimal solution. While this assumption is
restrictive, it is satisfied in various interesting settings. The assumption allows
us to analyse subMDPs out-of-context, i.e., we can first analyse the subMDPs
and then construct the correct macro-MDP, i.e., extract transition probabilities
and rewards from the subMDP analysis. This approach already improves the
maximal memory consumption and allows for additional speed-ups if the same
subMDP occurs multiple times.

Epistemic Uncertainty During Computation. The key insight to accelerate the
outlined approach further is to avoid analysing all subMDPs precisely, while still
providing sound guarantees on the obtained results. Therefore, consider that even

104 S. Junges and M. T. J. Spaan

before analysing the subMDPs we can analyse an uncertain variant of the macro-
level MDP where we do not yet know the associated transition probabilities and
rewards but instead only know intervals. We may then do two things: First,
we can identify the subMDPs which are most critical, i.e., where replacing the
interval by a concrete value yields most benefits. Second, and more importantly,
we can analyse a set of subMDPs and refine the associated uncertainties, i.e.,
tighten the associated intervals. To support the analysis of sets of subMDPs,
we observe that often, these subMDPs are slight variations. In this paper, we
represent them as parameterised instances of a particular templates that we
define using parametric MDPs (pMDPs). The resulting intervals can be used to
create an (interval-valued version of the) macro-level MDP. Analysing this gives
bounds on the expected reward in the hierarchical MDP, and the bounds can be
refined by analysing the subMDPs more precisely.

Contributions. In a nutshell, we explicitly allow for uncertainty during the solv-
ing process to speed up the analysis of hierarchical MDPs. Concretely, we con-
tribute a scalable approach to solve hierarchical MDPs with many different sub-
MDPs, in particular when these subMDPs are similar, but not the same. The
approach resembles an abstraction-refinement loop where we abstract the hier-
archical MDP in two layers and then refine the analysis of the lower layer to
get a refined representation of the complete MDP. In every step, we can pro-
vide absolute error bounds. Our approach interprets the different subMDPs as a
form of uncertainty. The efficient analysis originates from progress made in the
analysis of uncertain (or parametric) MDPs, and brings that progress to a novel
setting. The empirical evaluation with a prototype called level-up shows the
efficacy of the approach.

2 Overview

We clarify the approach and its applicability with a motivating example
that drastically abstracts a token passing process where the channel quality
varies [12].

Setting. Consider the protocol in Fig. 1a which sends a token N times via a
channel. That channel successfully transmits packets with probability p, where
p varies over time. The subroutine takes t amount of time, depending on p.
Specifically, in the model, we alternate between accumulating the required time
and updating the channel quality for N token transmissions and then return the
accumulated time. We aim to compute the expected return value. For the sub-
routine, we assume that sending a token is repeated until an acknowledgement
is received, which is abstractly modelled in Fig. 1b and corresponds to the small
Markov chain in Fig. 2a. First, the file must successfully be sent (s0 → s1), then
we start sending acknowledgements. The process terminates (s1 → s2) once an
acknowledgement is received. The complete protocol from Fig. 1 including the
subroutine is reflected by the large Markov chain in Fig. 2b that repeats the

Abstraction-Refinement for Hierarchical Probabilistic Models 105

small Markov chain (with different probabilities). This model may be analysed
with standard tools, but for large N (and larger subroutines), the state space
explosion must be alleviated.

s0 s1 s2

1−p 1−p

(a) MC for passToken(p)

M0 p = 1/2

M1 p = 2/5

M2 p = 5/8
M5 p = 25/32

1/2 1/2

3/5 3/5

3/8 3/8

1/2 1/2

17/25 17/25

7/32 7/32

1/2

1/2

1/2

(b) Hierarchical MDP, rewards of 1 at states with loops

Fig. 2. Ingredients for hierarchical MDPs with the Example from Fig. 1. Annotations
reflect subMDPs within the macro-MDPs in Fig. 3.

Macro-MDPs and Enumeration. We thus suggest to abstract the hierarchical
model into the macro-level MDP in Fig. 3a. Here, every state corresponds to
an invocation of the subprocess. The reward at the states corresponds to the
expected reward for the complete subprocess. Thus, naively, one may construct
the macro-MDP, analyse all (reachable) subMDPs independently and annotate
the macro-MDP states with the appropriate rewards, and finally analyse the
macro-MDP to obtain a result of ≈12.3. This approach avoids representing the
complete hMDP in the memory, but it is still restricted to analysing systems
with a limited number of subMDPs.

Our Approach. We improve scalability by constructing a parameterized macro-
MDP. Reconsider the rewards for Fig. 3a. The values can be computed via the
graph in Fig. 3d, where we pick for each value for p (x-axis) and compute the
corresponding expected reward E (y-axis) obtained by analysing the subMDP in
Fig. 2a. Intuitively, in our abstraction, we annotate the rewards with lower- and
upper bounds rather than exact values. Therefore, we compute bounds on the
rewards by selecting an interval for the values p ∈ [8/25, 25/32], as shown in Fig. 3e.
Conceptually, this means that we analyse a set of subMDPs at once, namely all
subMDPs with p ∈ [8/25, 25/32]. Annotating the corresponding expected rewards,
in this case [64/25, 25/4], then yields the macro-MDP in Fig. 3b. Analysis of this
MDP yields that overall expected time is in [7.68, 18.75]. We refine these bounds
by analysing subsets of the subMDPs. We may split the values for p into two
sets [8/25, 2/5] and [1/2, 25/32]. Then, we obtain two corresponding intervals on the
expected time in the subMDP as shown in Fig. 3f. Model checking the associated
macro-MDP, in Fig. 3c, bounds to expected time by [10.12, 14.25]. Technically,
we realize this reasoning using parameter lifting [33].

106 S. Junges and M. T. J. Spaan

m0

4

m1

5

m2

16/5

m3

25/4

m4

4

m5

64/25

(a)

m0

[6425 ,
25
4]

m1

[6425 ,
25
4]

m2

[6425 ,
25
4]

m3

[6425 ,
25
4]

m4

[6425 ,
25
4]

m5

[6425 ,
25
4]

(b)

m0

[6425 , 4]

m1

[5, 25
4]

m2

[6425 , 4]

m3

[5, 25
4]

m4

[6425 , 4]

m5

[6425 , 4]

(c)

p

E

8
/
2
5

2
/
5

1
/
2

5
/
8

2
5
/
3
2

25/4
5
4

16/5
64/25

(d)

p

E

8
/
2
5

2
5
/
3
2

25/4

64/25

(e)

p

E

8
/
2
5

2
/
5

1
/
2

2
5
/
3
2

25/4

64/25

25/4
5
4

64/25

(f)

Fig. 3. Visualising the computation of expected rewards for the hMDP from Fig. 2b
using a macro-MDP and interval-based abstractions.

Supported Extensions. For conciseness, this example is necessarily simple. Our
approach allows nondeterminism, i.e., action-choices, in the macro-MDP and in
the subMDPs. The subMDPs may have multiple outgoing transitions, but this
must be combined with a restricted type of nondeterminism in the subMDP: If
multiple outgoing transitions are present, the macro-MDP has transition prob-
abilities that depend on the subMDPs. We present a useful extension for reach-
ability probabilities, see the discussion at the bottom of Sect. 3.3.

More Examples. Key ingredient to models where the approach excels are a repet-
itive task whose characteristics depend on some global state. Two variations are
the expected energy consumption of a robot with slowly degrading components
that, e.g., can be improved by maintenance or for job scheduling with periodi-
cally changing distribution of tasks (e.g., day vs. night).

3 Formal Problem Statement

We formalize MDPs and hierarchical MDPs (hMDPs) to pose the problem state-
ment, then identify a subclass of hMDPs which we call local-policy hMDPs and
restrict our problem on computing optimal expected rewards in local-policy
hMDPs. Furthermore, we introduce parametric MDPs as they are key to the
abstraction-refinement procedure later in the paper.

Abstraction-Refinement for Hierarchical Probabilistic Models 107

3.1 Background

Definition 1 (Parametric MDP). A parametric MDP (pMDP) is a tuple
M = 〈SM, AM, ιM, �x, PM, rM, TM〉 where SM is a finite set of states, AM is
a finite set of actions, ιM ∈ SS is the initial state, �x = 〈x0, . . . xn〉 is a vector
of parameters, PM : SM × AM × SM → Q[�x] are the transition probabilities,
rM : S → Q[�x] the state rewards, and TM is a set of target states.

We drop the subscripts whenever possible. MDPs are parametric if �x �= 〈〉 and
parameter-free otherwise. We omit parameters for parameter-free MDPs. We
recap some standard notions on pMDPs (and MDPs):

For a (parameter) valuation u ∈ R
�x, the instantiation M[u] globally substi-

tutes PM(s, a, s′) with PM(s, a, s′)(u) and rM(s) with rM(s)(u). An assignment
u is well-defined, if M(u) constitutes an MDP, i.e., if

∑
s′ PM(s, α, s′)(u) ∈ {0, 1}

and rM(s)(u) ≥ 0 for each s ∈ S, α ∈ A. We denote the set of all well-
defined assignments with UM. The set Act(s) denotes the enabled actions at
state s, Act(s) = {α |

∑
s′ PM(s, α, s′) �= 0 }. If |Act(s)| = 1 for every s ∈ S,

then the (parametric) MDP is a (parametric) Markov chain (MC). A path π

is an (in)finite sequence of states s0
α0−→ s1 . . ., with si ∈ S, αi ∈ Act(si),

P (si, αi, si+1) �= 0. For finite π, last(π) denotes the last state of π. We use
[s → ♦T] to denote the set of (finite) paths T only at the end. The reward r(π)
along a finite path π is the sum of the state rewards r(π) :=

∑
r(si).

Specifications. We consider indefinite horizon expected reward, i.e., the expected
accumulated reward until reaching the target states. We refer to [3,32] for a
formal treatment and only introduce notation. Therefore, the unique probability
measure Pr for a set of paths in a parameter-free Markov chain M reaching state
T can be defined using the usual cylinder set construction. We define PrM(s →
♦T) as the probability to reach a state in T ,

∫
π∈[s→♦T]

Pr(π)dπ. We then define
the expected reward until hitting T , ERM(s → ♦T) =

∫
π∈[s→♦T]

Pr(π) · r(π)dπ.
In both definitions, if s is the initial state, we simply write . . . (♦T). For technical
conciseness, we make the standard assumption that target states are reached
with probability 1, which ensures that the integral exists and is finite. (Arbitrary)
reachability probabilities can be nevertheless be modelled using rewards.

Policies. In pMDPs, we resolve nondeterminism with policies. In this paper, it
suffices to consider memoryless policies σ : S → A. The set of such policies is
denoted Σ(M). We omit M if it is clear from the context. It is helpful to also
consider partial policies σ̂ : S � A. For an pMDP M and a (partial) policy
σ̂, the induced dynamics are described by the induced pMDP M[σ̂], defined as
〈SM, AM, ιM, �x, P, rM, TM〉, where the transition probabilities are given as

P (s, α, s′) =

{
PM(s, α, s′) if σ̂(s) = α,

0 otherwise.

If σ is total (not partial), then M is a MC. We define the maximal expected
reward ERmax

M (♦T) = maxσ∈Σ ERM[σ](♦T), and say that a policy σ is optimal,
if ERmax

M (♦T) = ERM[σ](♦T).

108 S. Junges and M. T. J. Spaan

Regions and Parametric Model Checking. A set of valuations described by is
called a (rectangular) region, if R = {u | u− ≤ u ≤ u+} for adequate bounds
u−, u+ ∈ R

�x and using pointwise inequalities, i.e., R is a Cartesian product of
intervals of parameter values. We denote this region also with [[u−, u+]]. For
regions, we may compute a lower bound on minu∈R ERmax

M[u](♦T) and an upper
bound on maxu∈R ERmax

M[u](♦T) via parameter lifting [33,36].

3.2 Hierarchical MDPs

We concentrate on solving hierarchical MDPs (hMDPs). We assume that hMDPs
are parameter-free and that their topology has some additional known structure.

Definition 2 (Hierarchical MDPs). A MDP M with a partitioning of its
states SM =

⋃
Si is a hierarchical MDP, if for all i,

– there exists a unique si
ι ∈ Si such that si

ι = ιM or predM(si
ι) �⊆ Si, and

– for all s ∈ Si \ {si
ι}, it holds that si

ι �= ιM and predM(s) ⊆ Si.

The state sι is called the entry state, which we denote entryi. States with
succM(s) ∩ Si = ∅ are called exit-states. The set succ(i) := succM(Si) \ Si

are the successor states of the partition i. Let Y = maxi |succ(i)|. By adding
auxiliary states, we can assume that |succ(i)| = Y for all i. We call partitions
with |Si| = 1 trivial. We use I := {i | |Si| > 1} to denote the indices of the non-
trivial partitions. We remark that every MDP can be considered as an hMDP
with only trivial partitions.

Problem: Given a (hierarchical) MDP M with target states T and η ∈
[0, 1], compute bounds lb, ub with lb ≤ ERmax

M (♦T) ≤ ub and η · ub ≤ lb.

The naive solution to this problem is to ignore the hierarchical structure and
solve the MDP monolithically. In this paper, we contribute methods that actively
exploit the structure of the hierarchical MDPs with |I| 1. We will make an
additional assumption on the structure of the hierarchical MDP.

3.3 Optimal Local Subpolicies and Beyond

Intuitively, we want to ensure that the optimal policy within the partitions can
be computed locally, i.e., on partition without taking into account the complete
MDP. Therefore, each partition within the MDP can be considered as an indi-
vidual MDP. In particular, each Si induces a subMDP as follows:

Definition 3 (subMDP). Given a hierarchical MDP M and partition Si, the
corresponding subMDP is an MDP Mi := 〈Si := Si ∪ succM(Si) ∪ {⊥}, AM ∪
{α⊥}, ι := entryi, Pi, ri, Gi〉 with Pi defined by

Pi(s, α, s′) :=

⎧
⎪⎨

⎪⎩

PM(s, α, s′) if s ∈ Si and α ∈ AM,

1 else if s �∈ Si, α = α⊥, and s′ = ⊥
0 otherwise.

Abstraction-Refinement for Hierarchical Probabilistic Models 109

ri is defined as ri(s) = rM(s) if s ∈ Si, ri(s) = 0 otherwise, and Gi := {⊥i}.

Thus, for every partition of the hierarchical MDP, the corresponding subMDP
contains additionally the successor states, and a unique bottom state that is a
target state and simplifies our construction later.

Likewise, we can (de)compose memoryless policies for the hierarchical MDP
as a union of policies on the individual subMDPs. We do this only for nontriv-
ial partitions. Let σi : Si �→ A denote memoryless policies for Mi and σ′

i the
restriction of σi to Si, then (

⊔
I
σi) : S � A is the unique partial policy such

that
(⊔

I

σi

)
(s) := σ′

i(s) if s ∈ Si, i ∈ I and
(⊔

I

σi

)
(s) := ⊥ otherwise.

Intuitively, we want that the union of locally optimal policies, a partial policy,
can be completed to a total policy that is optimal.

Definition 4 (Optimal local subpolicies). Given a hierarchical MDP M
with target states T and optimal policies σi ∈ Σ(Mi) for all i ∈ I. The hier-
archical MDP has optimal local subpolicies, if for σ̂ =

⊔
I
σi it holds that

ERmax
M[σ̂] = ERmax

M .

That is, if we collect (locally) optimal policies σi and apply them to M, we
obtain the MDP M[(

⊔
I
σi)]. In that MDP, we can pick an optimal policy, and

together with (
⊔

I
σi) this constitutes an optimal and total policy for M.

Assumption: The hierarchical MDP has optimal local subpolicies.

Roughly, the idea now becomes that rather than solving one large MDP with S
states, we solve |I| MDPs with S/|I| states and one MDP with I states (assuming
equally-sized and only nontrivial partitions).

The assumption is restrictive, but not unreasonable: A subroutine may not
have any nondeterminism, or a finished task will have no influence on any future
task. The following proposition, while obvious, formalizes that:

Proposition 1 (Sufficient criterion). Let M be a hierarchical MDP. The
MDP has optimal local subpolicies, if for each i ∈ I either

– there is a single successor for the partition, i.e., |succM(Si) \ Si| = 1, or
– there are no choices, i.e., |Act(s)| = 1 for all s ∈ Si,

Beyond Optimal Local Subpolicies. The efficiency of our approach is partly
due to the assumption in Definition 4. We observe that adapting this definition
allows for a spectrum of specific yet useful cases. In particular, say that our
system describes a protocol in which we must optimize the probability to satisfy
N tasks all may fail – the subMDPs will have two successor states. Often, it is
then easy to see (and model) that a locally optimal policy will aim to satisfy
each task and that thus, the locally optimal policy optimizes the probability to

110 S. Junges and M. T. J. Spaan

reach the corresponding successor state. Then, by adopting the target states in
Definition 3 to be the successor state where the task is successful, the notion
of an optimal policy—and thus of an optimal local subpolicy—changes. These
changes are minimal and everything that follows below is easily adapted to this
setting as demonstrated by the prototypical implementation.

4 Solving hMDPs with Abstraction-Refinement

In this section, we consider hMDPs with optimal local subpolicies. We step-wise
develop a sketch of an anytime algorithm that provides lower and upper bounds
on the expected reward in this hMDP. In Sect. 4.1, we introduce an alternative
representation of our problem that formalizes the idea of individually comput-
ing subMDPs. We then formalize the ideas that allow to construct an anytime
algorithm in Sect. 4.2. In Sect. 4.3, we introduce the abstract requirements for
analysing sets of subMDPs into the algorithm, and finally, in Sect. 4.4 we intro-
duce a method that realises this using pMDPs.

4.1 The Macro-MDP Formulation

We adapt macro-MDPs [5] which summarize the subMDPs by single states.

Definition 5 (Macro-MDP). Let M be a hMDP with n non-trivial Si par-
titions and SM partitioned as SM =

⋃
Si ∪ S′. The macro-MDP is defined as

μ(M) := 〈S′ ∪ {entryi | 1 ≤ i ≤ n}, AM, ιM, ∅, P, r, TM〉 with P and r given by

P (s, α, s′) =

{
PrMi[σi]

(♦{s′}) if s ∈ Si,

PM(s, α, s′) otherwise,
r(s) =

{
ERmax

Mi
(♦{⊥}) if s ∈ Si,

rM(s) otherwise.

where Mi is the corresponding subMDP (see Definition 3) and σi is an arbitrary
but fixed optimal policy, i.e., a policy such that ERMi[σi](♦Gi) = ERmax

Mi
(♦Gi).

Intuitively, we replace the transitions within Si by a ‘big-step semantics’ that
aggregates the transitions within Si by single transitions such that the proba-
bility to reach any successor matches the probability to do so within Si under
a specific –optimal– policy. Likewise, the expected reward matches the expected
reward collected in Si

1.

Remark 1. To define a unique macro-MDP, we can take the lexicographically
smallest policy σi among the optimal policies. Furthermore, we observe that for
the cases covered by Proposition 1, it is not necessary to compute σi at all:
Either there is a single successor—implying PrMi[σi](♦{s′}) = 1 for any σi—or
|Σ(Mi)| = 1.

The following theorem formalises that, given the assumptions, taking the big-
step semantics is adequate when optimizing for an expected reward.
1 Due to the additive nature of expected rewards, we can annotate the state with the

expected reward even though it may differ over the different paths to an exit of Si.

Abstraction-Refinement for Hierarchical Probabilistic Models 111

Theorem 1. Let M be a hMDP with optimal local subpolicies and let μ(M) be
the corresponding macro-MDP. Then: ERmax

μ(M)(♦T) = ERmax
M (♦T).

The important ingredient are the optimal local subpolicies that ensure that
we aggregate behavior within the partitions by behavior that agrees with a
(globally) optimal policy. We give a proof in the appendix2.

Naive Algorithm. Algorithmically, we first compute ERmax
Mi

(♦Ti) and the asso-
ciated policy σi, then compute the reachability probabilities on the induced
Markov chain. We collect these results in a vector resi, which is helpful to con-
struct the macro-MDP. To clarify further constructions in this paper, we make
resi explicit. Recall that |succM(Si)| = Y for all i.

Definition 6 (Results for subMDP). Let Mi be a subMDP for the parti-
tion Si of a hMDP M. Let succM(Si) be ordered. We define resi ∈ R

Y +1 s.t.

resi(j) := PrMi[σi](♦{succM(Si)j}) for 0 ≤ j < Y and resi(Y) := ERmax
Mi

(♦Gi),

where σi is an arbitrary but fixed policy such that ERMi[σi](♦Gi) = ERmax
Mi

(♦Gi).

This allows us to reformulate the macro-MDP, in particular, the following two
identities do hold:

P (s, α, s′)=

⎧
⎪⎨

⎪⎩

resi(j) if s ∈ Si and
s′ = succM(Si)j

PM(s, α, s′) otherwise,
r(s)=

{
resi(Y) if s ∈ Si,

rM(s) otherwise.

(1)

The identities trivialize that constructing the macro-MDP can be done by pre-
computing the necessary result-vectors.

Enumeration baseline: With macro-MDPs, we reduce the computation
of ERmax

M (♦T) to (1) analysing all subMDPs Mi and (2) analysing μ(M).

This rather naive algorithm already limits memory and may exploit similari-
ties between subMDPs during the analysis, e.g., based on the structure discussed
in Sect. 4.4. It performs well if the number |I| of subMDPs is sufficiently small.
We are interested in considering methods that allow for larger I or larger sub-
MDPs. In particular, we want to avoid analysing all subMDPs, all individually.

4.2 The Uncertain Macro-MDP Formulation

Uncertainty Before Computation. We start introducing a method that allows
providing bounds on the expected rewards after individually analysing a subset
of the subMDPs. Before computing the individual probabilities in Mi, we are
uncertain about the probabilities and rewards in the MDP μ(M). Under this

2 See: https://doi.org/10.48550/arXiv.2206.02653.

https://doi.org/10.48550/arXiv.2206.02653

112 S. Junges and M. T. J. Spaan

uncertainty, we may not be able to compute ERmax
μ(M)(♦T) precisely. However, we

may solve the problem statement by bounding the expected reward. Thus, the
goal is to compute values lb, ub s.t.

lb ≤ ERmax
M (♦T) = ERmax

μ(M)(♦T) ≤ ub. (2)

Uncertain Macro-MDPs. We capture the a-priori uncertainty about the sub-
MDP results in an uncertain macro-MDP, a particularly shaped parametric
MDP.

Definition 7 (Uncertain macro-MDP). Let M be a hMDP with n non-
trivial Si partitions and SM partitioned as SM =

⋃
Si ∪ S′. The uncertain

macro-MDP is defined as ν(M) := 〈S′ ∪ {entryi | 1 ≤ i ≤ n}, AM, ιM, �x,
P, r, TM〉 with parameters �x := {pi,j , qi | 1 ≤ i ≤ n, 1 ≤ j ≤ Y } where Y =
|succM(Si)|. P and r given by

P (s, α, s′) :=

⎧
⎪⎨

⎪⎩

pi,j if s ∈ Si and
s′ = succM(Si)j ,

PM(s, α, s′) otherwise,
r(s) :=

{
qi if s ∈ Si,

rM(s) otherwise.

Remark 2. Whenever Mi and Mi′ are isomorphic, we may reduce the parame-
ters and replace each occurrence of pi′,j with pi,j and each occurrence of qi′ with
qi.

The uncertain macro-MDP can be instantiated to coincide with the macro-MDP
by setting the parameters accordingly.

Theorem 2. Let M be a hMDP, μ(M) the associated unique macro-MDP, and
ν(M) the associated uncertain macro-MDP with parameters pi,j and qi. Let u∗

be a parameter valuation with u∗(pi,j) = resi(j) and u∗(qi) = resi(Y) for all i, j.
Then:

ν(M)[u∗] = μ(M)

Proof sketch. The construction of the uncertain macro-MDP and the macro-
MDP only differs in the assignment of probabilities. We set u here as in the
characterisation in (1) and thus the equality follows. ��

Computing Bounds. Assume for now that we can derive some (trivial) sound
bounds on the results vector for any subMDP Mi

3.

Definition 8 (Sound bounds on results). For Mi, the vectors lbresi and
ubresi are sound bounds if the following pointwise inequality holds

lbresi ≤ resi ≤ ubresi. (3)

3 We discuss our approach in Sect. 4.4, alternatively, one may use bounds from, e.g.,
[4].

Abstraction-Refinement for Hierarchical Probabilistic Models 113

These bounds on properties in the subMDP correspond to bounds on the param-
eters of the uncertain macro-level MDP ν(M). Let us formalize this idea.

Definition 9 (Suitable parameter region). Given u∗ from Theorem 2. The
bounds u−, u+ are suitable if u− ≤ u∗ ≤ u+. For suitable u−, u+, the region
[[u−, u+]] is called suitable.

Using this notion, sound bounds lbresi and ubresi thus yield suitable bounds
u−(x), u+(x) for all x ∈

⋃
j pi,j ∪ {qi}. Combined, the sound bounds for every i

yields a suitable region. Formally:

init. loop

analyse uncertain macro-MDP

[lb, ub], σ

analyse individual subMDP

hMDP
M

ν(M)

{Mi}

region

i

resi

Fig. 4. Analysing hMDPs via uncertain macro-MDPs via individual refinement.

Lemma 1. Given sound bounds lbresi, ubresi for each i, there exists a trivial
mapping Reg s.t. Reg(lbres1, . . . lbresn, ubres1, . . . ubresn) is a suitable region.

With the suitable region we can apply verification on the parametric MDP.

Lemma 2. Let R be a suitable region. Then:

min
u∈R

ERmax
ν(M)[u](♦T) ≤ ERmax

M (♦T) ≤ max
u∈R

ERmax
ν(M)[u](♦T).

Proof sketch. We observe that the inequalities follow from the fact that u∗ ∈ R
with u∗ as in Theorem 2. By that theorem, ERmax

ν(M)[u∗](♦T) = ERmax
μ(M)(♦T). The

statement then follows from Theorem 1. ��
From the bounds that we can compute using a suitable region, we then set lb
and ub for Eq. (2):

lb ≤ min
u∈R

ERmax
ν(M)[u](♦T) ≤ ERmax

M (♦T) ≤ max
u∈R

ERmax
ν(M)[u](♦T) ≤ ub. (4)

Computationally, we may use parameter lifting [33] to find these values.

Refinement Loop. The complete anytime algorithm is summarized in Fig. 4. We
start with an hMDP M and extract the uncertain macro-MDP ν(M) and the
subMDPs {Mi}4. Furthermore we compute (trivial) sound bounds on lbresi ≤
resi ≤ ubresi. This leads to a suitable region [[u−, u+]] = Reg(lbres1, ubres1, . . .).
Then, we may at any time compute the bounds lb, ub on the expected reward
4 For efficiency, one must implement extraction without first computing an explicit

representation of M.

114 S. Junges and M. T. J. Spaan

in the hMDP M by analysing ν(M) on the region [[u−, u+]]. To tighten these
bounds, we must first refine the suitable region. Therefore, we analyse individual
subMDPs Mi and compute resi and thus u∗(x) for x ∈ ∪jpi,j ∪ qi. This refines
the suitable bounds such that u−(x) = u∗(x) = u+(x) for x ∈ ∪jpi,j ∪qi. We call
this refinement individual refinement. The new region is suitable and Theorem 2
ensures correctness of the refinement. As we only have finitely many subMDPs,
we obtain lb = ub after finitely many steps.

Anytime version of the enumeration baseline. Individually refine any
subset of subMDPs, then analyse the uncertain macro-MDP ν(M).

4.3 Set-Based SubMDP Analysis

Next, we aim to provide an alternative refinement procedure that analyses a set
of subMDPs at once, i.e., that refines the suitable bounds for a set of parameters
at once. We denote the set of goal states for all subMDPs as G5.

Adequate Abstractions. We aim to compute sound bounds on the results for a
set of subMDPs such that the bounds are sound for every individual subMDP
in this set. We generalize Definition 8 as follows: The (lower and upper) bounds
lbresI , ubresI are sound, if they are sound (lower and upper) bounds for every
resi, i ∈ I.

Lemma 3. Let lbresI satisfy the following inequations using 0 ≤ j < Y :

lbresI(Y) ≤ min
i

ERmax
Mi

(♦G) and lbresI(j) ≤ min
i

min
σ

PrMi[σ](♦G). (5)

Then, lbresI is a sound lower bound.

Proof sketch. We must show lbresI ≤ resi for each i ∈ I. By definition for each
1 ≤ j ≤ Y , lbresI(j) ≤ mini′∈I resi′(j) and trivially mini′∈I resi′(j) ≤ resi(j). ��

We omit the analogous statement for ubres6. In Sect. 4.4, we discuss a partic-
ular approach to obtain these bounds, i.e., the right hand sides of the equations
in Eq. 5. Here, we update the algorithm sketch to handle this alternative refine-
ment.

Remark 3. We cannot compute the optimal policy σi for the subMDP Mi in
this setting. Thus, we must compute probability bounds for all policies, which
may make these bounds weak. Some optimizations are possible as some actions
can in fact be excluded. More importantly, however, is that for cases within
Proposition 1 the policy σi is irrelevant.

5 Formally, we label the goal states and use G to refer to denote those states.
6 where min becomes max and inequalities flip.

Abstraction-Refinement for Hierarchical Probabilistic Models 115

Updated Algorithm. We update the loop from Fig. 4: Rather than refining using a
single i, we refine using a set I. Instead of resi, we use Lemma 3 to compute sound
bounds lbresI , ubresI and call this set-based refinement. We may set lbresi = lbresI
for each i ∈ I. Then, we can compute a new suitable region via Lemma 1. With
the suitable region, we can still utilise Eq. (4) to compute an approximation
[lb, ub]. However, for completeness we must ensure that if |I| = 1, the upper and
lower bounds coincide, i.e., lbres{i} = ubres{i} for every i. That can be ensured
by using individual subMDP refinement when |I| = 1.

Idea: We may improve the anytime algorithm by iteratively considering
sets of subMDPs and extract sound bounds.

We now first discuss the set-based analysis of multiple subMDPs Mi. We clarify
the realization of the loop box in Sect. 5.

init. loop

analyse uncertain macro-MDP

[lb, ub], σ

analyse set of subMDPs

hMDP
M

ν(M)

T

region

I

bounds

Fig. 5. Analysing hMDPs with set-based refinement on templated subMDPs.

4.4 Templates for Set-Based subMDP Analysis

We present an instance of set-based subMDP analysis where the subMDPs can
be described as instantiations of a parametric MDPs.

Parametric Templates. We observe that the subMDPs are often similar, e.g.,
they define sending a file over a channel, exploring a room, in different conditions.
We capture this similarity as follows: Let {T1, . . . Tm} define a set of parametric
MDPs, where we call each pMDP a template. In particular, for a hierarchical
MDP M with partitioning S1, . . .Sn and corresponding subMDPs M1, . . . ,Mn

a subMDP Mi is an instantiation of template Tj and parameter instantiation v7,
if Mi = Tj [v]. For a concise description, this paper considers hMDPs over a single
template T and, for any I ⊆ I, we denote VI := {v1, . . . , vn} the finite (multi)set
of parameter instantiations for the pMDP T such that T [vi] = Mi.

Abstractions from Templates. In terms of the templates, Lemma 3 requires us to
bound the expected rewards ERmax

T [v](♦G) for all v ∈ VI . We realize this by defin-
ing the smallest region toRegion(VI) ⊇ VI . For this region, we obtain expected
rewards by computing the minimum maximal reward in toRegion(VI). That is:

lbresI(Y) := min
v∈toRegion(VI)

ERmax
T [v](♦G) ≤ min

i
ERmax

Mi
(♦G).

7 We use v instead of u to avoid confusion with the instantiations for pMDP ν(M).

116 S. Junges and M. T. J. Spaan

We handle the probabilities equally while taking into account the quantification
over the policies. Following Lemma 3, these bounds are sound. Upper bounds
are handled analogously. Computationally, we again use parameter lifting [33]
to find these bounds. We can easily refine: Whenever we split I (or equally, VI),
we can compute (potentially) smaller regions toRegion(VI).

In Fig. 5, we depict our method. In contrast to Fig. 4, we pass the template
T rather than the individual subMDPs. Furthermore, we now compute initial
sound bounds via the analysis of the template (i.e., of VI) and must pass the
mapping from I to VI to clarify the shape of the subMDPs.

Abstraction-Refinement on the subMDPs provides increasingly tight
suitable regions for the uncertain macro-MDP from the anytime baseline.

Algorithm 1. Algorithm for Abstraction-Refinement Procedure
1: Construct macro-MDP ν(M), class-MDP T , and VI from high-level description.
2: Q ← {〈I = I, bounds = [0, ∞), weightedvals = I → {1}〉}
3: lb ← 0; ub ← ∞; #iter = 0; Res ← ∅
4: while η · ub > lb do
5: R ← Q.pop() � Use priority
6: if R.I = {i} then
7: Res[i] ← check one(T [vi]) � Computes resi
8: else
9: R.bounds ← check set(T , toRegion(VR.I)) � Computes lbresR.I , ubresR.I

10: Q ← Q ∪ split(R) � Split R.I, keep bounds and weights
11: end if
12: if #iter mod k = 1 or Q is empty then
13: R′ ← Reg(extract(Q, Res)) � Compute suitable region via Lem 1
14: lb, ub ← check set(ν(M), R′)
15: end if
16: end while

5 Implementing the Abstraction-Refinement Loop

Algorithm 1 outlines a basic implementation of the idea sketched in Fig. 5. We
detail this implementation and then discuss an essential improvement.

We construct ν(M), T , and (the implicit) mapping V : I → VI to map sub-
MDPs to instantiations of T from a suitable high-level representation. We ini-
tialize a priority queue with triples that represent sets of template instantiations:
I such that VI := {vi := V (i) | i ∈ I} contains all valuations v such that T [v] is
a subMDP of M. We initially store bounds reflecting lbresI and ubresI as well
as weights for the computation of the priority (see below). Initially, we assume
that lb = 0 and ub = ∞, we count the number of iterations in #iter. Res is
map for storing result vectors. The algorithm now refines lb and ub until the gap
between lb and ub is sufficiently small.

Abstraction-Refinement for Hierarchical Probabilistic Models 117

The main loop now iteratively refines lb, ub by first refining lbresI and
ubresI , by splitting I and model checking T w.r.t. subsequently smaller regions
toRegion(VI) (l. 5-11): Therefore, we take a set R from the queue. If R.I = {i} is a
singleton, we compute lbresR.I = resi = ubresR.I and store this result. Otherwise,
we apply model checking to the pMDP T w.r.t. the region representation of R.I.
We then split R.I, by splitting I into (here) two subsets. For splitting I, we use
the geometric interpretation of toRegion(VI) as a subset of R

|�y|, where we then
split along one of the axis into two equally large subsets. Every k (we use k = 8)
iterations, we analyse the macro-MDP (l. 12-15). From Q and Res we extract the
proper bounds lbresi, ubresi from Res[i] if possible and from Q using R.bounds
for R such that i ∈ R.I otherwise. Then via Reg(lbres1, ubres1, . . .) from Lemma 1
we compute a suitable region R′. We analyse the uncertain macro-MDP to obtain
lb and ub in accordance with Eq. (4).

Finally, we discuss the priority function: If we a-priori naively assume that
each subMDP contributes an equal amount to the overal minimal expected
reward in the hMDP (weights are all one) then the following priority function:
|R.bounds|·

∑
v∈I R.weights(v) computes priorities that correlate with how much

computing resi for all i ∈ I would reduce the gap between lb and ub.

Termination and Correctness Argument. Algorithm 1 terminates. We split in
such way that maxI∈Q |I| monotonically decreases. Thus, eventually Q is empty
and Res contains results for all subMDPs. Then, R′ is a point region and checking
ν(M) with this point region ensures that lb = ub. Correctness follows as R′ is
always suitable, see Eq. (4).

Computing Expected Visits. Based on our empirical evaluation we added one
crucial improvement: While the algorithm above assumed that all subMDPs (or
states in the macro-MDP) are equally important, that assumption is generally
inadequate. Roughly, only states reached by the optimal policy contribute at all
(provided the bounds are tight enough that we can identify these states). The
reachable states are weighted by the expected number of visits of these states.
We compute an approximation of this expected number of visit by computing
the currently optimizing policy (a by-product of l. 13) and compute the center
of R′; this results in a MC for which we can compute the number of expected
visits by a standard equation system [32]. Additionally, we update the weights
for the regions in the queue based on these new results. We remark that this
also makes the priority function more useful.

Interleaving Individual Refinement. Furthermore, for a subMDPs for which the
expected number of visits is large8 are individually analysed (and the points are
removed from the region in the queue). This optimization reduces the need to
split the corresponding regions until we obtain tight bounds.

8 In our implementation, we define this as subMDPs where the expected number of
visits is in the top 1 + 1/16 · #iter percent, but not more than 150 at a time.

118 S. Junges and M. T. J. Spaan

6 Experiments

Implementation. We implemented level-up9, a prototype on top of the python
bindings for Storm [20]. level-up analyses hierarchical MDPs by taking two
MDPs, each provided as probabilistic program descriptions in the PRISM for-
mat: One MDP that encodes the (uncertain) macro-MDP and one that describes
the parametric template for the subMDPs. The parameter instance of the sub-
MDP can be deduced as a function of the high-level variable assignment of
the macro-MDP states. For technical reasons, the prototype currently provides
support for subMDPs with one or two successor states – arguably the setting
in which we expect our prototype to perform best. For subMDPs with a single
successor state, the uncertain macro-MDP may be represented as an (parameter-
free) MDP with interval-valued rewards. For two successors, we include support
of the extension of Sect. 3.3 where the successor aims to optimize reaching a
fixed successor state.

Table 1. Benchmark statistics, runtimes of the approaches, and details for Algorithm 1.

Name Inst |SM| |I| |Sμ(M)| |Aμ(M)| |ST | |AT | tinit tenum t50 t90 t95 iter. indrf.
um

%
sr

%
ir

%

corr 11,10,50 107 624 255576 541704 15000 65006 < 1 16 3 9 13 17 14 2 67 2

corr 11,8,100 108 624 254376 539040 60000 260006 < 1 100 10 45 45 9 16 2 80 4

corr 11,8,200 108 624 254376 539040 240000 1040006 2 689 51 313 568 17 30 0 92 4

corr 13,11,50 107 768 1024344 2172432 15000 65006 3 21 8 18 25 17 17 5 36 1

corr1 17,14,75 108 1056 34200 83160 33750 146256 < 1 90 4 21 38 17 43 0 84 8

corr1 18,15,75 108 1128 39576 96768 33750 146256 < 1 98 4 38 38 17 45 0 84 8

corr1 25,20,75 108 1632 89136 224160 33750 146256 < 1 168 5 44 67 25 102 1 80 14

mail 10 109 173857 793971 1088152 2801 3601 4 552 8 21 48 57 658 29 2 4

mail 12 109 236802 1446551 2023504 2801 3601 8 738 16 43 130 97 703 42 1 2

netw 30,50 108 9801 437823 437823 4026 4026 1 23 8 33 46 217 150 60 1 1

netw 30,80 108 9801 437823 437823 10041 10041 1 62 8 34 48 217 150 59 3 3

netw 50,80 108 9801 1025883 1025883 10041 10041 2 62 16 94 112 225 150 62 1 1

sdn 5,12,4,4 108 23375 128386 128386 13506 16855 < 1 62 2 20 112 289 305 2 17 11

sdn 5,8,4,4 108 23375 128386 128386 2802 3455 < 1 98 1 5 15 281 305 13 17 8

sdn 6,8,4,4 109 126337 408227 408227 2802 3455 2 519 5 46 394 3057 305 27 7 0

Setup. We investigate the scalability and the quality of the approximation over
time. Therefore, we run our prototype on an MacBook 2020 M1 with an 8 GB
RAM limit. We compare the enumerative baseline from Sect. 4.1 with Algo-
rithm 1. Both exploit the hierarchical nature of the MDP. We qualitatively com-
pare to standard model checking on the flat MDP, see below. We use a collection
of benchmarks reflecting networks, job schedulers and robots.

Results. We consider instances that we summarize in Table 1. In particular, we
give the benchmark name and instance for reference, the approximate number
of states in the hierarchical MDP (computed from the macro-MDP and the

9 The source code and executables, the benchmarks, logfiles and utilities are all avail-
able in an archived Docker container: https://doi.org/10.5281/zenodo.6524787.

https://doi.org/10.5281/zenodo.6524787

Abstraction-Refinement for Hierarchical Probabilistic Models 119

subMDPs), the number of nontrivial partitions, and the number of states and
actions in the (uncertain) macro-MDP and subMDPs, respectively. Then, we
give the time to setup the data structures from the high-level representation tinit
in seconds. We highlight that a flat representation of all our benchmarks has at
least 107, often more, states. As a reference, we present the performance of the
enumerative baseline from Sect. 4.1. The performance of this approach is positive
as it enables the verification of huge MDPs. A TO indicates >1200 s. To scale
to either larger subMDPs or more subMDPs, we use the abstraction-refinement
loop. To reflect the anytime nature, we list three run times for terminating when
η · ub ≤ lb with η ∈ {0.5, 0.9, 0.95} respectively. The largest time faster than
the enumerative baseline is highlighted (further to the right is better for the
abstraction-refinement). For η = 0.95, we give details: The number of itera-
tions (iter), the number of individual refinements based on the improvement
from Sect. 5, and the fraction of time spent on model checking the uncertain
macro-MDPs %um, the set-refinements %sr, and the individual refinements %ir,
respectively.

Discussion. Before we discuss details of the results, let us clarify that exploiting
the hierarchical structure is essential. MDPs with ≈108 states are at the limit
of what fits in around 8GB of memory10. Symbolic methods based on MTBDDs
easily scale beyond these sizes, but—noting that the subMDPs are all slightly
different—the models we consider lack the necessary symmetry that make MTB-
DDs compact. Thus, support for hierarchical MDPs is a necessary step forward.

Regarding the abstraction-refinement: While a larger study may be necessary,
we can start with two standard observations: The abstraction-refinement loop
is significantly faster on η ≤ 0.9. As η → 1, coarse abstractions are insufficient.
Furthermore, the efficiency of the abstraction-refinement heavily depends on the
particular structure. That being said, the approach outperforms the enumerative
approach, especially for η = 0.9, and up to more than an order of magnitude. This
happens even if I is rather small, or if, e.g., T is small. We furthermore observe
that for large I, the bookkeeping in python becomes a bottleneck. We think these
observations are promising: we left many options for further optimizations and
tweaking towards particular examples on the table. However, for models where
most time is spent on model checking the macro-level MDP, the approach is less
suitable. We furthermore conjecture that tailored algorithms may exploit some
of these dimensions, e.g., when there is the macro-MDP or the subMDPs are
indeed MCs or perhaps acyclic, depending on the number of parameters and
their influence [36], or based on the relative weight of the uncertain rewards
compared to rewards in the macro-MDP.

7 Related Work

In the model-free reinforcement learning (RL) setting, hierarchical models are
popular. An excellent, recent survey is given in [29]. Our work generalizes the
10 Assuming 128 byte per state, i.e., 8 doubles and 16 (32-bit) ints, as used in Storm.

120 S. Junges and M. T. J. Spaan

solution techniques on hierarchical MDPs that assume that these subMDPs are
the same. In RL, this assumption is treated liberally, and the methods provide
only weak error bounds. In contrast, our model-based approach provides error-
bounds in every step, and the error disappears in finitely many steps.

Hierarchical abstractions are used to analyse large MDPs in [5]. There, the
goal is to find a policy that almost optimizes the reward. Rather than preim-
posing a hierarchy, the algorithm aims to find a hierarchy and define the goal
states of the subMDP such that the model admits local policies. Instead, our
solution can find the optimal policy and in particular gives strict error bounds at
the cost of requiring a high-level model that induces the hierarchy. An symbolic
approach for continuous MDP, where the transition probabilities are the result
of an associated LP, has recently been discussed in [24]. An hierarchical SCC-
decomposition [1] aims to accelerate the process of solving a (given, monolithic)
Markov chain. The computation of reward-bounded properties [18] generalizes
topological value iteration and their notion of episodes mildly resembles an hier-
archical approach but no uncertainty is assumed or used in the approach. The
probabilistic model checker PAT [35] analyses a hierarchical probabilistic timed
automaton given as a process algebra. The hierarchy is not exploited in the
solving process.

While symbolic approaches, often on decision diagrams, exploit the transition
system by compressing the data structures, abstractions aim to yield smaller
systems that may assess an approximation for the sought-for values. Abstraction-
refinement without an imposed hierarchy is explored in [16,21,25]: Refinement
amounts to considering a better approximation of the state space. In contrast,
we impose the hierarchy, the abstraction amounts to an imprecise analysis of
this fixed state space and we refine by analysing the state space more precisely
(by means of analysing subMDPs at a greater level of detail). Contract-based
abstractions (in probabilistic systems) are used to decompose the analysis of
systems given by parallel running subsystems [14,28,38]. Partial exploration and
bounded model checking approaches focus on the most critical paths, i.e., the
paths where most of the probability mass lies [7,23,26], but these approaches do
generally not exploit the hierarchical and repetitive structure. The observation
that many parts of the system are not critical allows us to weigh the potential
benefit of refining the intervals in various parts of the macro-MDP.

Parametric MDPs are commonly used to model and analyse the effects
of uncertainty in the precise transitions [15,23,31]. The methods presented
in [13,22] exploit a repetitive structure in parametric MCs to accelerate the
construction of closed form solutions and are not applicable to MDPs. Para-
metric models have been used to support the design of systems [2,8] or their
adaption [6,9], to find policies for partially observable systems [11], to analyse
Bayesian networks [34], and to speed up the analysis of, e.g., software product
lines [10,37]. On top of technical differences, none of these approaches uses a
hierarchical decomposition of an MDP or uses the results of the analysis in the
analysis of a larger MDP.

Abstraction-Refinement for Hierarchical Probabilistic Models 121

8 Conclusion

This paper presents a first verification approach that exploits a specific hierar-
chical structure natural in many models to accelerate analysing the underlying
MDP. An essential ingredient is to separate the two levels in the hierarchy. Then,
when analysing the (toplevel) macro-MDP, we may consider subMDPs that have
not yet been analysed as epistemic uncertainty. Analysis techniques for uncer-
tain (more precise: parametric) MDPs then enable an online approximation loop
that incrementally removes uncertainty in a targeted fashion by analysing more
and more subMDPs (more) precisely. Three clear directions for future work are
to (i) consider an approach where one lifts the restrictions to locally-optimal
policies, (ii) investigate the applicability to a richer set of temporal properties
and (iii) to allow automatic detection of partitions in, e.g., the Prism language.

References

1. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.-P., Becker, B.: DTMC model
checking by SCC reduction. In: QEST, pp. 37–46. IEEE CS (2010)

2. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P.: Inductive synthesis for
probabilistic programs reaches new horizons. In: TACAS 2021. LNCS, vol. 12651,
pp. 191–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-
2 11

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

5. Barry, J.L., Kaelbling, L.P., Lozano-Pérez, T.: DetH*: approximate hierarchical
solution of large Markov decision processes. In IJCAI, pp. 1928–1935. IJCAI/AAAI
(2011)

6. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

7. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

8. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

9. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE, pp. 85–92. IEEE CS (2013)

10. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45–75 (2018)

11. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.: Robust
finite-state controllers for uncertain POMDPs. In: AAAI, pp. 11792–11800. AAAI
Press (2021)

https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-319-11936-6_8

122 S. Junges and M. T. J. Spaan

12. Dombrowski, C., Junges, S., Katoen, J.-P., Gross, J.: Model-checking assisted pro-
tocol design for ultra-reliable low-latency wireless networks. In: SRDS, pp. 307–316.
IEEE CS (2016)

13. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model check-
ing through model fragmentation. In: ICSE, pp. 835–846. IEEE (2021)

14. Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-based compositional
verification for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A.
(eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24372-1 40

15. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 56

16. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 30

17. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

18. Hartmanns, A., Junges, S., Katoen, J.-P., Quatmann, T.: Multi-cost bounded
tradeoff analysis in MDP. J. Autom. Reason. 64(7), 1483–1522 (2020)

19. Hauskrecht, M., Meuleau, N., Kaelbling, L.P., Dean, T.L., Boutilier, C.: Hierar-
chical solution of Markov decision processes using macro-actions. In: UAI, pp.
220–229. Morgan Kaufmann (1998)

20. Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR, abs/2002.07080 (2020)

21. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 16

22. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

23. Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J.-P., Westhofen, L.: Bounded
model checking for probabilistic programs. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 68–85. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46520-3 5

24. Jeong, J., Jaggi, P., Sanner, S.: Symbolic dynamic programming for continuous
state MDPs with linear program transitions. In: IJCAI, pp. 4083–4089. ijcai.org
(2021)

25. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246–280 (2010)

26. Kret́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration framework for
Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Abstraction-Refinement for Hierarchical Probabilistic Models 123

28. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 3

29. Pateria, S., Subagdja, B., Tan, A.-H., Quek, C.: Hierarchical reinforcement learn-
ing: a comprehensive survey. ACM Comput. Surv. 54(5), 109:1–109:35 (2021)

30. Precup, D., Sutton, R.S.: Multi-time models for temporally abstract planning. In:
NIPS, pp. 1050–1056. The MIT Press (1997)

31. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 35

32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1995)

33. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

34. Salmani, B., Katoen, J.-P.: Fine-tuning the odds in Bayesian networks. In: Vej-
narová, J., Wilson, N. (eds.) ECSQARU 2021. LNCS (LNAI), vol. 12897, pp.
268–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86772-0 20

35. Song, S., Sun, J., Liu, Y., Dong, J.S.: A model checker for hierarchical probabilistic
real-time systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 705–711. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 53

36. Spel, J., Junges, S., Katoen, J.-P.: Finding provably optimal Markov chains. In:
TACAS 2021. LNCS, vol. 12651, pp. 173–190. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72016-2 10

37. ter Beek, M.H., Legay, A.: Quantitative variability modelling and analysis. Int.
J. Softw. Tools Technol. Transfer 21(6), 607–612 (2019). https://doi.org/10.1007/
s10009-019-00535-1

38. Xu, D.N., Gössler, G., Girault, A.: Probabilistic contracts for component-based
design. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp.
325–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-
4 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-030-86772-0_20
https://doi.org/10.1007/978-3-642-31424-7_53
https://doi.org/10.1007/978-3-642-31424-7_53
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/s10009-019-00535-1
https://doi.org/10.1007/s10009-019-00535-1
https://doi.org/10.1007/978-3-642-15643-4_24
https://doi.org/10.1007/978-3-642-15643-4_24
http://creativecommons.org/licenses/by/4.0/

	Abstraction-Refinement for Hierarchical Probabilistic Models
	1 Introduction
	2 Overview
	3 Formal Problem Statement
	3.1 Background
	3.2 Hierarchical MDPs
	3.3 Optimal Local Subpolicies and Beyond

	4 Solving hMDPs with Abstraction-Refinement
	4.1 The Macro-MDP Formulation
	4.2 The Uncertain Macro-MDP Formulation
	4.3 Set-Based SubMDP Analysis
	4.4 Templates for Set-Based subMDP Analysis

	5 Implementing the Abstraction-Refinement Loop
	6 Experiments
	7 Related Work
	8 Conclusion
	References

