®

Check for
updates

PAC Statistical Model Checking of Mean
Payoff in Discrete- and Continuous-Time
MDP

Chaitanya Agarwal!, Shibashis Guha?®), Jan Kietinsky?,
and Pazhamalai Muruganandham®

! New York University, New York, USA
CAV 2 Tata Institute of Fundamental Research, Mumbai, India CAV

Artifact ; i i i Artifact
Evaluation 3 . S.hlb?Shlsetlﬁ: -res. 1n. Evaluation
Technical University of Munich, Munich, Germany * & K

4 Chennai Mathematical Institute, Chennai, India

Available Reusable

Abstract. Markov decision processes (MDP) and continuous-time
MDP (CTMDP) are the fundamental models for non-deterministic sys-
tems with probabilistic uncertainty. Mean payoff (a.k.a. long-run average
reward) is one of the most classic objectives considered in their context.
We provide the first algorithm to compute mean payoff probably approx-
imately correctly in unknown MDP; further, we extend it to unknown
CTMDP. We do not require any knowledge of the state space, only a
lower bound on the minimum transition probability, which has been
advocated in literature. In addition to providing probably approximately
correct (PAC) bounds for our algorithm, we also demonstrate its practi-
cal nature by running experiments on standard benchmarks.

1 Introduction

Markov decision process (MDP) [7,30,32] is a basic model for systems featuring
both probabilistic and non-deterministic behaviour. They come in two flavours:
discrete-time MDP (often simply MDP) and continuous-time MDP (CTMDP).
While the evolution of MDP happens in discrete steps, their natural real-time
extension CTMDP additionally feature random time delays governed by exponen-
tial probability distributions. Their application domain ranges across a wide spec-
trum, e.g. operations research [10, 16], power management and scheduling [31], net-
worked and distributed systems [19, 22], or communication protocols [28], to name
afew. One of the key aspects of such systems is their performance, often formalized
as mean payoff (also called long-run average reward), one of the classic and most
studied objectives on (CT)MDP [30] with numerous applications [17]. In this con-
text, probabilistic model checking and performance evaluation intersect [5]. While

This work has been partially supported by the DST-SERB project SRG/2021,/000466
Zero-sum and Nonzero-sum Games for Controller Synthesis of Reactive Systems and by
the German Research Foundation (DFG) projects 427755713 (KR 4890/3-1) Group-By
Objectives in Probabilistic Verification (GOPro) and 383882557 (KR 4890/2-1) Statis-
tical Unbounded Verification (SUV).

© The Author(s) 2022

S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 3-25, 2022.
https://doi.org/10.1007/978-3-031-13188-2_1

https://doi.org/10.5281/zenodo.6526591
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-13188-2_1

4 C. Agarwal et al.

the former takes the verification perspective of the worst-case analysis and the lat-
ter the perspective of optimization for the best case, they are mathematically dual
and thus algorithmically the same.

The range of analysis techniques provided by literature is very rich, encom-
passing linear programming, policy iteration, or value iteration. However, these
are applicable only in the setting where the (CT)MDP is known (whitebox set-
ting). In order to handle the blackbox setting, where the model is unknown or
only partially known, statistical model checking (SMC) [37] relaxes the require-
ment of the hard guarantees on the correctness (claimed precision) of the result.
Instead it uses probably approzimately correct (PAC) analysis, which provides
essentially a confidence interval on the result: with probability (confidence) at
least 1 — §, the result of the analysis is e-close to the true value. This kind of
analysis may be applicable to those systems for which we do not have exclusive
access to their internal functionalities, but we can still observe their behaviour.

In this paper, we provide the first algorithm with PAC bounds on the mean
payoff in blackbox MDP. We treat both the discrete-time and continuous-time
MDP, and the SMC algorithm not only features PAC bounds (returning the
result with prescribed precision and confidence), but an anytime algorithm (grad-
ually improving the result and, if terminated prematurely, can return the current
approximation with its precision and the required confidence).

The difficulty with blackbox models is that we do not know the exact transi-
tion probabilities, not even the number of successors for an action from a state.
The algorithm thus must simulate the MDP to obtain any information. The vis-
ited states can be augmented to a model of the MDP and statistics used to estimate
the transition probabilities. The estimates can be used to compute mean payoff
precisely on the model. The results of [12] and [33] then provide a method for esti-
mating the number of times each state-action pair needs to be visited in an MDP to
obtain a PAC bound on the expected mean-payoff value of the original MDP. How-
ever, notice that this requires that the topology be learnt perfectly, for which we
either need some knowledge of the state space or recent development in the spirit
of [3]. On the one hand, this simple algorithm thus follows in a straightforward way
from the recent results in the literature (although to the best of our knowledge it
has not been presented as such yet). On the other hand, the required number of
samples using these bounds is prohibitively large, and therefore, giving guarantees
with such analysis is not feasible at all in practice. In fact, the numbers are astro-
nomic already for Markov chains with a handful of states [13]. We discuss further
drawbacks of such a naive solution in Sect. 3. Our main contribution in this paper is
a practical algorithm. It takes the most promising actions from every state and uses
the on-demand value iteration [2], not even requiring an exhaustive exploration of
the entire MDP. Using techniques of [3,13], we can show that the partial model
captures enough information. Most importantly, instead of using [12,33], the PAC
bounds are derived directly from the concrete confidence intervals, reflecting the
width of each interval and the topology of the model, in the spirit of the practical
SMC for reachability [3].

PAC Statistical Model Checking of Mean Payoff 5

Our contribution can be summarized as follows:

— We provide the first algorithm with PAC bounds on the mean payoff in black-
box MDP (Sect.4) and its extension to blackbox CTMDP (Sect. 5).

— We discuss the drawbacks of a possible more straightforward solution and
how to overcome them (in Sect. 3 on the conceptual level, before we dive into
the technical algorithms in the subsequent sections).

— We evaluate the algorithm on the standard benchmarks of MDP and CTMDP
and discuss the effect of heuristics, partial knowledge of the model, and vari-
ants of the algorithms (Sect. 6).

Related Work. SMC of unbounded-horizon properties of MDPs was first con-
sidered in [23,29] for reachability. [20] gives a model-free algorithm for w-regular
properties, which is convergent but provides no bounds on the current error.
Several approaches provide SMC for MDPs and unbounded-horizon properties
with PAC guarantees. Firstly, the algorithm of [18] requires (1) the mixing time
T of the MDP (2) the ability to restart simulations also in non-initial states (3)
visiting all states sufficiently many times, and thus (4) the knowledge of the size
of the state space |S|. Secondly, [9], based on delayed Q-learning [34], lifts the
assumptions (2) and (3) and instead of (1) requires only (a bound on) the min-
imum transition probability pmin. Thirdly, [3] additionally lifts the assumption
(4), keeping only pmin, as in this paper. In [13], it is argued that while unbounded-
horizon properties cannot be analysed without any information on the system,
knowledge of (a lower bound on) the minimum transition probability pmin is
a relatively light and realistic assumption in many scenarios, compared to the
knowledge of the whole topology. In this paper, we thus adopt this assumption.

In contrast to SMC that uses possibly more (re-started) runs of the system,
there are online learning approaches, where the desired behaviour is learnt for the
single run. Model-based learning algorithms for mean payoff have been designed
both for minimizing regret [4,36] as well as for PAC online learning [25,26].

Due to lack of space, the proofs and some more experimental results and
discussions appear in [1].

2 Preliminaries

A probability distribution on a finite set X is a mapping p : X — [0, 1], such that
> zex () = 1. We denote by D(X) the set of probability distributions on X.

Definition 1. (MDP). A Markov decision process is a tuple of the form M =
(S, Sinit, Act, Av, T, 1), where S is a finite set of states, Sinir € S is the initial
state, Act is a finite set of actions, Av : S — 22 assigns to every state a set of
available actions, T : S x Act — D(S) is a transition function that given a state
s and an action a € Av(s) yields a probability distribution over successor states,
and r: S — R2Y is a reward function, assigning rewards to states.

For ease of notation, we write T(s,a,t) instead of T(s,a)(t). We denote by
Post(s, a), the set of states that can be reached from s through action a. Formally,
Post(s,a) = {t | T(s,a,t) > 0}.

6 C. Agarwal et al.

The choices of actions are resolved by strategies, generally taking history
into account and possibly randomizing. However, for mean payoff it is sufficient
to consider positional strategies of the form 7 : S — Act. The semantics of an
MDP with an initial state sj,; is given in terms of each strategy o inducing a
Markov chain MY with the respective probability space and unique probability

measure Pt and the expected value E™%nt [F] of a random variable F (see
e.g. [6]). We drop M7 when it is clear from the context.

End Components An end-component (EC) M = (T, A), with § # T C S and
AT — 27 of an MDP M is a sub-MDP of M such that: for all s € T,
we have that A(s) is a subset of the actions available from s; for all a € A(s),
we have Post(s,a) C T and, it’s underlying graph is strongly connected. A
mazimal end-component (MEC) is an EC that is not included in any other
EC. Given an MDP M, the set of its MECs is denoted by MEC(M). For
MEC(M) = {(T1, A1), ..., (T, A,)}, we define MECs = (J;-_, T; as the set of all
states contained in some MEC.

Definition 2. (continuous-time MDP (CTMDP)). A continuous-time
Markov decision process is a tuple of the form M = (S, Sinit, Act,Av,R 1),
where S is a finite set of states, sppiy € S is the initial state, Act is a finite
set of actions, Av : S — 27 gssigns to every state a set of available actions,
R:S X Act xS — Ry is a transition rate matriz that given a state s and an
action a € Av(s) defines the set of successors t of s on action a if R(s,a,t) > 0,
and r : S — Rsg is a reward rate function, assigning a reward function to a
state denoting the reward obtained for spending unit time in s.

A strategy in a CTMDP decides immediately after entering a state which action
needs to be chosen from the current state. For a given state s € S, and an
action a € Av(s), we denote by A(s,a) = >, R(s,a,t) > 0 the exit rate of a in
S. The residence time for action a in s is exponentially distributed with mean
,\(5 nE An equivalent way of looking at CTMDP is that in state s, we wait
for a time which is exponentially distributed with mean A(s,a), and then with
probability A(s,a,t) = R(s,a,t)/A(s,a), we make a transition to state ¢. The
reward accumulated for spending time t in s is r(s) - t.

Uniformization. A uniform CTMDP has a constant exit rate C' for all state-
action pairs i.e., A(s,a) = C for all states s € S and actions a € Av(s). The
procedure of converting a non-uniform CTMDP into a uniform one is called
uniformization. Consider a non-uniform CTMDP M. Let C' € Ry such that
C 2 A(s,a) for all s € S and a € Act. We can obtain a uniform CTMDP M¢
by assigning the new rates.

, _JR(s,a,t) if s#£t
R(s’a,t)_{R(s,a,t)-i-C—)\(&a) ifs=t W

For every action a € Av(s) from each state s in the new CTMDP we have
a self loop if A(s,a) < C. Due to a constant transition rate, the mean interval
time between two any two actions is constant.

PAC Statistical Model Checking of Mean Payoff 7

Mean Payoff. In this work, we consider the (maximum) mean payoff (or long-
run average reward) of an MDP M, which intuitively describes the (maximum)
average reward per step we expect to see when simulating the MDP for time
going to infinity. Formally, let S;, A;, R; be random variables giving the state
visited, action played, and reward obtained in step i, and for CTMDP, T; the
time spent in the state appearing in step . For MDP, R; := r(S;), whereas for
CTMDP, R; := r(S;) - T;; consequently, for a CTMDP and a strategy m, we have
EY(R)) = x5
Thus given a strategy m, the n-step average reward is

n—1 n—1
7T = Eﬂ — RZ - — N R
- (15) - 15
with the latter equality holding for CTMDP. For both MDP and CTMDP, the
mean payoff is then

v(s) := maxliminf v,
s

n—oo

where the maximum over all strategies can also be without loss of generality
restricted to the set of positional strategies IIMP. A well-known alternative char-
acterization we use in this paper is

o) = mae > PIIOOM] vy, (2)
MEMEC(M)

where ¢ and OJ respectively denote the standard LTL operators eventually and
always respectively. Further, OCOM denotes the set of paths that eventually
remain forever within M and vy is the unique value achievable in the (CT)MDP
restricted to the MEC M. Note that vy; does not depend on the initial state
chosen for the restriction.

We consider algorithms that have a limited information about the MDP.

Definition 3. (Blackbox and greybox). An algorithm inputs an MDP or a
CTMDP as blackbox if

— it knows Sinit,
— for a given state,® an oracle returns its available actions,
— given a state s and action a, it can sample a successor t according to T(s,a),
— it knows pmin < Minges qeav(s) T(5,a,t), an under-approzimation of the min-
tePost(s,a)
imum transition probability.

When input as greybox, it additionally knows the number |Post(s,a)| of suc-
cessors for each state s and action a. Note that the exact probabilities on the
transitions in an MDP or the rates in a CTMDP are unknown for both blackbox
and greybox learning settings.

! In contrast to practical setups in monitoring, our knowledge of the current state is
complete, i.e., the previously visited states can be uniquely identified.

8 C. Agarwal et al.

3 Overview of Our Approach

Since no solutions are available in the literature and our solution consists of
multiple ingredients, we present it in multiple steps to ease the understanding.
First, we describe a more naive solution and pinpoint its drawbacks. Second, we
give an overview of a more sophisticated solution, eliminating the drawbacks.
Third, we fill in its details in the subsequent sections. Besides, each of the three
points is first discussed on discrete-time MDPs and then on continuous-time
MDPs. The reason for this is twofold: the separation of concerns simplifies the
presentation; and the algorithm for discrete-time MDP is equally important and
deserves a standalone description.

3.1 Naive Solution

We start by suggesting a conceptually simple solution. We can learn mean payoff
MP in an MDP M as follows:

(i) Via simulating the MDP M, we learn a model M’ of M, i.e., we obtain
confidence intervals on the ¢ransition probabilities of M (of some given
width erp, called TP-imprecision, and confidence 1 — drp, where drp is
called TP-inconfidence).

(ii) We compute the mean payoff MP on the (imprecise) model M’.

(iii) We compute the MP-imprecision epp = |]\7[73 — MP| of the mean payoff
from the TP-imprecision by the “robustness” theorem [8] which quantifies
how mean payoff can change when the system is perturbed with a given
maximum perturbation. Further, we compute the overall MP-inconfidence
Oy p from the TP-inconfidence d7p; in particular, we can simply accumulate
all the uncertainty and set dpyp = |T| - d7p, where |T| is the number of
transitions. The result is then probably approximately correct, being s p-
precise with confidence 1 —dpsp. (Inversely, from a desired ep we can also
compute a sufficient epp to be used in the first step.)

Learning the model, i.e. the transition probabilities, can be done by observ-
ing the simulation runs and collecting, for each state-action pair (s, a), a statistics
of which states occur right after playing a in s. The frequency of each successor
t among all successors then estimates the transition probability T (s, a,t). This is
the standard task of estimating the generalized Bernoulli variable (a fixed distri-
bution over finitely many options) with confidence intervals. We stop simulating
when each transition probability has a precise enough confidence interval (with
erp and drp yielded by the robustness theorem from the desired overall preci-
sion).? The drawbacks are (D1: uniform importance) that even transitions with

2 Several non-trivial questions are dealt with later on: how to resolve the action choices
during simulations; when to stop each simulation run and start a new one; additionally,
in the black-box setting, when do we know that all successors of each transition have
been observed. In particular, the last one is fundamental for the applicability of the
robustness theorem. While the literature typically assumes the greybox setting or even
richer information, to allow for such an algorithm with PAC bounds, our approach only
needs Pmin-

PAC Statistical Model Checking of Mean Payoff 9

little to no impact on the mean payoff have to be estimated precisely (with ez p and
Orp); and (D2: uniform precision required) that, even restricting our attention to
“important” transitions, it may take a long time before the last one is estimated
precisely (while others are already estimated overly precisely).

Subsequently, using standard algorithms the mean payoff MP can be com-
puted precisely by linear programming [30] or precisely enough by value iteration
[2]. The respective M P can then be estimated by the robustness theorem [8],
which yields for a given maximum perturbation of transition probabilities (in our
case, erp/2) an upper bound on the respective perturbation of the mean payoff
emp/2. The drawbacks are (D3: uniform precision utilized) that more precise
confidence intervals for transitions (obtained due to D2) are not utilized, only
the maximum imprecision is taken into account; and (D4: a-priori bounds) that
the theorem is extremely conservative. Indeed, it reflects neither the topology
of the MDP nor how impactful each transition is and thus provides an a-priori
bound, extremely loose compared to the possible values of mean payoff that can
be actually obtained for concrete values within the confidence intervals. This is
practically unusable beyond a handful of states even for Markov chains [13].

For CTMDP M, we additionally need to estimate the rates (see below how).
Subsequently, we can uniformize the learnt CTMDP M’. Mean payoff of the
uniformized CTMDP is then equal to the mean payoff of its embedded MDP?3.
Hence, we can proceed as before but we also have to compute (i) confidence inter-
vals for the rates from finitely many observations, and (ii) the required precision
and confidence of these intervals so that the respective induced error on the mean
payoff is not too large. Hence all the drawbacks are inherited and, additionally,
also applied to the estimates of the rates. Besides, (DJ: rates) while impreci-
sions of rates do not increase MP-imprecision too much, the bound obtained via
uniformization and the robustness theorem is very loose. Indeed, imprecise rates
are reflected as imprecise self-loops in the uniformization, which themselves do
not have much impact on the mean payoff, but can increase the TP-imprecision
and thus hugely the MP-imprecision from the robustness theorem.

Finally, note that for both types of MDP, (D6: not anytime) this naive algo-
rithm is not an anytime algorithm? since it works with pre-computed e7p and
orp. Instead it returns the result with the input precision if given enough time;
if not given enough time, it does not return anything (also, if given more time,
it does not improve the precision).

3.2 Improved Solution

Now we modify the solution so that the drawbacks are eliminated. The main
ideas are (i) to allow for differences in TP-imprecisions (erp can vary over

3 An embedded MDP of a CTMDP is obtained by considering for every state s, actions
a € Av(s), and transitions ¢ € Post(s,a), such that T(s,a,t) = A(s,a,t), and by
disregarding the transition rate matrix.

4 An anytime algorithm can, at every step, return the current estimate with its impre-
cision, and this bound converges to 0 in the limit.

10 C. Agarwal et al.

transitions) and even deliberately ignore less important transitions and instead
improve precision for transitions where more information is helpful the most;
(ii) rather than using the a-priori robustness theorem, to utilize the precision
of each transition to its maximum; and (iii) to give an anytime algorithm that
reflects the current confidence intervals and, upon improving them, can efficiently
improve the mean-payoff estimate without recomputing it from scratch. There
are several ingredients used in our approach.

Firstly, [2] provides an anytime algorithm for approximating mean payoff
in a fully known MDP. The algorithm is a version of value iteration, called
on-demand, performing improvements (so called Bellman updates) of the mean-
payoff estimate in each state. Moreover, the algorithm is simulation-based, per-
forming the updates in the visited states, biasing towards states where a more
precise estimate is helpful the most (“on demand”). This matches well our learn-
ing setting. However, the approach assumes precise knowledge of the transition
probabilities and, even more importantly, heavily relies on the knowledge of
MECs. Indeed, it decomposes the mean-payoff computation according to Eq. 2
into computing mean payoff within MECs and optimizing (weighted) reachabil-
ity of the MECs (with weights being their mean payoffs). When the MECs are
unknown, none of these two steps can be executed.

Secondly, [3] provides an efficient way of learning reachability probabilities
(in the greybox and blackbox settings). Unfortunately, since it considers TP-
inconfidence to be the same for all transitions, causing different TP-imprecisions,
the use of robustness theorem in [3] makes the algorithm used there practically
unusable in many cases. On a positive note, the work identifies the notion of
orp-sure EC, which reflects how confident we are, based on the simulations so
far, that a set of states is an EC. This notion will be crucial also in our algorithm.

Both approaches are based on “bounded value iteration”, which computes at
any moment of time both a lower and an upper bound on the value that we are
approximating (mean payoff or reachability, respectively). This yields anytime
algorithms with known imprecision, the latter—being a learning algorithm on
an incompletely known MDP—only with some confidence. Note that the upper
bound converges only because ECs are identified and either collapsed (in the
former) or deflated [24] (in the latter), meaning their upper bounds are decreased
in a particular way to ensure correctness.

Our algorithm on (discrete-time) MDP M performs, essentially, the following.
It simulates M in a similar way as [3]. With each visit of each state, not only it
updates the model (includes this transition and improves the estimate of the out-
going transition probabilities), but also updates the estimate of the mean payoff
by a Bellman update. Besides, at every moment of time, the current model yields
a hypothesis what the actual MECs of M are and the respective confidence. While
we perform the Bellman updates on all visited states deemed transient, the states
deemed to be in MECs are updated separately, like in [2]. However, in contrast to
[2], where every MEC is fully known and can thus be collapsed, and in contrast
to the “bounded” quotient of [3] (see Appendix A of [1]), we instead introduce a
special action stay in each of its states, which simulates staying in the (not fully
known) MEC and obtaining its mean-payoff estimate via reachability:

PAC Statistical Model Checking of Mean Payoff 11

Definition 4. (stay-augmented MDP). Let M = (S, sinir, Act, Av, T, r) be
an MDP and l,u : MEC(M) — [0,1] be real functions on MECs. We augment
the stay action to M to obtain M’ = (S', sjnit, Act’, AV/, T' "), where

- S =Su{sy,s_,s0},
— Act’ = Act W {stay},

Av(s) for s € S\ UMEC(M)
- AV/(s) = S Av(s) U {stay} for s € JMEC(M)
{stay} for s € {sy,s_,s7}

~ T’ extends T by T'(s,stay) = {sy —U(M),s_+— 1 —u(M),s? — u(M)—
I(M)} ons € M € MEC(M) and by T'(s,stay,s) =1 for s € {s;,5_,87}.
— 1" extends v by ' (sy) =1'(s7) =1"(s_) = 0.5

Corollary 1. Ifl,u are valid lower and upper bounds on the mean-payoff within
MECs of M then max, PM7[0{s,}] < v(sinie) < maz,PM [0{s,s2}]® where,
max, PM’ [0S] gives the mazimum probability of reaching some state in S over
all strategies.

This turns the problem into reachability, and thus allows for deflating (defined
for reachability in [3]) and an algorithm combining [3] and [2]. The details are
explained in the next section. To summarize (D1) and (D2) are eliminated by not
requiring uniform TP-imprecisions; (D3) and (D4) are eliminated via updating
lower and upper bounds (using deflating) instead of using the robustness theorem.

Concerning CTMDP, in Sect.5 we develop a confidence interval computa-
tion for the rates. Further, we design an algorithm deriving the MP-imprecision
resulting from the rate imprecisions, that acts directly on the CTMDP and not
on the embedded MDP of the uniformization. This effectively removes (D5).

4 Algorithm for Discrete-Time MDP

Now that we explained the difficulties of a naive approach, and the concepts
from literature together with novel ideas to overcome them, we describe the
actual algorithm for the discrete-time setting. Following a general outline of the
algorithm, we give detailed explanations behind the components and provide the
statistical guarantees the algorithm gives. Detailed pseudocode of the algorithms
for this section is provided in Appendix B of [1].

Overall Algorithm and Details. Our version of an on-demand value iteration
for mean payoff in black-box MDP is outlined in Algorithm 1. Initially, the
input MDP M is augmented with terminal states ({si,s_,s?}) to obtain the

5 A higher transition probability to s indicates that the MEC has high value, a higher
transition probability to s» indicates high uncertainty in the value of the MEC, while
a higher transition probability to s_ indicates that the MEC has low value.

5 For simplicity of the presentation, we assume the rewards are between 0 and 1, for
all states. If they are not, we can always rescale them to [0,1] by dividing them by
the maximum reward observed so far and correspondingly adjust T(-, stay, -).

12 C. Agarwal et al.

stay-augmented MDP M’. We learn a stay-augmented MDP M’ = (S, sinit,
Act’, AV, T’, r') by collecting samples through several simulation runs (Lines 5-8).
Over the course of the algorithm, we identify MECs with d7p confidence (Line 13)
and gradually increase precision on their respective values (Lines 9-11). As stated
earlier, these simulations are biased towards actions that lead to MECs potentially
having higher rewards. Values for MECs are encoded using the stay action (Line 12)
and propagated throughout the model using bounded value iteration (Lines 14-
19). In Line 14, we reinitialize the values of the states in the partial model since
new MECs may be identified and also existing MECs may change. Finally, we claim
that the probability estimates T’ are correct with confidence 8, p and if the bounds
on the value are precise enough, we terminate the algorithm. Otherwise, we repeat
this overall process with improved bounds (Line 20).

Stmulation. The SIMULATE function simulates a run over the input blackbox
MDP M and returns the visited states in order. The simulation of M’ is exe-
cuted by simulating M together with a random choice if action stay is taken.
Consequently, a simulation starts from s;,; and ends at one of the terminal states
({84, s—, s7}). During simulation, we enhance our estimate of M’ by visiting new
states, exploring new actions and improving our estimate of T” with more sam-
ples. When states are visited for the first time, actions are chosen at random, and
subsequently, actions with a higher potential reward are chosen. If a simulation
is stuck in a loop, we check for the presence of an MEC with d7p confidence.
If a §pp-sure MEC is found, we add a stay action with [,u = 0,1, otherwise we
keep simulating until the required confidence is achieved. After that, we take the
action with the highest upper bound that is leaving the MEC to continue the
simulation. We do several such simulations to build a large enough model before
doing value iteration in the next steps.

Estimating Transition Probabilities. [3] gives an analysis to estimate bounds on
transition probabilities for reachability objective in MDPs. For completeness,
we briefly restate it here. Given an MP-inconfidence d,;p, we distribute the
inconfidence over all individual transitions as

_ OMP * Pmin
Hals € S' Na e AV (s)}]

5Tp :

where % gives an upper bound on the maximum number of possible successors
min

for an available action from a state”. The Hoeffding’s inequality gives us a bound
on the number of times an action a needs to be sampled from state s, denoted

Ind
#(s,a), to achieve a TP-imprecision epp > 2T oy T(s,a,t), such that
_2#(87 a’)
o #(8, a, t)
T t) = 0, —/—"—F—~ —
(s,a,t) := max(0, 0s.a) erp)

" Knowing additionally MaXses acAv(s) |POSt(s,a)| gives slightly smaller TP-
imprecision. See Appendix G.4 in [1].

PAC Statistical Model Checking of Mean Payoff 13

Algorithm 1. Mean-payoff learning for black-box MDP
Input: MDP M, imprecision exprp > 0, MP-inconfidence dap > 0, lower bound pmin
on transition probabilities in M
Parameters: revisit threshold k > 2, episode length n > 1
Output: upon termination &,sp-precise estimate of the maximum mean payoft for M
with confidence 1 — dap, i.e. (emp,1 — dnp)-PAC estimate

1: procedure ON_DEMAND_BVI

//Initialization
2: Set L(s+) =U(sy) =U(s?) =1, L(s—) =U(s—) = L(s7) =0 > Augmentation
3: S'=90 > States of learnt model
4: repeat
//Get n simulation runs and update MP of MECs where they end up
5 for n times do
6: w < SIMULATE(k) > Path taken by the simulation
7 S"—S'uUw > Add states to the model
8: orp — % > Split inconfidence among all transitions
9: if last state of w is st or s? then > Probably entered a good MEC M
10: M «— MEC from which we entered the last state of w
11: UPDATE_MEC_VALUE(M) > Increase precision using more VI
12: Update T'(s, stay) according to Definition 4 for all s € M
//Identify érp-sure MECs and propagate their MP by VI for reachability
13: ProbableMECs «— FIND_MECS > drp-sure MECs
14: INITIALIZE_VI_-BOUNDS > Reinitialize L, U for all states
15: repeat
16: UPDATE(S’) > One Bellman update per state
17: for T € ProbableMECs do
18: DEFLATE(T) > Ensure safe but converging U
19: until L and U close to their respective fixpoints
20: until U(sinit) - L(sinit) < % > eprp is the absolute error; we use “< %”

for relative difference between upper and lower values, where rmax = maxr(s).
ses’

where, #(s, a, t) is the number of times ¢ is sampled when action a is chosen in s.

Updating mean-payoff values Using T(s, a,t), we compute estimates of the upper
and lower bounds of the values corresponding to every action from a state visited
in the partial model that is constructed so far. We use the following modified
Bellman Eq. [3]:

L(s,a) := Z T(s,a,t) - L(t)

t:#(s,a,t)>0
Us,a):= > T(s,at)-Ut) + (1 -y Tr(s,a,t))
t:#(s,a,t)>0 t:#(s,a,t)>0
where L(t) = max E(t,a) and U(t) = max U(t,a) are bounds on the value
a€Av(t) a€Av (t)

of from a state, v(s). When a state is discovered for the first time during the

14 C. Agarwal et al.

simulation, and is added to the partial model, we initialize L(s), and U(s) to 0,

o~

and 1, respectively. Note that > T(s,a,t) < 1. We attribute the remain-
t:#(s,a,t)>0

ing probability to unseen successors and assume their value to be 0 (1) to safely

under-(over-)approximate the lower (upper) bounds. We call these blackbox Bell-

man update equations, since it assumes that all the successors of a state-action

pair may not have been visited.

Estimating Values of End-Components. End-components are identified with an
inconfidence of é7p. As observed in [13], assuming an action has been sampled
n times, the probability of missing a transition for that action is at most (1 —
Pmin)™. Thus, for identifying (T, A) as a drp-sure MEC, every action in A that
is available from a state s € T' needs to be sampled at least lnl(liiijz;:;n) times.
Once a dpp-sure MEC M is identified, we estimate its upper (v},) and lower
(v},) bounds using value iteration.® While running value iteration, we assume,
with a small inconfidence, that there are no unseen outgoing transitions. So we
use the following modified Bellman update equations inside the MEC where we
under-(over-)approximate the lower(upper) bound to a much lesser degree.

Ls,a) == Y T(s,a,t) L)+ min Lt)-(1— > T(s,a,t))

t:#(s,a,t)>0

t:#(s,a,t)>0 t:#(s,a,t)>0
Us.a):= > T(s,a,t) U(t)+ 0 U -1— > T(s.at))
t:#(s,a,t)>0 t:#(s,a,t)>0

Following the assumption, we call these greybox (See Definition 3) Bellman
update equations. The value iteration algorithm further gives us bounds on v},
and vh,;. We say that the upper estimate of v}, (0%,) and the lower estimate
of vl, (v%,) are the overall upper and lower bounds of the mean-payoff value
of M, respectively. To converge the overall bounds, we need value iteration to
return more precise estimates of vf\/[and v}, and we need to sample the actions
inside M many times to reduce the difference between v}, and v%,. We call this
procedure, UPDATE_MEC_VALUE.

Now, some MECs may have very low values or may not be reachable from st
with high probability. In such cases, no optimal strategy may visit these MECs,
and it might not be efficient to obtain very precise mean-payoff values for every
MEC that is identified in an MDP. We follow the on-demand heuristic [2] where
we progressively increase the precision on mean-payoff values as an MEC seems
more likely to be a part of an optimal strategy. The stay action on MECs helps
in guiding simulation towards those MECs that have a higher lower bound of
the mean-payoff value. In particular, whenever the simulation ends up in s4 or
s7, we run UPDATE_MEC_VALUE with higher precision on the MEC that led
to these states. If the simulation ends up in these states through a particular
MEC more often, it indicates that the MEC is likely to be a part of an optimal
strategy, and it would be worth increasing the precision on its mean-payoff value.

8 Note that one requires the ECs to be aperiodic for the VI to converge. [30] suggests
a way that deals with this.

PAC Statistical Model Checking of Mean Payoff 15

Deflate Operation. Unlike in the case of computation of mean payoff for whitebox
models [3] where a MEC is collapsed following the computation of its value, for
blackbox learning, once a set of states is identified as a drp-sure MEC, we cannot
collapse them. This is because collapsing would prevent a proper future analysis
of those states, which is undesirable in a blackbox setting. However, this leads
to other problems. To illustrate this, we consider an MDP that only has a single
MEC M and one outgoing action from every individual state. Recall from Eq. 2
that we compute the mean-payoff by reducing it to a reachability problem. Once
the mean-payoff for the MEC, and the probabilities corresponding to stay action
in Line 12 are computed, to compute the reachability probability, the upper and
lower bounds of all states in the MECs are initialized to 1 and 0 respectively.
Now suppose that the sum of probabilities to s; and s, be p denoting the upper
bound on the value of the mean-payoff to be p-ryax. Clearly, the upper bound on
the reachability value of this MDP is p. Now, when we do BVI to calculate this
value, from every state in M, there would be at least two action choices, one that
stays inside the MEC, and one that corresponds to the stay action. Initially, all
states, except the terminal states, would have upper and lower values set to 0 and
1, respectively. Thus, among the two action choices, one would have upper value
p, while the other would have upper value 1, and hence, the Bellman update
assigns the upper value of the state to 1. As one can see, this would go on, and
convergence wouldn’t happen, and hence the true mean-payoff value will not be
propagated to the initial state of the MDP. To avoid this, we need the deflate
operation which lowers the upper reachability value to the best outgoing action,
i.e. in this case, the stay action with value p.

Statistical Guarantees. The following theorem shows that the mean-payoff value
learnt by Algorithm 1 is PAC on an input blackbox MDP.

Theorem 1. Algorithm 1 has the property that when it stops, it returns an
interval for the mean-payoff value of the MDP that is PAC for the given MP-
inconfidence dprp and the MP-imprecision ey p.

Anytime Algorithm. As a direct consequence, we obtain an anytime algorithm
from Algorithm 1 by (1) dropping the termination test on Line 20, i.e. replacing
it with until false, and (2) upon query (or termination) by the user, we output
(U(Sinit) + L(sinit))/2 as the estimate and, additionally, we output (U(sinit) -
L(sinit))/2 as the current imprecision.

Using Greybox Update Equations During Blackboz Learning. We also consider
the variant where we use greybox update equations to estimate the mean-payoff
values. However, assuming we keep the TP-imprecision unchanged, the overall
TP-inconfidence now has to include the probability of missing some successor of
a state s for an action a”. Given a number of samples #(s, a), the probability
that we miss a particular successor is at most (1 — pm;n)#(s’“), and hence the

9 Assuming #(s,a) to be as small as 200, and pmin = 0.05, the probability of missing
a transition is 3.5 - 1075,

16 C. Agarwal et al.

overall TP-inconfidence corresponding to using greybox equations for blackbox
learning increases to d7p + (1 — pmin)# (5%,

We also note that the use of greybox update equations on estimating the
transition probabilities also gives us a PAC guarantee but with an increased
MP-Inconfidence resulting from an increased TP-inconfidence.

5 Algorithm for Continuous-Time MDP

In this section, we describe an algorithm to learn blackbox CTMDP models
for mean-payoff objective while respecting the PAC guarantees. As in the case
of MDPs, we reduce the mean-payoff problem to a reachability problem. We
follow the same overall framework as in MDPs, where we compute the proba-
bility to reach the end-components under an optimal strategy, and we compute
their respective mean-payoff values. Computing reachability probabilities in a
CTMDP is the same as computing reachability probabilities in the underlying
embedded MDP. Similar to estimating T(s,a,t) in Sect.4 for MDPs, we esti-
mate A(s,a,t)!? for CTMDPs, and follow the simulation-based procedure in
Algorithm 1 to compute reachability probabilities. However, unlike MECs in
MDPs, where the mean-payoff value depends solely on the transition probabil-
ities, the mean-payoff value in a CTMDP also depends on the rates A(s,a) for
s € T and a € A(s) for an MEC M = (T, A). Thus to compute the value of
an MEC, we also estimate the rates of the state-action pairs. Once we get the
estimates of the rates, we uniformize the CTMDP to obtain a uniform CTMDP
that can be treated as an MDP by disregarding the rates while preserving the
mean-payoff value [30]. Detailed pseudocode of the algorithms for this section
are provided in Appendix F of [1].

Estimating Rates. Recall that for an action a, the time spent in s is exponentially
1

distributed with a parameter \(s, a), and Yol is the mean of this distribution.
During the simulation of a CTMDP, for every state s reached and action a chosen
from s, we construct a sequence 75 , of the time difference between the entry and
the corresponding exit from s when action a is chosen. Then, the average over

. ed 11q + 1 1 : 1
the sequence 75, gives us an estimate o) of Yol (Abbreviated to 5 from

now on when (s,a) is clear from the context.).

Assuming a multiplicative error ar on our estimates of %, the lemma below
uses Chernoff bounds'! to give the number of samples that need to be collected
from an exponential distribution so that the estimated mean % is at most ag-

fraction away from the actual mean % with probability at least 1 — 0, where

ar,0r € (0,1). Further by Cramer’s theorem [15], it follows that this is the
tightest possible bound for the number of samples collected.

10 Recall that an estimate of A(s, a,t) is the ratio between #(s, a,t) and #(s,a), and
is the probability with which we go to state ¢ from s when action a is chosen from s.

11 Since A is not bounded, we cannot use Hoeffding’s inequality as in the case of esti-
mating the transition probabilities.

PAC Statistical Model Checking of Mean Payoff 17

Lemma 1. Let Xq,...,X, be exponentially distributed i.i.d. random variables
with mean % Then we have that

1 1 1 A o tn A T tn
IP’{ LN]g inf (7) LB (14ar) | f() eS(-ar)
ST | s ot () T\

15~ N
where -3 - Xi = 5.

Assuming the right-side of the inequality is at most 6z, we have that A € [A(1 —
ar), A(1 + ag)], or X € [2 2] with probability at least 1 — 6. Table1

1+ar’ 1—agr
shows the number of samples required for various values of ag and dg'2.

Table 1. Lookup table for number of samples based on ar and dr

ar \dr 10% 5% 0.01% | 0.00001%
3% 7000 9000 23000 | 60000
5% 2500 3100 8000 13400

Given a maximum multiplicative error ag on the mean of the exponential
distributions of the state-action pairs in a CTMDP, we say that the rate A is
known ap-precisely if A € [H—);m’ 1_’\a]. We now quantify the bounds on the
estimated mean-payoff value. Let M be a CTMDP, v be its actual mean-payoff
value, and let U, denote its mean-payoff when the rates of the state-action pairs

are known ap-precisely. Then we have the following.

Lemma 2. Given a CTMDP M with rates known ag-precisely, with transi-
tion probabilities known precisely, and with maximum reward per unit time over

all states rpaz, we have UM(}I_O‘ﬁ) < om < vM(}le‘;) and [Up — opm] <

2(13
rmam 1_aR .

Estimating Mean-Payoff Values of MECs. Using our bounds on the rates of
the transitions, we now compute bounds on the mean-payoff values of MECs in
CTMDPs. We first show that the mean payoff is maximized or minimized at the
boundaries of the estimates of the rates. Intuitively, to maximise the mean-payoff
value, for a state s; with a high reward, we would like to maximise the time spent
in s; or equivalently, minimise the rate A(s;, a) for every outgoing action a from
s;. We do the opposite when we want to find a lower bound on the mean-payoff
value in the MEC. Consider an MEC M having states T = {s1, ..., S }- Assume
that \; is the rate of an action a from state s;, such that a positional mean-payoff
maximizing strategy o chooses a from s;. Then, the expected mean-payoff value
of M is given by,

2 Tn Appendix E of [1], we show the computation of the number of samples for one of
the entries.

18 C. Agarwal et al.

r(si)m;
P v

s; €T ’

UM = .
XA
s; €T

3)

where 7; denotes the expected fraction of total time spent in s; under o.

Now, we have estimates % of %, such that, \; € X,- (1-ag) ,Xi (1+ aR)}

i

with high probability. Let Al = X; (1 — ag) and A% = A; (1 + ag).

Proposition 1. In Eq. 3, the mazimum and the minimum values of vy occur
at the boundaries of the estimates of \; for each 1 < i< m.

In particular, vys is maximized when,
AL i r(s) > v
)\7; _ 2l (’L)._ M (4)
Aj, otherwise

Once we fix the rates for each of the states in M, we uniformize M to obtain
a uniform CTMDP Mg which is an MEC and can be treated as an MDP for
computing its mean-payoff value [30]. Let for a state-action pair, the rate be
A(s,a), and the uniformization constant be C. For a successor t from s under

action a such that ¢ # s, we have A(s,a,t) = i((sgaa? .)‘(Zia), and A(s,a,s) =

1 — > A(s,a,t). Finally, value iteration on M¢ with appropriate confidence
t#s
width gives us the lower and the upper estimates of the mean-payoff value of the

MEC M.

We now describe an iterative procedure to identify those states of the MEC
for which the upper bound on the estimates of the rates are assigned, and those
states for which the lower bound on the estimates of the rates are assigned
in order to maximize or minimize the mean-payoff value of the MEC. Assume
w.l.o.g. that the states s1,...,s,, are sorted in decreasing order of their rewards
r(s;). In iteration j, we set \; = Al for 1 < i < j, and we set \; = AV for
the remaining states and recompute v,;. The maximum value of vy; across all
iterations gives the upper bound on v,;. Similarly we can find the lower bound

on vys. Overall, value iteration is done 2|T'| times!'3.

Owverall Algorithm. As stated in the beginning of this section, an algorithm for
computing the mean payoff in blackbox CTMDP models largely follows the same
overall framework as stated in Sect. 4. By sampling the actions, we obtain esti-
mates of the rates and the transition probabilities. The reachability probabilities

13 In our experiments, we use a heuristic to estimate vy; that provides good approxi-
mate bounds and is more efficient. We first compute an initial estimate of U using
our current estimates, A. We then compute the upper bound by assigning the rates
as in Eq.4 where vy is replaced with Uas. Similarly, the lower bound can also be
found. A detailed pseudocode of this algorithm is described in Algorithm 18 of [1].

PAC Statistical Model Checking of Mean Payoff 19

to the MECs of the CTMDP are estimated using the estimates of the transi-
tion probabilities while the mean-payoff values of MECs are estimated using
uniformization as decribed above. The confidence widths on the transition prob-
abilities in a uniformized MEC are assigned based on the number of samples
#(s,a) for a state-action pair (s, a).

Statistical Guarantees. Let d7p and dg be the TP-inconfidence and the incon-
fidence on individual transition rates, respectively. Further, let dp;p1 and
dpp2 be the overall inconfidence on the transition probabilities and transi-
dMP1 * Pmin
= , and g
seSANa€Av(s)}

tion rates, respectively. Then, drp :=

{a

. Thus, we have that the overall inconfidence on the

dnp2
[{a|s € S Aa € Av(s)}]
mean-payoff value, dy;p = dprp1 + dprp2. Thus, to achieve a given inconfidence
on the mean-payoff value, we fix d7p and g, and adjust the imprecisions erp
and ap accordingly.'
As in the case of MDPs, our learning algorithm for blackbox CTMDP models
is an anytime algorithm that is PAC for the given MP-inconfidence dp;p.

6 Experimental Results

We implemented our algorithms as an extension of PRISM [27] and tested it
on 15 MDP benchmarks and 10 CTMDP benchmarks. Several of these bench-
marks were selected from the Quantitative Verification Benchmark Set [21]'5.
The results for MDP and CTMDP blackbox learning are shown in Table2 and
Table 3 respectively. Here, we scale the upper and lower bounds to 1 and 0,
and show the average values taken over 10 experiments. The experiments were
run on a desktop machine with an Intel 5 3.2 GHz quad core processor and 16
GB RAM. The MP-imprecision e,,p is set to 1072, revisitThreshold k is set to
6, MP-inconfidence dpsp is set to 0.1 and n is set to 10000. We further use a
timeout of 30 minutes. In the case of a timeout, the reported upper and lower
bounds on the mean payoff still correspond to the input MP-inconfidence 6, p,
although the MP-imprecision may not be the desired one.

Blackbox Learning for MDPs. We see that in Table 2 for blackbox learning, 9
out of 15 benchmarks converge well, such that the precision is within 0.1. In
fact, for many of these 9 benchmarks, a precision of 0.1 is achieved much before
the timeout (TO). In Fig. la and Fig. 1b, we show this for zeroconf and pacman.
zeroconf has a large transient part and a lot of easily reachable single state

4 See Appendix G of [1] for a more detailed calculation of the number of samples
required to make transition probabilities and the rates precise.

15 The CTMDP benchmarks are available as Markov automata models that were con-
verted to CTMDP models using a tool developed in the thesis [11].

20 C. Agarwal et al.

Table 2. Results on MDP benchmarks.

Number Blackbox Blackbox with
Benchmarks of states® Value greybox update equations
States Lower | Upper | Time | States Lower | Upper | Time
explored | bound | bound | (s) | explored | bound | bound | (s)
virus 809 0 809 0.0 0.5319 | TO | 809 0.0 0.008 |273.01
cs_nfail 184 0.333 | 184 0.327510.3618 | TO | 184 0.332 |0.337 |126.77
investor 6688 0.95 | 6284 0.8458 | 0.9559 | TO | 5835 0.945 |0.954 |620.23
zeroconf 3001911 | TO 487 0.923 |1.0 TO | 360 0.990 |1.0 116.04
Sensors 189 0.333 | 189 0.3299 | 0.3513 | TO | 189 0.332 |0.336 |64.64
consensus 272 0.1083 | 272 0.093 |0.1605 | TO |272 0.103 |0.113 |190.32
ij10 1023 1 1023 0.3626 | 1.0 TO |1023 0.999 |1.0 26.822
ij3 7 1 7 0.990 |1.0 15.92 |7 0.999 |1.0 0.7127
pacman 498 0.5511 | 496 0.5356 | 0.5754 | TO | 496 0.5477 | 0.5577 | 215.36
wlan 2954 1 2954 0.6577 1.0 TO 2935 1.0 1.0 16.924
blackjack 3829 0 3829 0.0 0.3014 | TO | 3829 0.0 0.006 |91.503
counter 8 0.5 8 0.4998 | 0.5 30.37 |8 0.4999 | 0.5 15.215
recycling 5 0.727 |5 0.726 | 0.727 |1.309|5 0.726 |0.727 |0.927
busyRing 1912 1 1733 0.706 |1.0 TO | 1542 0.999 |1.0 34.86
busyRingMC | 2592 1 2574 0.969 |1.0 TO |2507 0.999 |1.0 114.50

The number of states and the values are computed using the probabilistic model-
checker STORM [14]

The number of states and the true mean-payoff values are computed by first uniformiz-
ing the CTMDP, and then using STORM on the underlying MDP.

MECs. Since it has a true value of 1, the upper and the lower values converge
after exploring only a few MECs. Our algorithm only needed to explore a very
small percentage of the states to attain the input precision. cs_nfail has many
significant MECs, and the learning algorithm needs to explore each of these
MECs, while in sensor there is a relatively large MEC of around 30 states, and
the simulation inside this MEC takes considerable amount of time.

virus consists of a single large MEC of more than 800 states, and its true value
is 0. As we simulate the MEC more and more, the TP-imprecision on the tran-
sition probabilities decreases and the upper bound on the mean-payoff reduces
over time. ij10 contains one MEC with 10 states in it. The value converges faster
and reaches a value of 1, during blackbox learning. This model has relatively
high number of actions, more than 5, for many of its states outside the MEC.
This leads to a higher TP-imprecision. Further, due to the conservative nature
of the blackbox update equations, the upper and the lower values converge very
slowly.

consensus, ij10, ij3, pacman, wlan were used in [3] for learning policies for
reachability objectives. The target states in these benchmarks are sink states
with self loops, and we add a reward of 1 on these target states so that the
rechability probability becomes the same as the mean payoff. The mean-payoff

PAC Statistical Model Checking of Mean Payoff 21

Table 3. Results on CTMDP benchmarks

Number Blackbox Blackbox with
Benchmarks Value greybox update equations
of states
States | lower | upper | Time | States | lower | upper | Time
explored | bound | bound | (s) |explored | bound bound| (s)
DynamicPM 816 1.0 816 0.436 | 1.0 TO 816 0.998 | 1.0 37.68
ErlangStages | 508 1.0 508 0.962 | 1.0 TO 508 0.999 | 1.0 8.118
PollingSystem1 | 16 0.922 |16 0.811 |0.937 | TO 16 0.816 |0.937 | TO
PollingSystem?2 | 348 0.999 | 348 0.637 0.999 | TO 348 0.998 |0.999 |21.893
PollingSystem3 | 1002 0.999 | 1002 0.232 | 1.0 TO 1002 099 |1.0 864.05
QueuingSystem | 266 0.8783 | 266 0.703 |0.906 | TO 266 0.865 |0.886 | TO
SJS1 17 1.0 17 0.999 | 1.0 133.96 | 17 0.997 1.0 1.05
SJS2 7393 0.999 | 7341 0.02 |1.0 TO 7268 0.936 |1.0 TO
SJS3 433 1.0 433 0.919 1.0 TO 432 0.999 |0.999 |5.3814
toy 12 1.0 12 0.99 1.0 5.6 12 0.999 1.0 1.112

results we observe are similar to the bounds reported for reachability probability
in [3], and our experiments also take similar time as reported in [3].

The blackjack model [35] is similar to zeroconf model. It has 3829 states and
2116 MECs. It has a large transient part and a lot of single state MECs. However,
unlike zeroconf all of the MECs have a value of 0. Thus, simulation takes more
time as the TP-imprecision reduces slowly.

Blackbox Learning with Greybox Update Equations. We show the results of these
experiments in the right side of Table 2. As observed, convergence is much faster
here for all the benchmarks. All our benchmarks converged correctly within a few
seconds to a few minutes. Hence for a small degradation in MP-inconfidence use
of greybox update equations works well in practice. We show the effect on
MP-inconfidence in more detail in Table 8 in Appendix G of [1].

Blackbox Learning for CTMDPs. In Table3 we show the results for CTMDP
benchmarks. The number of states in these benchmarks vary from as low as 12
to more than 7000. All the models used here have a lot of small end-components.
We observe that the upper and the lower values take more time to converge as
the size of the model grows. Figure 1¢ and Fig. 1d show the convergence of lower
and upper bounds for QueuingSystem and SJS3. As in the case of MDPs,; using
greyboz update equations speeds up the learning process significantly.

Greybox Learning. Recall from Definition 3 that in greybox learning, for every
state-action pair, we know the number of successors of the state for the given
action. As expected, their convergence is much faster than that for blackbox
learning, but the convergence is comparable to the case where we do blackbox
learning with greybox update equations. The details of the greybox learning
experiments can be found in Appendix G of [1].

22 C. Agarwal et al.

1.0 1.0
0.8 0.8
5 Bo6]
$.06 XS I e — _
- g (
5 5
g o4 —— Lower Bounds (B): 0.9247 g 04 h— Lower Bounds (B): 0.536
—— Upper Bounds (B): 1.0 —— Upper Bounds (B): 0.575
0.2 True Value: 1.0 0.2 True Value: 0.5511
—— Lower Bounds (G): 0.9901 —— Lower Bounds (G): 0.5476
0.0 —— Upper Bounds (G): 1.0 0.0 —— Upper Bounds (G): 0.5576
0 5 10 15 20 25 30 0 5 10 15 20 25 30
times (minutes) times (minutes)
(a) zeroconf (b) pacman
1.0 1.0
0.8 0.8
E= &
206 206
@ @
- -
H]
804 —— Lower Bounds (B): 0.7014 204 —— Lower Bounds (B): 0.9208
Upper Bounds (B): 0.9065 Upper Bounds (B): 1.0
0.2 True Value: 0.8783 0.2 True Value: 1.0
—— Lower Bounds (G): 0.8638 —— Lower Bounds (G): 1.0
0.0 —— Upper Bounds (G): 0.8865 0.0 —— Upper Bounds (G): 1.0

0 5 10 15 20 25 30 0 5 10 15 20 25 30
times (minutes) times (minutes)
(c) QueuingSystem (d) SJS3

Fig. 1. Convergence of lower and upper bounds for blackbox update equations and
greybox update equations.

7 Conclusion

We presented the first PAC SMC algorithm for computing mean payoff in
unknown MDPs and CTMDPs, where the only information needed is a lower
bound on minimum transition probability, as advocated in [13]. In contrast to
a naive algorithm, which follows in a quite straightforward way from the litera-
ture, our algorithm is practically applicable, overcoming the astronomic number
of simulation steps required. To this end, in particular, the inconfidence had to
be distributed in non-uniformly over the transitions and then imprecision prop-
agated by value iteration with precision guarantees. In future, we would like to
thoroughly analyse how well weakening the PAC bounds can be traded for a
yet faster convergence. On the practical side, applying importance sampling and
importance splitting could further improve the efficiency.

Acknowledgements. The second author would like to thank Subhajit Goswami for
insightful discussions on learning transition rate matrix in a CTMDP and for pointing
to useful references.

References

1. Agarwal, C., Guha, S., Pazhamalai, M., Kretinsky, J.: Pac statistical model
checking of mean payoff in discrete- and continuous-time mdp (2022). CoRR,
abs/2206.01465

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

PAC Statistical Model Checking of Mean Payoff 23

Ashok, P., Chatterjee, K., Daca, P., Kietinsky, J., Meggendorfer, T.: Value iter-
ation for long-run average reward in markov decision processes. In: Majumdar,
R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 201-221. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9_10

Ashok, P., Ktetinsky, J., Weininger, M.: PAC statistical model checking for markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497-519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_29

Auer, P., Ortner, R.: Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In: NIPS, pp. 49-56. MIT Press (2006)

Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76-85 (2010)

Baier, C., Katoen, J-P.: Principles of Model Checking. MIT Press (2008)
Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II. Athena Sci-
entific (1995)

Brazdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kuctera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. LMCS 10(1), 1-29
(2014)

Brazdil, T., et al.: Verification of markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8337, pp. 98—
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8
Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM 28(1),
100-113 (1981)

Butkova, Y.: Towards efficient analysis of Markov automata. PhD thesis, Saarland
University, Saarbriicken, Germany (2020)

Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In:
FOSSACS, pp. 270-285 (2012)

Daca, P., Henzinger, T.A., Kretinsky, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 112-129. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9_7

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunéak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Springer,
Cham (2010). https://doi.org/10.1007/978-3-642-03311-7

Feinberg, E.A.: Continuous time discounted jump markov decision processes: a
discrete-event approach. Math. Oper. Res. 29(3), 492-524 (2004)

Feinberg, E.A., Shwartz, A.: Handbook of Markov decision processes: methods and
applications, volume 40. Springer Science & Business Media, New York (2012).
https://doi.org/10.1007/978-1-4615-0805-2

Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. Science and Systems, In Robotics (2014)

Ghemawat, S., Gobioff, H., Leung, S.: The google file system. In: SOSP (2003)
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395-412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0_27

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-03311-7
https://doi.org/10.1007/978-1-4615-0805-2
https://doi.org/10.1007/978-3-030-17462-0_27

24

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

C. Agarwal et al.

Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344-350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0-20

Haverkort, B.R., Hermanns, H., Katoen, J-P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS 2000 (2000)

Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for markov decision processes. In: QEST, pp. 84-93. IEEE Com-
puter Society (2012)

Kelmendi, E., Kramer, J., Kfetinsky, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623-642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_36

J. Kretinsky, Michel, F., Michel, L., Pérez, G.A.: Finite-memory near-optimal
learning for markov decision processes with long-run average reward. In: UAI of
Proceedings of Machine Learning Research, vol. 124, pp. 1149-1158. AUAI Press
(2020)

Kietinsky, J., Pérez, G.A., Raskin, J.-F.: Learning-based mean-payoff optimization
in an unknown MDP under omega-regular constraints. In: CONCUR, Dagstuhl,
pp. 8:1-8:18 (2018)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200-204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2_13

Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203-204. IEEE Computer Society (2012)

Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large
Markov decision processes. In: SAC, pp. 1314-1319. ACM (2012)

Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley and Sons (1994)

Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-
construction and optimization. IEEE Trans. CAD Integrated Circuits Syst. 20(10),
1200-1217 (2001)

Sennott, L.I.: Stochastic Dynamic Programming and the Control of Queueing Sys-
tems. Wiley-Interscience, New York (1999)

Solan, E.: Continuity of the value of competitive markov decision processes. J.
Theor. Probab. 16, 831-845 (2003)

Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free
reinforcement learning. In: ICML, pp. 881-888. ACM (2006)

Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press (1998)

Ortner, R., Jaksch, T., Auer, P.: Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res. 11, 1563-1600 (2010)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223-235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0-17

https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

PAC Statistical Model Checking of Mean Payoff 25

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	PAC Statistical Model Checking of Mean Payoff in Discrete- and Continuous-Time MDP
	1 Introduction
	2 Preliminaries
	3 Overview of Our Approach
	3.1 Naïve Solution
	3.2 Improved Solution

	4 Algorithm for Discrete-Time MDP
	5 Algorithm for Continuous-Time MDP
	6 Experimental Results
	7 Conclusion
	References

