
End-to-End Mechanized Proof
of an eBPF Virtual Machine

for Micro-controllers

Shenghao Yuan1(B) , Frédéric Besson1 , Jean-Pierre Talpin1 ,
Samuel Hym2, Koen Zandberg4, and Emmanuel Baccelli3,4

1 Inria, Rennes, France
{shenghao.yuan,frederic.besson,
jean-pierre.talpin}@inria.fr

2 University of Lille, CNRS, Centrale Lille,
UMR 9189 CRIStAL, 59000 Lille, France

samuel.hym@univ-lille.fr
3 Freie Universität Berlin, Berlin, Germany

4 Inria, Saclay, France
{koen.zandberg,emmanuel.baccelli}@inria.fr

Abstract. RIOT is a micro-kernel dedicated to IoT applications that
adopts eBPF (extended Berkeley Packet Filters) to implement so-called
femto-containers. As micro-controllers rarely feature hardware memory
protection, the isolation of eBPF virtual machines (VM) is critical to
ensure system integrity against potentially malicious programs. This
paper shows how to directly derive, within the Coq proof assistant, the
verified C implementation of an eBPF virtual machine from a Gallina
specification. Leveraging the formal semantics of the CompCert C com-
piler, we obtain an end-to-end theorem stating that the C code of our
VM inherits the safety and security properties of the Gallina specifica-
tion. Our refinement methodology ensures that the isolation property
of the specification holds in the verified C implementation. Preliminary
experiments demonstrate satisfying performance.

Keywords: Mechanized proof · Virtual machines · Fault isolation

1 Introduction

Hardware-enforced memory isolation (e.g., Trustzone, Sanctum [6], Sancus [30])
is often not available on micro-controller units (MCU) which usually trade
coarse-grain isolation for price and performance. To mitigate development vari-
ability and cost, common practices for MCU operating system design (RIOT [3],
FreeRTOS, TinyOS, Fushia, and others [14]) advise to run all the device’s code
stack in a shared memory space, which can only be reasonably safe if that code
can be trusted. While standard in safety-critical system design, such a trust
requirement is oftentimes unsuitable for networked MCUs, where the extensi-
bility of the OS kernel at runtime is an essential functionality. When system
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 293–316, 2022.
https://doi.org/10.1007/978-3-031-13188-2_15

https://doi.org/10.5281/zenodo.6558015
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_15&domain=pdf
http://orcid.org/0000-0002-8467-5827
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0556-4265
http://orcid.org/0000-0001-6239-9983
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://freertos.org
https://github.com/tinyos
https://fuchsia.dev
https://doi.org/10.1007/978-3-031-13188-2_15


294 S. Yuan et al.

reconfiguration does not affect the entire network (via, e.g., leader election),
extensibility can easily be provided offline, by employing library OSs or uniker-
nels [24], to reconfigure network endpoints independently (e.g., cloud apps).
Otherwise, the best solution is to load and execute system extensions (configu-
rations, protocols, firewalls, etc.) as assembly-level Wasm [13] or Berkeley Packet
Filters [25] scripts using an interpreter or a Just-In-Time (JIT) compiler on the
target device.

Femto-Containers. RIOT adopts the extended Berkeley Packet Filters (eBPF)
and tailors it to resource-constrained MCUs by implementing so-called femto-
containers: tiny virtual machine instances interpreting eBPF scripts. Compared
to more expressive languages, like Wasm, experiments show that RIOT’s eBPF
implementation, rBPF, requires less memory [39]. The Linux kernel features an
eBPF JIT compiler whose security depends on a sophisticated online verifier [29].
As an MCU architecture cannot host such a large verifier, executing JIT code
would imply delegation of trust to a third-party, offline, verifier. The alternative
is to rely on a defensive VM. Though a VM may be slower than a JIT, it
can run untrusted, erroneous, adversary code in an open, and possibly hostile
environment, and still isolate faults to protect its host’s integrity.

Approach and Goals. This paper investigates an approach that trades high per-
formance on low-power devices for defensive programming and low memory foot-
print. Our primary goal is to prevent faults that could compromise host devices
and, by extension, force networked devices to reboot and resynchronize (i.e.,
fault tolerance protocols). To maximize trust in the implementation of rBPF,
our refinement methodology allows the verified extraction of C code directly from
its mechanically proved definition in Gallina, the functional language embedded
in the Coq proof assistant [4].

Method. To mechanically prove the correctness of an interpreter, a conventional
approach consists in defining the reference semantics in a proof assistant and in
showing that an executable optimized interpreter produces the same output. In
this paper, our goal is to verify the interpreter of the virtual rBPF instruction
set, implemented with the system programming language C. To this aim, we
introduce a direct, end-to-end, validation workflow. The semantics of the source
instruction set is directly defined by monadic functional terms in our proof assis-
tant. We prove that this semantics enforces safety and security requirements
regarding memory isolation and control-flow integrity. Then, C code is automat-
ically derived from these monadic functional terms to implement the expected
virtual machine. We prove that the extracted C code has the same stateful
behavior as the monadic specification. Our method uses a monadic subset of
Gallina of sufficient expressiveness to specify rBPF’s semantics, supports the
verified extraction of equivalent Clight [20] code, while provably implementing
all required defensive runtime checks.

Plan. The rest of the paper is organized as follows. Section 2 states our contri-
butions. Section 3 provides background on BPF and its variants, CompCert and



A Verified eBPF Virtual Machine for Micro-controllers 295

the ∂x code extraction tool. Section 4 presents our workflow to formally refine
monadic Gallina programs into C programs. Section 5 defines the proof model of
our virtual machine: its semantics, consistency and isolation theorems. Section 6
refines the proof model of our femto-container into a synthesis model ready for
code generation with CompCert. Section 7 proves the refinement between the
synthesis and implementation models. Section 8 introduces our verified verifier
which establishes the invariants needed by the VM. Section 9 case studies the
performance of our generated VM implementation with respect to off-the-shelf
RIOT femto-containers. Section 10 presents related works and Sect. 11 concludes.

2 Contributions

Implementing a fault-isolating virtual machine for MCUs faces two major chal-
lenges. One is to embed the VM inside the MCU’s micro-kernel and, hence,
to minimize its code size and execution environment. A second challenge is to
minimize the verification gap between its proof model and the running code. We
address these challenges and present the first end-to-end verification and synthe-
sis of a full-scale, real-world, virtual machine for the BPF instruction set family:
CertrBPF, an interpreter tailored to the hardware and resources constraints of
MCU architectures running the RIOT operating system. CertrBPF employs a
workflow of proof-oriented programming using the functional language Gallina
embedded in the proof assistant Coq. The verified refinement and extraction of
an executable C program is performed directly from its proof model. We report
the successful integration of CertrBPF into the open source IoT operating system
RIOT and the evaluation of its performance against micro-benchmarks.

A Certified rBPF Interpreter. CertrBPF is a verified model and implementation
of rBPF in Coq. We formalize the syntax and semantics of all rBPF instruc-
tions, implement a formal model of its interpreter (femto-container), complete
the proof of critical properties of our model, and extract and verify CompCert
C code from this formalization. This method allows us to obtain a fully ver-
ified virtual machine. Not only is the Gallina specification of the VM proved
kernel- and memory-isolated using the proof assistant, but the direct interpre-
tation of its intended semantics as CompCert C code is, itself, verified correct.
This yields a fully verified binary program of maximum security and minimal
memory footprint and reduced the Trusted Computing Base (TCB): CertrBPF,
a memory-efficient kernel-level virtual machine that isolates runtime software
faults using defensive code and does not necessitate offline verification.

End-to-End Proof Workflow. An obvious choice is to use the existing Coq extrac-
tion mechanism to compile the Gallina model into OCaml. The downside of this
approach is that Coq extraction has to be trusted. Moreover the OCaml runtime
needs to be trimmed down to fit space requirements of our target architecture and
also becomes part of the TCB. Our ambition is instead to minimize the verifica-
tion gap and provide an end-to-end security proof linking our Gallina model to,
bare-metal, extracted C code. Our intended TCB is hence restricted to the Coq



296 S. Yuan et al.

type-checker, the C semantics of the CompCert compiler and a pretty-printer
for the generated C Abstract Syntax Tree (AST).

To reach this goal, our starting point is a model of the rBPF semantics written
in Gallina. We use this proof model to certify that all the memory accesses are
valid and isolated to dedicated memory areas, thus ensuring isolation. From this
proof model, we then derive a synthesis model of which we extract an executable
version in Clight, that we finally prove to perform the same state transitions.

Systems Integration and Micro-benchmarks. We integrate CertrBPF as a drop-in
replacement of the current, non-verified, rBPF interpreter in the RIOT operat-
ing system. We then comparatively evaluate the performance of CertrBPF inte-
grated in RIOT, running on various 32-bit micro-controller architectures. Our
benchmarks demonstrate that, in practice, CertrBPF not just gains security, but
reduces memory footprint as well as execution time.

3 Background

This section describes essential features of rBPF, of the CompCert compiler, and
of the ∂x code generation tool, that are required by our refinement methodology.

BPF, eBPF and rBPF. Originally, the purpose of Berkeley Packet Filters [25]
(BPF) was network packet filtering. The Linux community extended it to provide
ways to run custom in-kernel VM code, hooked into various subsystems, for
varieties of purposes beyond packet filtering [10]. eBPF was then ported to micro-
controllers, yielding RIOT’s specification: rBPF [38]. Just as eBPF, rBPF is
designed as a 64-bit register-based VM, using fixed-size 64-bit instructions and a
reduced instruction set architecture. rBPF uses a fixed-size stack (512 bytes) and
defines no heap interaction, which limits the VM memory overhead in RAM. The
rBPF specification, however, does not define special registers or interrupts for
flow control, nor support virtual memory: the host device’s memory is accessed
directly and only guarded using permissions.

The CompCert Verified Compiler. CompCert [18] is a C compiler that is both
programmed and proved correct using the Coq proof assistant. The compiler is
structured into passes using several intermediate languages. Each intermediate
language is equipped with a formal semantics and each pass is proved to preserve
the observational behavior of programs.

The Clight Intermediate Language. Clight [20] is a pivotal language which con-
denses the essential features of C using a minimal syntax. The Verified Software
Toolchain (VST) [2] verifies C programs at the Clight level that are obtained by
the clightgen tool. Though we do not reuse the proof infrastructure of VST,
we are reusing clightgen in order to get a Clight syntax from a C program.

CompCert Values and Memory Model [19,20]. The memory model and the
representation of values are shared across all the intermediate languages of
CompCert. The set of values val is defined as follows:



A Verified eBPF Virtual Machine for Micro-controllers 297

val � v::=Vint(i) | Vlong(i) | Vptr(b, o) | Vundef | . . .

A value v ∈ val can be a 32-bit integer Vint(i); a 64-bit integer Vlong(i), a
pointer Vptr(b, o) consisting of a block identifier b and an offset o, or the unde-
fined value Vundef . The undefined value Vundef represents an unspecified value
and is not, strictly speaking, an undefined behavior. Yet, as most of the C oper-
ators are strict in Vundef , and because branching over Vundef or de-referencing
Vundef are undefined behaviors, our proofs will ensure the absence of Vundef .
CompCert values also include floating-point numbers; they play no role in the
current development. CompCert’s memory consists of a collection of separate
arrays. Each array has a fixed size determined at allocation time and is identified
by an uninterpreted block b ∈ block . The memory provides an API for loading
values from memory and storing values in memory. Operations are parameterised
by a memory chunk k which specifies how many bytes should be written or read
and how to interpret bytes as a value v ∈ val .

For instance, the memory chunk Mint32 specifies a 32-bit value and Mint64
a 64-bit value. The function load k m b o takes a memory chunk k, a memory
m, a block b and an offset o. Upon success, it returns a value v obtained from
the memory by reading bytes from the block b starting at index o. Similarly, the
function store k m b o v takes a memory chunk k, a memory m, a block b, an
offset o and a value v. Upon success, it returns an updated memory m′ which is
identical to m except that the block b contains the value v encoded into bytes
according to the chunk k starting at offset o. The isolation properties offered by
CompCert memory regions are worth mentioning: load and store operations fail
(return None) for invalid offsets o and invalid permissions.

The ∂x tool. ∂x emerged from the toolchain used to design and verify the Pip
proto-kernel [15]. Its aim was to allow writing most of Pip’s source code in Gal-
lina in a style as close to C as possible. ∂x extracts C code from a Gallina
source program in the form of a CompCert C AST. The goal of ∂x is to provide
C programmers with readily reviewable code and thus avoid misunderstanding
between those working on C/assembly modules (that access hardware) and those
working on Coq modules (the code and proofs). To achieve this, ∂x handles a
C-like subset of Gallina. The functions that are to be converted to C rely on a
monad to represent the side effects of the computation, such as modifications to
the CPU state. Yet ∂x does not mandate a particular monad for code extraction.

∂x ’s Workflow. ∂x proceeds in two steps. First, given a list of Gallina functions,
or whole modules, it generates an intermediate representation (IR) for the subset
of Gallina it can handle. The second step is to translate this IR into a CompCert
C AST. Since Coq has no built-in reflection mechanism, the first step is written
in Elpi [8], using the Coq-Elpi plugin [37]. That step can also process external
functions (appearing as extern in the extracted C code) to support separate
compilation with CompCert. In order to obtain an actual C file, ∂x also pro-
vides a small OCaml function that binds the extracted C AST to CompCert’s
C pretty-printer. Even though the ∂x language is a small subset of Gallina, it



298 S. Yuan et al.

inherits much expressivity from the use of Coq types to manipulate values. For
example, we can use bounded integers (i.e., the dependent pair of an integer
with the proof that it is within some given range), that can be faithfully and
efficiently represented as a single int in C. To this end, ∂x expects a configura-
tion mapping Coq types to C.

∂x Memory Management. A major design choice in the C-like subset of Gallina
used by ∂x is memory management: its generated code executes without garbage
collection. This affects the Coq types that can actually be used in ∂x: recursive
inductive types, such as lists, cannot automatically be converted. However, this
Gallina subset is particularly relevant to programs in which one wants to pre-
cisely control memory management and decide how to represent data structures
in memory. This is typically the case of an operating system or, in our case, the
rBPF virtual machine.

4 A Workflow for End-to-End Verification in Coq

This section gives an overview of our methodology to derive a verified C imple-
mentation from a Gallina specification. In the following sections, the methodol-
ogy will be instantiated to derive the C implementation of a fault-isolating rBPF
virtual machine and its verifier. Our approach provides an end-to-end correct-
ness proof, within the Coq proof assistant, that reduces the hurdle of reasoning
directly over the C code.

As shown in Fig. 1, the original rBPF C implementation is first formalized by
a proof model in Gallina, and the verification of expected properties (e.g., safety)
is performed within the Coq proof assistant. This specification is then refined
into an optimized (and equivalent) synthesis model ready for C-code extraction.

Fig. 1. End-to-end verification and synthesis workflow

The refinement and optimization principle employed by our method consists
of deriving a C-ready implementation, in Gallina, that is as close as possible



A Verified eBPF Virtual Machine for Micro-controllers 299

to the expected target C code. This principle allows to i) prove optimizations
correct, ii) improve the performance of the extracted code and, iii) facilitate
review and validation of extracted code with the system designers. From the
C-ready Gallina implementation, we leverage ∂x to automatically generate C
code and verify it: i) the generated C code is first parsed as a CompCert Clight
model by the clightgen tool of VST and ii) it is proved to refine the source
Gallina model in Coq using translation validation. Because ∂x generates C code
in a syntax-directed manner, a minimal Clightlogic is designed to facilitate the
refinement proof. The rest of the section explains these different steps in details.

Proof-Oriented Specification. Our specification takes the form of an executable
abstract machine in monadic form. It uses the standard option-state monad M .

M a state := state → option(a × state)
returnM : a → M a state := λa.λst.Some(a, st)
bindM : M a state → (a → M b state) → M b state :=

λA.f.λs.match A s with | None ⇒ None | Some(x, s′) ⇒ (f x) s′

In the remainder, we write ∅ for None and �x� for Some x.
The monad threads the state along computations to model its in-place

update. The safety property of the machine is implemented as an inline monitor:
any violation leads to an unrecoverable error, i.e., the unique error represented
by ∅. One step of the machine has the following signature:

step : M r state

where r is the type of the result. The step function implements a defensive
semantics, checking the absence of error, dynamically. For our rBPF interpreter
(see Sect. 5), the absence of error ensures that the rBPF code only performs
valid instructions. In particular, all memory accesses are restricted to a sandbox
specified as a list of memory regions. Function step is part of the TCB and,
therefore, a mis-specification could result, after refinement, in an invalid compu-
tation. The purpose of the error state is to specify state transitions that would
escape the scope of the safety property and, therefore, shall never be reachable
from a well-formed state st ∈ wf ⊆ P(state). We require well-formedness to be
an inductive property of the step function.

Theorem 1 (Well-formedness). The step function preserveswell-formedness.

∀st, st′, r. st ∈ wf ∧ step st = �(r, st′)� ⇒ st′ ∈ wf

We also require that well-formedness is a sufficient condition to prevent the
absence of error and, therefore, the safety of computations.

Theorem 2 (Safety). The step function is safe, i.e., a well-formed state never
leads to an error.

∀st. st ∈ wf ⇒ step st �= ∅



300 S. Yuan et al.

C-Ready Implementation. Our methodology consists in refining the step func-
tion into an interpreter step∂x complying with the requirements of ∂x. As ∂x
performs syntax-directed code generation, the efficiency of the extracted code
crucially depends on step∂x. In order to preserve the absence of errors, we need a
simulation relation between the step and step∂x functions. A direct consequence
of the simulation thoerem is that step∂x never raises an error.

Theorem 3 (Simulation). Given simulation relations Rs ⊆ state × state′

and Rr ⊆ r × r′, the function step∂x simulates the function step.

∀s1, s
′
1, s2, r.(s1, s2) ∈ Rs ∧ step s1 = �r, s′

1� ⇒ ∃s′
2, r

′.
∧

⎧
⎨

⎩

step∂x s2 = �r′, s′
2�

(s′
1, s

′
2) ∈ Rs

(r, r′) ∈ Rr

Translation Validation of C Code. The next stage consists in refining the step∂x

function into a Clight program by relying on ∂x to get a C program and on the
clightgen tool to get a Clight stepC program (see Sect. 6). As this pass is not
trusted, we require the following translation validation theorem.

Theorem 4 (Translation Validation). Given a simulation relation Rs ⊆
state′ × val × mem and a relation Rr ⊆ res × val, the Clight code stepC refines
the function step∂x:

∀r, s, s′, v, k,m.(s, v,m) ∈ Rs ⇒ step∂x s = �(r, s′)� ⇒
∃m′, r′.Callstate(stepC , [v], k,m)→∗tReturnState(r′, call cont(k),m′)∧

(s′, v,m′) ∈ Rs ∧ (r, r′) ∈ Rr

Theorem 4 states that, if step∂x s runs without error and returns a result (r, s′),
then, the Clight function stepC successfully runs with argument v and, after
a finite number of execution steps, returns a result r′ and a memory m′ that
preserve the refinement relations. In our encoding, the unique argument v is
a pointer to the memory allocated region refining the interpreter state and k
represents the continuation of the computation. A corollary of Theorem 4 is that
the Clight code stepC is free of undefined behaviors. In particular, all memory
accesses are valid. As the memory model does not allow to forge pointers, this
yields a strong isolation property. In the remainder of this paper, for our rBPF
virtual machine, we prove all the aforementioned properties within the Coq proof
assistant.

5 A Proof-Oriented Virtual Machine Model

For our proof model, we define an explicit syntax for rBPF. We also define the
state of the interpreter and semantic functions, in particular those implement-
ing dynamic security checks. The rBPF instruction set, Fig. 2, features binary
arithmetic and logic operations, negation, (un)conditional jumps relative to an
offset, operations to load/store values from/to registers/memory, function calls,
and termination. There are eleven 64-bit registers {R0, . . . , R10}; an immediate
is 32-bit wide and an offset is 16-bit wide.



A Verified eBPF Virtual Machine for Micro-controllers 301

(Operands) dst, reg ∈ registers , src ∈ registers ∪ immediate
imm ∈ immediate , ofs ∈ offset

(Chunk) chk ::= byte | halfword | word | doublewords
(Operators) op ::= add | sub | mul | div | and | or |

lsh | rsh | mod | xor | mov | arsh
cmp ::= eq | neq | lt | gt | le | ge | set | slt | sgt | sle | sge

(Instruction) ins ::= Exit | Call imm | Neg dst | Ja ofs | Jump cmp dst src ofs
| Alu op dst src | Load chk dst reg ofs | Store chk dst src ofs

Fig. 2. Core syntax of rBPF instruction set

Machine State. A semantic state st is a tuple 〈I, L,R, F,M,MRs〉 consisting of
a sequence of instructions I, the current location L, registers R, an interpreter
flag F , a memory M and a specification of available memory regions MRs. The
flag F characterizes the state of the rBPF interpreter. It may be i) a normal
state, written Fn; ii) a final state, written Ft; iii) or an error state, written Fe.
An error state f ∈ Fe means that the defensive checks of the interpreter have
detected that an invalid behavior is about to occur.

A memory region mr = 〈start, size, p, ptr〉 ∈ MRs associates a permission
p ∈ {Readable,Writable} to the address range [start, start + size). We make
the link between concrete physical addresses and the CompCert memory model
using the pointer ptr (= Vptr b 0) where the block b is the abstract represen-
tation of the address start. We write I(L) for the instruction located at the
program counter L. R[r] retrieves the value of the register r in the register map
R. Functions alu and cmp reuse the CompCert’s operators over the val type.
The alu function returns ∅ if an error occurs, e.g., division by zero. Functions
load and store are those of CompCert’s memory model (see Sect. 3).

alu : op → val → val → option val cmp : cmp → val → val → bool
load : chk → mem → block → Z → option val
store : chk → mem → block → Z → val → option mem

Dynamic Checks. Function check alu dynamically checks the validity of an arith-
metic to avoid div-by-zero and undefined-shift errors. For division instructions,
check alu mandates the second argument to be non-zero. For arithmetic and
logical shift instructions, the second argument has to be below n ∈ {32, 64}
depending on whether the ALU instruction operates on 32 or 64 bit operands.
For simplicity, the paper only considers 64-bit ALU instructions but CertrBPF
also has the 32-bit variants.

check alu(op, v)
def
=

⎧
⎨

⎩

v �= 0 if op ∈ {div, mod}
0 ≤ v < n if op ∈ {lsh, rsh, arsh}
true otherwise

Function check mem returns a valid pointer (Vptr b ofs) if there exists a
unique memory region mr in MRs such that i) the permission mr.perm is at least
Readable for Load and Writable for Store, i.e., mr.perm ≥ p; ii) the offset ofs is
aligned, i.e., ofs%Z(chk) = 0; iii) in bounds, i.e., ofs ≤ max unsigned−Z(chk),
iv) and the interval [ofs, hi ofs) is in the range of mr. Otherwise, check mem



302 S. Yuan et al.

returns the null pointer Vnullptr . The function Z(chk) maps memory chunks
byte, halfword, word and double to 1, 2, 4, and 8, respectively.

check mem(p, chk, addr,MRs) def
= if ∃! mr ∈ MRs, b.

let ofs = addr − mr.start and hi ofs = ofs + Z(chk) in
(mr.ptr == Vptr b 0) ∧ (mr.perm ≥ p) ∧ (ofs%Z(chk) == 0) ∧

(ofs ≤ max signed − Z(chk)) ∧ (0 ≤ ofs ∧ hi ofs < mr.size))
then Vptr b ofs else Vnullptr

Semantics. Functions interp and sem formalize the implementation of our proof
model Mp in the Coq proof assistant by defining a monadic interpreter of rBPF.
The top-level recursion interp processes a (monotonically decreasing) fuel argu-
ment and a state s. The function sem processes individual instructions I(Lpc).
MRs and I are read-only. During normal execution, the flag remains Fn. If
the flag turns to Ft or Fe while processing an instruction, execution stops. For
instance, if fuel reaches zero, the flag turns to Fe. We write s.F for the value of
field F in record s and s{F = v} updates it to v.

interp = λfuel s. if fuel == 0 then 	((), s{F=Fe})
 else

match sem s with

| 	((), t)
 => if t.F�= Fn then 	((), t)

else interp (fuel-1) t{L = t.L+1}

| ∅ => ∅

sem = λs. match s.I(s.L) with

| Exit => 	((), s{F = Ft})

| Call imm => let f_ptr = bpf_get_call imm in

if f_ptr == Vnullptr then 	((), s{F = Fe})

else 	((), s{R0 = exec_function f_ptr})


| Ja ofs => 	((), s{L = s.L+ofs})

| Jump c dst ofs => if cmp(c, s.R[dst], s.R[src])

then 	((), s{L = s.L+ofs})
 else 	((), s)

| Neg dst => 	((), s{R[dst]= ¬ s.R[dst]})

| Alu op dst src => if check_alu(op, s.R[src]) then

match alu(op, s.R[dst], s.R[src]) with

| 	v
 => 	((), s{R[dst] = v})
 | ∅ => ∅
else 	((), s{F = Fe})


| Load chk dst reg ofs =>

match check_mem(Readable, chk, s.R[reg]+ofs, s.MRs) with

| Vptr b ofs => match load(chk, s.M, b, ofs) with

| 	v
 => 	((), s{R[dst] = v})
 | ∅ => ∅
| _ => 	((), s{F = Fe})


| Store chk dst src ofs =>

match check_mem(Writable, chk, s.R[dst]+ofs, s.MRs) with

| Vptr b ofs => match store(chk, s.M, b, ofs, S.R[src]) with

| 	N
 => 	((), s{M = N})
 | ∅ => ∅
| _ => 	((), s{F = Fe})


| _ => 	((), s{F = Fe})




A Verified eBPF Virtual Machine for Micro-controllers 303

Result ∅ marks transitions to crash states that are proved unreachable given
our carefully crafted definitions of the check alu and check mem functions. Note
that the interpreter interp does not check the range of branching offsets (i.e.,
0 <=s.L< length(s.I)) and register-out-of-bounds. This properties are stati-
cally verified, once and for all, by the verifier of Sect. 8.

Exit terminates the program with flag Ft. The Call instruction selects (using
bpf get call) the trusted system API service designated by an immediate number
imm. It then calls the chosen service if available (i.e., not a null pointer). Uncon-
ditional jump Ja increments the pc by ofs and a conditional Jump does so when
cmp(c, src, dest) holds. For an arithmetic operation Alu op dst src, check alu first
checks the validity of op with source src, evaluates op against destination dst
using alu, stores the result v in register dst. For simplicity, we omit the case of
immediate srcs. If the result is ∅, so becomes the monadic state (undefined behav-
ior). Our definition of check alu, and well-formedness conditions (see Sect. 5.1)
ensures that this will never happen and that, in case of error, the execution
terminates with flag Fe. Similarly, the semantics of memory instructions (Load-
Store) validates memory accesses using the check mem function. Its definition
ensures the absence of undefined behaviors.

5.1 Proof of Software-Fault Isolation

Our proof model Mp formalizes the semantics of rBPF. It is implemented in
Coq using Gallina. Assessing its correctness consists of proving two essential
properties: i) the well-formedness of the virtual machine’s state, that is, its reg-
isters, memory and verifier invariants, and ii) software-fault isolation, that is, the
isolation of all transitions to a crash state ∅ using runtime safety checks (e.g.,
check mem), ergo the impossibility of a transition to an undefined behavior.

The register invariant states that all registers contain 64-bit integer values.
This rules out 32-bit integers, Vundef but also pointers and floating-point num-
bers, for which the alu function may be undefined.

Definition 1 (register inv). ∀r ∈ registers.∃l.R[r] = Vlong l

As expected, the memory consistency invariant is a bit more elaborate. It
states that each CompCert memory region mr register 8-bit integer blocks b
of memory m, designated by a pointer mr.ptr to the 32-bit physical mr.start
address of b, the 32-bit mr.size of b and at least Readable permissions mr.perm
across [0, size). Finally, every two regions point to disjoint physical address
spaces in m (as per CompCert’s memory regions for mr′.ptr �= mr.ptr).

Definition 2 (memory inv). ∀mr ∈ MRs, m. ∃b, start, size. s.t.



304 S. Yuan et al.

mr .ptr = Vptr b 0 ∧ Mem.valid block m b ∧ is byte block b m ∧
mr .start = Vint start ∧ mr .size = Vint size ∧ mr .perm ≥ Readable ∧
Mem.range perm m b 0 (Int .unsigned size) Cur mr .perm ∧
(∀mr ′ ∈ MRs,mr ′ �= mr → mr ′.ptr �= mr .ptr)

Linux eBPF has a verifier to statically analyze eBPF programs and only
accept those which are free of undefined behaviors. Our CertrBPF’s verifier,
introduced in Sect. 8, ensures the weaker invariant given by Definition 3. The
invariant stipulates the minimal pre-condition so that the interpreter can safely
run a sequence of instructions I. More precisely, the invariant states that each
instruction I[i] references registers within the range [0, 10] and that the target
of every jump instruction is within the program range i.e., 0 ≤ i + ofs + 1 ≤
length(I) − 1.

Definition 3 (verifier inv). ∀i, I, ofs. 0 ≤ i ≤ length(I) − 1 →
0 ≤ get dst(I [i ]) ≤ 10 ∧ 0 ≤ get src(I [i ]) ≤ 10 ∧
((I [i ] = Ja ofs ∨ I [i ] = Jump ofs) → 0 ≤ i + ofs + 1 ≤ length(I ) − 1 )

These three invariants implement well-formedness as proposed in Sect. 4.
Therefore, the following Coq Theorem sem preserve inv proves Theorem 1 and
states that well-formedness is preserved by the interp function. Similarly, Theo-
rem inv ensure no undef proves Theorem 2. This proves that the dynamic checks
of the model Mp are sufficient to ensure the absence of error. In particular, all
memory accesses are valid and performed within the dedicated memory regions.
As a result, our model ensures software fault isolation. The corollary of The-
orems sem preserve inv and inv ensure no undef is that our virtual machine,
obtained by refinement of the proof model, will always isolate code from other
memory regions of the operating system and never crash it.

Theorem sem_preserve_inv: ∀ (st st’: state) (fuel: nat)

(Hinv: register_inv st ∧ memory_inv st ∧ verifier_inv st)

(Hsem: interp fuel st = 	(tt, st’)
),
register_inv st’ ∧ memory_inv st’ ∧ verifier_inv st’.

Theorem interp_no_undef: ∀ (st: state) (fuel: nat)

(Hinv: register_inv st ∧ memory_inv st ∧ verifier_inv st),

interp fuel st �= ∅ .

6 A Synthesis-Oriented eBPF Interpreter

The coding style of the proof model Mp is quite different from the original RIOT
implementation in C and lacks optimizations used in the latter to improve run-
time performance. The synthesis model Ms firstly refines Mp into an optimized,
safe and behaviorally equivalent monadic model which is then automatically
transformed into an effectful implementation model Mc using ∂x.



A Verified eBPF Virtual Machine for Micro-controllers 305

Synthesis Model Ms. Ms refines our proof model by following the principle
“make Ms as close as possible to the expected target C code”. Ms also refines
Coq types because each Coq inductive type may correspond to several C types
(e.g., V int/V long to signed or unsigned, 32-bit or 64-bit). The case of V ptr
is particularly delicate, as the target type contextually relies on bit-size and
signedness. To sort this out, we rename Coq types to match the correct C type.
For example, val64 t, valu32 t, vals32 t are V al types mapped to unsigned
long long, unsigned int and int, respectively.

Equivalence. Both Mp and Ms use the same monadic state st as in Sect. 5.
Hence, the simulation relation R ⊆ st × st, required by Theorem 3, is equality.
As a result, we prove the stronger result that both interp : nat → M unit, the
Mp interpreter, and interp dx : nat → M unit, the Ms interpreter, denote the
exact same function.

Theorem equivalence_relation: ∀ (st: state) (fuel: nat),

interp fuel st = interp_dx fuel st.

∂x configuration and Implementation model Mc. To extract the implementation
model, we supply ∂x with our monad M and a mapping relation from Gallina
to C, Table 1.

Table 1. Mapping relation from Gallina to C

Gallina C

Types reg/sint32 t/valptr8 t ... unsigned int/int/unsigned char* ...
Constructions true/Int.repr(-2)/F n ... 1/-2/0...
Constants Val.addl/subl/mull/Z.eqb ... +/-/*/==/ ...
Functions eval pc: M sint32 t ... int eval pc(struct state *) ...
Code struct if-then-else, match-pattern ... if-else, switch-case ...

Inductive types map to C types, e.g., reg to unsigned int (note that a many-
to-one relation from Gallina to C is legal). Gallina constructs and constant func-
tions map to C operators and constants, e.g., ‘Val .addl ’ to ‘+’, ‘Int .repr(−2)’
and ‘true’ to ‘−2’ and ‘1’, etc. Gallina functions map to C functions. For any
function operating the monadic state, the target C function has an additional
argument st of type struct state∗ which corresponds to the implicit state of the
monad. Gallina’s match-pattern translates to C’s switch-case, etc.

Code Extraction with ∂x. The extracted C implementation preserves the struc-
ture of the original Gallina code, and the extracted C functions directly operate
on actual memory locations as CompCert memory operations map to C expres-
sions with a dereference. Consider the example of the step mem st reg function.



306 S. Yuan et al.

Definition step_mem_st_reg (src: val64_t) (addr: valu32_t) (op: int8_t):

M unit :=

do opcode_st <- get_opcode_mem_st_reg op;

match opcode_st with

| op_BPF_STXW =>

do addr_ptr <- check_mem Writable Mint32 addr;

if eq_ptr_null addr_ptr then

upd_flag BPF_ILLEGAL_MEM

else (** i.e. Mem.storev Mint32 addr_ptr src *)

do _ <- store_mem_reg Mint32 addr_ptr src; returnM tt

...

CompCert’s Byte int8 t is mapped to unsigned char. Constructs op BPF STXW,
BPF ILLEGAL MEM and Writable are respectively mapped to ‘99‘, ‘-2‘ and
‘2U‘. The constant function eq ptr null is translated into an operation to check
whether a pointer is null. The ‘match opcode st with’ is extracted to ‘switch
(opcode st) case’. Functions step mem st reg, check mem and store mem reg
in C have an additional monadic argument st.

void step_mem_st_reg (struct bpf_state* st , unsigned long long

src , unsigned int addr , unsigned char op){

unsigned char opcode_st;

unsigned char *addr_ptr;

opcode_st = get_opcode_mem_st_reg (op);

switch (opcode_st) {

case 99:

addr_ptr = check_mem(st , 2U, 4U, addr);

if (addr_ptr == 0) {

upd_flag(st , -2); return;

} else { // i.e. *( unsigned int *) addr_ptr = src

store_mem_reg (st , 4U, addr_ptr , src); return;

}

...

7 Simulation Proof of the C rBPF Virtual Machine

In this section, we explain how to establish Theorem 4 for the Clight code of our
virtual machine, derived from ∂x, and compiled into a Clight AST in Coq using
the clightgen tool.

Simulation Relation. A crucial ingredient of Theorem 4 is the simulation relation
between the Gallina state monad and the Clight state which is essentially made
of a CompCert memory. The Gallina state comprises a CompCert memory that
models the various memory regions available to the rBPF program. This memory
may also contain other blocks that are not modified by the virtual machine
but represent other kernel data-structures. The simulation relation stipulates
that such blocks also exist in the Clight memory and have the same content.
The Clight memory contains additional blocks (i.e., state block, ins block and



A Verified eBPF Virtual Machine for Micro-controllers 307

Fig. 3. Simulation relation R between strbpf , left, and rBPFClight, right.

mrs block) to model the other fields of the Gallina state. The layout and content
of those blocks are depicted in Fig. 3.

Solid arrows in Fig. 3 are simulation relations between state block and strbpf .
Solid lines are the equalities between the rBPF memory m and blocks in rBPF-
Clight memory. Dashed lines indicate relations of pointers to blocks in CompCert
memory. The encoding exploits the fact that each field of the Gallina state has a
known length. Thus, every field can be encoded as a continuous sub-block. As a
result, the program counter is obtained from the first 4 bytes: loading a memory
chunk of type Mint32 at offset 0 retrieves the pc field of the Gallina state. The
next 4 bytes encode the enumerated type flag. Here, each constructor of type
flag is assigned an integer. The next 11 × 64 bits are used to encode the register
bank of the Gallina state.

Rs(state, state block, m)
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

strbpf .pc = load Mint32 mclight state block 0

strbpf .f lag = load Mint32 mclight state block 4

strbpf .R0 = load Mint64 mclight state block 8

. . .

The next elements of the Clight block represent the lists of instructions and
of memory regions. In a functional language, lists are potentially of unbounded
length and have a polymorphic type. Here, our lists always have fixed lengths and
elements of fixed size. As a result, a list is directly encoded by a field specifying
its length followed by a pointer to its memory block. The elements of the list are
stored continuously in the pointed block.

Systematic Proof of Simulation. Since the ∂x tool is syntax-directed, there is a
systematic correspondence between the source Gallina and the target C code.



308 S. Yuan et al.

We exploit this property to design a minimal Clight logic geared toward our
simulation proof. Our Clightlogic generalizes the translation validation theorem
(Theorem 4) to accommodate Gallina functions and C functions with multiple
arguments. In that case, we have a precondition which states that the Gallina and
C arguments are linked pairwise by a refinement relation. Most of the arguments
are numeric values and, in this case, the refinement relation states that the Gal-
lina and C values are the same. The Clightlogic also provides a syntax-directed
proof principle for each pair of Gallina/C syntactic construct. For instance, the
bindM operator translates to a sequence in the C code. Also, the result of a Gal-
lina function call is bound to a local variable in C. Moreover, the local variable v
below stands for the monadic state in C and points to the state memory block.

∂x(bindM f (λx.g)) = (vx = fC(v); gC(v, vx))

To exploit this pattern, our invariants take the form of an association list map-
ping each local variable to a set of C values that is obtained by partially eval-
uating a refinement relation with the Gallina value computed by the function
(Fig. 3). To evaluate f , one needs to have a refinement relation Rs between
the Gallina state st and the C value of v in memory m. Now, suppose that
fst = �r, st′�. Since fC is a correct refinement of f , relations Rs(st′, v,m′) and
Rr(r, x) hold for the value x of the local variable vx in the current environment.
We conclude by mapping vx �→ Rr r and use this invariant to refine g by gC .

The translation validation theorem proves a forward simulation relation from
Coq to Clight. A backward simulation relation can be constructed as Gallina
programs are functions and Clight is determinate.

8 CertrBPF Verifier

Linux eBPF’s compiler and runtime system do not enforce type or memory
safety. Instead, safety is verified prior to execution using a static analyzer that
checks programs validity. As both the size and complexity cannot fit the require-
ments of an MCU architecture, CertrBPF instead provides a simple (linear
time) but formally verified verifier, CertrBPF-verifier, which ensures the invari-
ant verifier inv (Definition 3). Accordingly, it scans an input rBPF program
(i.e., a list of 64-bit bytecode instructions) and rejects it when: i) a source or
destination register is greater than 10. ii) the offset of a jump instruction is out
of the instruction sequence bounds. iii) or the last instruction is not the Exit
instruction (opcode 0x95).

Static verification of these properties allows the interpreter to skip unnec-
essary dynamic checks. Our verifier adopts the same end-to-end verification
method as the interpreter, Sect. 4. The virtual machine state in CertrBPF-
verifier is a strict subset of the interpreter’s state: stv = 〈I,M〉 consists of a
sequence of instructions I and a memory M .



A Verified eBPF Virtual Machine for Micro-controllers 309

Theorem verifier_well_formedness_and_safety :

∀ (st: verifier_state) (b: bool),

verifier st = 	(b , st)
.
Theorem verifier_imply_inv :

∀ (st: verifier_state) (st’: state)

(Hinclude: st ⊂ st’) (Hpre : verifier st = 	(true, st)
),
verifier_inv st’.

Theorem verifier well formedness and safety proves both Theorem 1 and
Theorem 2. The verifier has the following properties: i) no assumption (every
state is well-formed); ii) never crashes (safety); iii) never modifies the VM state.
In addition, the Coq theorem verifier imply inv states that if the verifier
returns true, verifier inv holds. Considering that the verifier’s proof and syn-
thesis models are exactly the same, the simulation relation Rv ⊆ stv × stv
required by Theorem 3 is equality. CertrBPF-verifier reuses the Clightlogic to
prove the simulation proof of its C implementation.

9 Evaluation: Case Study of RIOT’s Femto-Containers

We integrate CertrBPF as a drop-in replacement for the existing non-verified
module optimized for size (vanilla-rBPF) in the IoT operating system RIOT to
provide the expected femto-container functionalities [39].

Implementation. The proof model of the interpreter (Sect. 5) consists of 2.4k
lines of Coq code and the corresponding isolation proof (Sect. 5.1) is more than
4.8k lines long. The synthesis model, Sect. 6, is approx. 3.2k lines long and the
equivalence theorem is completed by 0.6k proof code. The final step (Sect. 7)
includes 10.8k translation validation proofs between the Gallina specification and
the extracted Clight model. As for the CertrBPF verifier (Sect. 8), the proof and
synthesis models sport 1.4k lines of Coq code. The corresponding proofs are more
than 0.5k long and the last simulation proof is about 8.3k long. In addition, the
Clightlogic implementation has 4.4k lines of Coq code.

Experimental Evaluation Setup. Our experimental objects are the original non-
verified rBPF interpreter (i.e., vanilla-rBPF) and the automatically extracted
and verified CertrBPF interpreter (without RIOT’s API). We carry out our
measurements on a selected set of popular, commercial, off-the-shelf low-power
IoT hardware, representative of modern 32-bit micro-controller architectures and
boards: i) Nordic nRF52840 (Arm Cortex-M); ii) Espressif WROOM-32 (Espres-
sif ESP32); iii) Sipeed Longan Nano GD32VF103CBT6 (RISC-V). All code
is compiled with GCC using size optimization enabled and the -foptimize-
sibling-calls GCC option to remove all tail-recursive calls and thus bound
the stack size. This is critical to our isolation theorem as it relies on the implicit



310 S. Yuan et al.

CompCert assumption that the stack cannot overflow. To avoid a possible mis-
match between the CompCert semantics and the GCC semantics, we also pass
the following options: i) -fwrapv, -fwrapv-pointer mean that both signed and
pointer arithmetic wrap around according to the two’s-complement encoding; ii)
-fno-strict-aliasing means that there is no aliasing assumption.

Results. We first evaluate the memory footprint of the CertrBPF interpreter,
compared to vanilla-rBPF. We measure i) Flash size: all read-only data, includ-
ing the actual code; ii) Stack : the approximate ram used for stack space; iii) Con-
text : the static RAM. In terms of Flash, our measurements show that CertrBPF
actually reduces the footprint by 47% on RISC-V and by 35% on ESP32, and a
10% decrease on Cortex-M. In terms of stack requirements, CertrBPF reduces
the footprint by 33% on Cortex-M, by 22% on RISC-V, and by 4% on ESP32.
The context memory, however, increases from 92B to 144B on all platforms.

Fig. 4. Time per instructions on the Cortex-M4 platform

Next, we micro-benchmark the performance of core operations: single instruc-
tions from the arithmetic logic unit (ALU), for memory access (MEM) and
branch instructions, with a mix of register and immediate value for the operands,
Fig. 4. These results are averages over 1000 single identical instruction calls with
a single return statement to make the application exit.

Finally, we benchmark the performance of actual IoT data processing, hosted
in a femto-container with RIOT running on our selected hardware. In this use
case, a sliding window average is performed within the femto-container, on avail-
able sensor data points. Figure 5 shows the performance we measured depending
on the size of the window. We use this as blueprint for computation load scaling.



A Verified eBPF Virtual Machine for Micro-controllers 311

Fig. 5. Sliding window average on Cortex-M, ESP32, and RISC-V.

Key Take-Away. We observe that CertrBPF generally decreases the memory
footprint. One reason is that calls to the RIOT API are currently not sup-
ported by CertrBPF. We observe, Fig. 4, that the execution slow-down is acute
for Branch instructions, on Cortex-M. However, on all other platforms (RISC-V,
ESP32 and Cortex-M), our micro-benchmarks show that most instructions enjoy
speed-up with CertrBPF compared to vanilla-rBPF. This behavior is also visi-
ble in our sensor data processing benchmark, Fig. 5, where CertrBPF performs
better than vanilla-rBPF on three platforms. All in all, CertrBPF gains both
security and reduces memory footprint as well as execution time.

10 Related Works

Methodologies for Systems and Compilers Verification. The verification of com-
pilers [18], static analyzers [16], and operating systems [12,17] have been the
subjects of vast development and verification efforts due to the sheer code size of
the artifacts at stake. These full-scale case studies gave rise to new strategies and
methodologies to address the challenge of verifying large software. One such app-
roach is Cogent [35] which aims at developing verified applications on top of the
SeL4 [17] micro-kernel. Cogent [35] consists of a functional language with linear
types to specify source programs and produces C code with Isabelle/HOL proof
information. It provides a framework to prove that the extracted C code refines a
high-level Isabelle/HOL functional correctness specification in the Isabelle/HOL
proof assistant. Our method differs from co-specification in Cogent in that it is
direct: it directly translates Coq specifications into C code and performs the
end-to-end verification in Coq. CertiKOS [12] uses a multi-layered, refinement-
based, and modular definition of a micro-kernel from its low-level memory model
to its user-level interface and services. It is adopted in SeKVM [22], a layered
Linux KVM hypervisor architecture for multiprocessor hardware. The CompCert
project [18] adopted this “divide-and-conquer” strategy to decompose the ver-
ification of a full-scale ANSI C compiler into that of its successive transforma-
tions from source program to machine code, compositionally verifying each of
the translation steps bisimilar. Its related static analyser, Verasco [16], employs



312 S. Yuan et al.

static analysis of CompCert C code using a verified core abstract interpreter with
composable abstract domains. Our problem statement is methodologically sim-
pler: to build a safe and small VM that interprets rBPF virtual instructions on
networked micro-controllers. We choose the radical approach of proof-oriented
programming (à la Low� [34], Vale [5]) to prove an rBPF interpreter embedded
in Coq correct and to directly extract verified code from its definition.

Background on BPF and Its Verified Implementations. Mogul et al. [26] intro-
duce a stack-based virtual machine to interpret packet filters into the BSD ker-
nel that BPF extended to 32-bit instructions. BPF gained adoption in the Linux
community and became eBPF (extended BPF), a virtual 64-bit RISC-like archi-
tectures. To our knowledge, verification of BPF runtime systems has mainly
focused on JIT translation for operation on micro-kernels. Myreen [28] verifies a
JIT compiler targeting x86 for a stack language using the HOL4 proof assistant.
The generated code only preserves the semantics of the source code but does
not ensure any isolation property. Porncharoenwase et al. [33] use CompCert to
extract an OCaml translator from BPF to assembly code, verified using the proof
assistant Coq, using the OCaml runtime, an assembler, and a linker as TCB. Van
Geffen et al. [11] present an optimized JIT compiler for Linux BPF with auto-
mated static analysis onboard, assuming offline verification using the Linux BPF
verifier as TCB. For field deployment on networks of micro-controllers (IoT), all
the above approaches would require a trusted, offline BPF verifier and, addition-
ally, a secure upload protocol to sign verified scripts and perform authenticated
uploads on target devices, which motivates our approach to use a fault-proof
virtual machine instead.

Background on Verified Virtual Machines. Lochbihler [23] presents the verified
implementation of a virtual machine modeling the semantics, memory model
and byte-code semantics of Java, all by using the proof methodology of trans-
lation validation [18,32]. Desharnais and Brunthaler [7] propose the formal ver-
ification of an optimized and secure Javascript interpreter in Isabelle/HOL. Its
proof methodology is based on concepts of bisimulation. The interpreter targets
optimal security and run-time performance. To target MCU devices, our rBPF
VM instead seeks optimal run-time memory footprint, to support the expected
capability of dynamically running several isolated services on a small device with
shared memory. Zhang et al. [40] present a different and ambitious workflow using
the deductive programming environment Why3 [9] to specify a virtual machine
of Etherium byte-code (EVM) and verify functional correctness of smart con-
tracts against it. The EVM is extracted to OCaml binary code, yielding a TCB
consisting of the OCaml runtime and the implementation of Eth’s protocols.

Background on Converting Gallina Programs into Executables. Just as the proof-
oriented approach advocated by dependently-typed functional languages like F�

mentioned in Sect. 2, there are various alternatives to ∂x for extracting executa-
bles from Gallina programs. To begin with, Coq comes with a builtin extraction
mechanism [21] that generates OCaml, Haskell or Scheme. This path has a rather



A Verified eBPF Virtual Machine for Micro-controllers 313

large TCB (Coq extraction and a compiler). CertiCoq [1] is an ongoing project
aiming at generating CompCert C code from Gallina using a specific IR and
several passes. Once this effort is completed, it will allow one to rely on a small
TCB. Œuf [27] is another tool to compile Gallina to C. It considers a carefully
chosen subset of Gallina to tackle the tricky issue of verifying the reflection of
Gallina into an AST. Both CertiCoq and Œuf, however, require a garbage col-
lector and define how Coq inductives are represented at runtime. Codegen [36]
converts Gallina to C with the goal of maximizing performance by, e.g., allow-
ing the user to control how Coq values are represented at runtime. Rupicola
[31] considers an original and promising approach which regards a compiler as
a partial decision procedure: it consists of a proof search procedure, which may
fail, or else exhibit a target program in bedrock2 (a C-like low-level language
AST embedded in Coq) with a proof of equivalence. It has, at present, only been
tested for small algorithms. We chose to use ∂x for its simplicity and because it
does not increase our TCB. It shares with Codegen the capability to configure
the representation of values. Unlike Codegen, it produces C code that is struc-
turally identical to source code. This direct and traceable translation simplifies
the verification of generated code w.r.t. source programs, and facilitates source
program optimisations.

11 Conclusion and Future Works

This paper uses a refinement methodology to directly derive a verified C imple-
mentation of rBPF, the implementation of BPF hosted by the RIOT operating
system, from a Gallina specification in Coq. All the refinement steps are mechan-
ically verified using the Coq proof assistant to minimize the TCB. We prove our
rBPF virtual machine to isolate software faults and not to produce runtime
errors. Performances are at par with the vanilla rBPF implementation in RIOT.

Our future works aim at instantiating our proof workflow to a (fault-isolating)
JIT compiler, one challenge being that Linux’s approach of using a verifier will
not be feasible on resource-constrained devices, and another being that certain
operations might only be expressible in assembly code. This calls for further
studies on ways to substantially improve the efficiency of our VM.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
feedback and suggestions. This work is partly funded by Inria Challenge RIOT-fp, the
ANR/BMBF project TinyPART, and the H2020 project Sparta.

Artifacts. The source code and proofs of our virtual machine, its generated code and

benchmark data are available on https://gitlab.inria.fr/syuan/rbpf-dx/-/tree/CAV22-

AE.

https://gitlab.inria.fr/syuan/rbpf-dx/-/tree/CAV22-AE
https://gitlab.inria.fr/syuan/rbpf-dx/-/tree/CAV22-AE


314 S. Yuan et al.

References

1. Anand, A., et al.: Certicoq : a verified compiler for Coq. In: CoqPL (2017)
2. Appel, A.W., et al.: Program logics for certified compilers. In: CUP (2014)
3. Baccelli, E., et al.: RIOT: an open source operating system for low-end embedded

devices in the IoT. IoT J. 5(6), 4428–4440 (2018)
4. Bertot, Y., Castéran, P.: Interactive theorem proving and program development.

In: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

5. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
USENIX Security, pp. 917–934 (2017)

6. Costan, V., Lebedev, I., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security, pp. 857–874. USENIX (2016)

7. Desharnais, M., Brunthaler, S.: Towards efficient and verified virtual machines for
dynamic languages. In: CPP, pp. 61–75. ACM (2021)

8. Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast, embeddable,
λ prolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48899-7 32

9. Filliâtre, J.-C., Paskevich, A.: Why3 — Where Programs Meet Provers. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

10. Fleming, M.: A thorough introduction to eBPF. Linux Weekly News (2017)
11. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-

pilers for In-Kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 29

12. Gu, R., et al.: Certikos: an extensible architecture for building certified concurrent
os kernels. In: OSDI, pp. 653–669. USENIX (2016)

13. Haas, A., et al.: Bringing the web up to speed with webassembly. In: PLDI, pp.
185–200. ACM (2017)

14. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the Internet of Things: a survey. IoT J. 3(5), 720–734 (2016)

15. Jomaa, N., Torrini, P., Nowak, D., Grimaud, G., Hym, S.: Proof-oriented design
of a separation kernel with minimal trusted computing base. In: AVOCS, vol. 76.
Electronic Communications of the EASST (2018)

16. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: POPL, pp. 247–259. ACM (2015)

17. Klein, G., et al.: seL4: formal verification of an OS kernel. In: SOSP, p. 207. ACM
Press (2009)

18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

19. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model,
Version 2. Research Report RR-7987, INRIA (2012)

20. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. JAR 41(1), 1–31 (2008)

21. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12


A Verified eBPF Virtual Machine for Micro-controllers 315

22. Li, S.W., Li, X., Gu, R., Nieh, J., Hui, J.Z.: Formally verified memory protection
for a commodity multiprocessor hypervisor. In: USENIX Security, pp. 3953–3970.
USENIX (2021)

23. Lochbihler, A.: A machine-checked, type-safe model of Java concurrency: language,
virtual machine, memory model, and verified compiler. Ph.D. thesis, Karlsruhe
Institute of Technology (2012)

24. Madhavapeddy, A., et al.: Unikernels: library operating systems for the cloud. In:
ASPLOS, pp. 461–472. ACM (2013)

25. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-
level packet capture. In: Usenix Winter Conference, vol. 46, pp. 259–270. USENIX
(1993)

26. Mogul, J., Rashid, R., Accetta, M.: The packer filter: an efficient mechanism for
user-level network code. In: SOSP, pp. 39–51. ACM (1987)

27. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-
mizing the Coq extraction TCB. In: CPP, pp. 172–185. ACM (2018)

28. Myreen, M.O.: Verified just-in-time compiler on x86. In: POPL, pp. 107–118. ACM
(2010)

29. Nelson, L., Geffen, J.V., Torlak, E., Wang, X.: Specification and verification in the
field: applying formal methods to BPF just-in-time compilers in the Linux kernel.
In: OSDI, pp. 41–61. USENIX (2020)

30. Noorman, J., et al.: Sancus: low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In: USENIX Security, pp. 479–498.
USENIX (2013)

31. Pit-Claudel, C., Philipoom, J., Jamner, D., Erbsen, A., Chlipala, A.: Relational
compilation for performance-critical applications. In: PLDI. ACM (2022)

32. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

33. Porncharoenwase, S., Bornholt, J., Torlak, E.: Fixing code that explodes under
symbolic evaluation. In: Beyer, D., Zufferey, D. (eds.) VMCAI 2020. LNCS,
vol. 11990, pp. 44–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39322-9 3

34. Protzenko, J., et al.: Verified low-level programming embedded in F*. In: PACMPL
1(ICFP), pp. 17:1–17:29 (2017). https://doi.org/10.1145/3110261

35. Rizkallah, C., et al.: A framework for the automatic formal verification of refine-
ment from Cogent to C. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS,
vol. 9807, pp. 323–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43144-4 20

36. Tanaka, A.: Coq to C translation with partial evaluation. In: PEPM@POPL, pp.
14–31. ACM (2021)

37. Tassi, E.: Coq-Elpi, Coq plugin embedding Elpi (2021). https://github.com/
LPCIC/coq-elpi

38. Zandberg, K., Baccelli, E.: Minimal virtual machines on IoT microcontrollers: the
case of Berkeley Packet Filters with rBPF. In: PEMWN, pp. 1–6. IEEE (2020)

39. Zandberg, K., Baccelli, E.: Femto-Containers: DevOps on Microcontrollers with
Lightweight Virtualization & Isolation for IoT Software Modules (2021), preprint

40. Zhang, X., Li, Y., Sun, M.: Towards a formally verified EVM in production envi-
ronment. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol.
12134, pp. 341–349. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50029-0 21

https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/978-3-030-39322-9_3
https://doi.org/10.1007/978-3-030-39322-9_3
https://doi.org/10.1145/3110261
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-319-43144-4_20
https://github.com/LPCIC/coq-elpi
https://github.com/LPCIC/coq-elpi
https://doi.org/10.1007/978-3-030-50029-0_21
https://doi.org/10.1007/978-3-030-50029-0_21


316 S. Yuan et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	End-to-End Mechanized Proof of an eBPF Virtual Machine for Micro-controllers
	1 Introduction
	2 Contributions
	3 Background
	4 A Workflow for End-to-End Verification in Coq
	5 A Proof-Oriented Virtual Machine Model
	5.1 Proof of Software-Fault Isolation

	6 A Synthesis-Oriented eBPF Interpreter
	7 Simulation Proof of the C rBPF Virtual Machine
	8 CertrBPF Verifier
	9 Evaluation: Case Study of RIOT's Femto-Containers
	10 Related Works
	11 Conclusion and Future Works
	References




