
Hemiola: A DSL and Verification Tools
to Guide Design and Proof of Hierarchical

Cache-Coherence Protocols

Joonwon Choi(B), Adam Chlipala, and Arvind

MIT CSAIL, Cambridge, USA
joonwonc@alum.mit.edu, {adamc,arvind}@csail.mit.edu

Abstract. Cache-coherence protocols have been one of the greatest
challenges in formal verification of hardware, due to their central com-
plication of executing multiple memory-access transactions concurrently
within a distributed message-passing system. In this paper, we introduce
Hemiola, a framework embedded in Coq that guides the user to design
protocols that never experience inconsistent interleavings while handling
transactions concurrently. The framework provides a DSL, where any
protocol designed in the DSL always satisfies the serializability prop-
erty, allowing a user to verify the protocol assuming that transactions
are executed one-at-a-time. Hemiola also provides a novel invariant proof
method, for protocols designed in Hemiola, that only requires consider-
ing execution histories without interleaved memory accesses. We used
Hemiola to design and prove hierarchical MSI and MESI protocols as
case studies. We also demonstrated that the case-study protocols are
hardware-synthesizable, by using a compilation/synthesis toolchain tar-
geting FPGAs.

Keywords: formal verification · cache coherence · proof assistants

1 Introduction

Programming languages and compilers help engineers describe each system at
the most expedient level of abstraction. The process of experimenting with new
languages is most familiar from the software world, but hardware designers also
benefit from it. Of course, Verilog and VHDL themselves are significant steps up
from direct circuit descriptions. Some families of hardware languages go further,
in roughly the sense that, say, Java goes further than C, providing abstrac-
tions that simplify reasoning about modular design. The rule-based hardware
languages like Bluespec [23] allow hardware designers to imagine that system
modules take turns executing local atomic state-change rules, with no concur-
rency. In reality, parallel execution is essential for performance, and compilers
for these languages rely on static analysis to extract parallelism soundly.

Roughly speaking, a rule in Bluespec and its relatives must run within a
single clock cycle. What happens when we want to simplify reasoning about
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 317–339, 2022.
https://doi.org/10.1007/978-3-031-13188-2_16

https://doi.org/10.6084/m9.figshare.19726966
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-13188-2_16

318 J. Choi et al.

longer-running processes? A prime example is a cache-coherence protocol. A
memory hierarchy is a distributed system, with many caches communicating
through explicit message passing, requiring at least as many clock cycles as the
longest dependency chain of message exchanges. The logic is notoriously difficult
to get right. One reason is that many memory requests from processor cores may
be handled simultaneously. One cache may be working on one request, while a
neighboring cache is working on a different request. Might there be abstractions
that remove this complication from the hardware designer’s thought process,
much as Bluespec allows the same designer to pretend that different hardware
components do not execute state-change logic in parallel?

We answer affirmatively in presenting Hemiola, the first hardware-description
language that presents cache-coherence transactions as if they run atomically,
while realizing the usual parallel performance gains. We define a transaction as
all the activity within the memory system in response to a single request from
a processor core or other user of the memory. One request may trigger a flurry
of activity in the protocol, but the designer may at least pretend that no other
request is active in the same period.

The foundation of Hemiola is identifying commonalities across practical
cache-coherence protocols and embodying them in a domain-specific language
(DSL). We fix a notion of node hierarchy and message-passing channels, enu-
merating rule templates capturing relevant communication patterns. Protocols
are then described in terms of single-cycle, per-cache rules, each instantiated
from a template. Crucially, a locking discipline is built into the language and
handled automatically by the templates.

In addition to the DSL, Hemiola provides formal tools significantly easing
verification of all cache-coherence protocols designed in it. The DSL is embedded
in the Coq proof assistant and has a fully machine-checked proof of soundness,
formalized as serializability : any state invariant preserved with one-transaction-
at-a-time execution is also preserved in true parallel execution. The serializability
property is once-and-for-all at the language level, freeing protocol designers from
needing to reason about interleavings among transactions. In a sense, our work
takes techniques that have been used for per-protocol verification and lifts them
to apply at the level of a DSL, so that no verification effort need be expended
on them per-protocol.

To sum up, the contribution of this paper consists of two parts1:

– We discover a set of topology and lock conditions that ensures serializability,
extracted from usual cache-coherence protocol designs. We then identify a
DSL, where every protocol defined in this language ensures serializability
by-construction, backed up with mechanized Coq proof (Sect. 3). Lastly, we
formalize how serializability helps prove global invariants, by using the novel
notion of predicate messages in distributed protocols (Sect. 4).

– We provide the complete correctness proofs of hierarchical cache-coherence
protocols (Sect. 5) using Hemiola. Our case studies are the first complete

1 Our framework and case studies are available as open source: https://github.com/
mit-plv/hemiola. Choi’s dissertation [9] goes into additional detail.

https://github.com/mit-plv/hemiola
https://github.com/mit-plv/hemiola

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 319

Fig. 1. A simple MSI directory protocol and its rule-execution cases

mechanized proofs that share a large segment of reusable proofs across vari-
ous cache-coherence protocols. We also demonstrate that the case-study pro-
tocols are hardware-synthesizable, by using a compilation/synthesis toolchain
in Hemiola (Sect. 6).

2 A Motivating Example

Before introducing our proposed method to design and verify cache-coherence
protocols, we provide a simple motivating example to explain the typical chal-
lenges and how we suggest to handle them. For simplicity, in this section, we
will consider a protocol handling only a single memory location. We will see it
is still nontrivial to design a correct protocol.

The overall goal of cache coherence is to preserve coherence among multiple
candidate values in a memory subsystem. In other words, if the system is coher-
ent, then it should behave like an atomic memory. Figure 1 shows caches and
network channels for a directory-based MSI protocol. There are three caches (P ,
C1, and C2), and each of them has its own status (Modified, Shared, or Invalid)
and data (v). In this MSI protocol, a cache can read/write the data with the M
status, only read with S, and cannot read/write with I. The parent P addition-
ally has a data structure called a directory to track the statuses of the children.
For example, a directory might be S〈1,2〉, meaning that both C1 and C2 have S
status, in some logical snapshot of state.

Caches communicate through ordered channels, shown as (�) in the figure.
Child caches (C1 and C2) have channels to receive and respond to requests from
processor cores. There are three types of channels between a parent and a child:
one channel is for parent-to-child messages, and the other two channels are for
child-to-parent requests and responses. It is natural to wonder why two separate
child-to-parent channels are required; we will see the reason very soon.

Figure 1 also depicts some example state-transition cases depending on the
cache statuses. In this setting, all the caches run concurrently by repeatedly
executing rules that make atomic, local state transitions. A rule may take some
messages from input channels, perform a state transition, and put messages in
output channels. A rule may also have a precondition, blocking use of that rule
when the precondition does not hold.

320 J. Choi et al.

A rule execution 1 is a case where a child C1 takes a request a rqWr from a
processor to write data, but it does not have M status and thus further requests
to the parent (b rqM) to get the permission. At this moment, in many practical
cache-coherence-protocol designs, C1 changes its status to a transient state SM
to record its current status (S) and the next expected status (M) and to make
any further processor requests stall.

Due to the concurrent execution of caches, we might have another rule exe-
cuted at the same time. 2 is executed concurrently with 1 , where C2 also takes
a processor request e rqWr and sends f rqM to the parent as well. Since 1 and
2 happened at the same time, the parent P needs to decide which request to
deal with. Suppose that it decided to handle b rqM first.

3 presents the next execution by P , taking the input message b rqM and
making an invalidation request (c rqI) to the other child C2 to change its status
to I. This request is required, since when a child has M, the others should not be
able to read/write the data. The parent, at this moment, changes its directory
status to a transient state to disallow any other requests from the children (e.g.,
f rqM), since otherwise it will handle two rqM messages simultaneously, which

might lead to an incoherent state – two M statuses in the caches.
Lastly, 4 shows the case that C2 handles the invalidation request (c rqI). A

number of corner cases should be handled carefully in this step:

– Since C2 requested f rqM, it has a transient state SM when c rqI arrives. It
should still be able to handle this invalidation request even in the transient
state (while any processor requests stall). In this case, C2 accepts c rqI and
changes its transient state to IM. We see that transient states should be
fine-grained enough to distinguish which requests to handle.

– Due to the existence of f rqM, if we had a single channel from a child to a
parent, a deadlock would occur. P cannot take f rqM since it is in a transient
state after making an invalidation request. It cannot take d rsI as well, since
the response is not at the head of the ordered channel. This case shows the
necessity of having multiple channels between a child and a parent.

A so-called three-channel system has been widely used and regarded as a
good choice to make the design correct and live [33,34]. While there are other
possible correct topology and network settings, the cases shown in Fig. 1 at least
demonstrate that it is nontrivial to construct one of them. Note that the three-
channel system is logical in the sense that the actual hardware implementation
may use various hardware components that can simulate the requirements.

In terms of making a protocol design correct, transient states, topology,
and network settings contribute to make interleavings correct. Considering the
sequence of rule executions [1 ; 3 ; 4] (in red) as an execution flow – we will later
call it a transaction – to handle a processor request a rqWr, we see that the other
execution flow (in blue) could not happen after 2 , which is for another proces-
sor request e rqWr. As explained above case-by-case, proper transient states and
network channels made f rqM stall. This mechanism to ensure safe interleav-
ings is called noninterference [11,18], which ensures that no other transactions
spuriously affect state transitions by an ongoing transaction.

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 321

Hemiola in a Nutshell. If transient states, proper topology, and network
settings are essential for designing a correct protocol, can we craft a DSL where
only conformant protocols are expressible?

That is exactly what we did with Hemiola. The Hemiola DSL helps designers
design cache-coherence protocols in a safe way. Instead of requiring designers to
use transient states coupled to a protocol, we discover general stall conditions
that by themselves ensure noninterference and form those conditions as con-
ceptual locks. The stall conditions are extracted and abstracted from the usual
transient states, so they can apply to practical protocols.

For instance, a designer may write a rule for 1 without any DSL support
like the left rule in the following code:

1 system memoryMSI {
2 cache C1 {
3 state status: MSI, value: valueT, in_transition: TrsMSI
4 ...
5 // Without any DSL support | // Using the Hemiola DSL
6 rule getMRqUpUp { | rule getMRqUpUp from template rquu {
7 msgIn = procToC1.deq(); | receive rqWr();
8 assert (msgIn.id == rqWr); | assert (status == S);
9 assert (!in_transition); | send rqM();

10 assert (status == S); | }
11 in_transition <= SM; |
12 c1ToPRq.enq({id: rqM, val: 0}); } |
13 } }

Note that a designer has to find proper input/output channels (procToC1 and
c1ToPRq) and check/set a proper transient state (in_transition) in order to define
the rule.

On the other hand, the left rule can be written more easily by using the
Hemiola DSL as the right rule. Instead of using explicit channels and transient
states, the right rule just uses the rquu rule template (where rquu stands for
request-up-up). The rule templates employ proven-safe network structures and
automatically check/set/release associated locks, so users can design protocols
without worrying about incorrect use of network channels, locks, etc.

3 The Hemiola Domain-Specific Language

As explained in Sect. 2, in designing a cache-coherence protocol, it is nontrivial
to make concurrent execution of transactions correct. In this section, we intro-
duce the Hemiola DSL to ease that burden. While conventional approaches deal
with transient states directly to derive noninterference per-state, the Hemiola
DSL limits protocols to satisfy abstract conditions that can guarantee noninter-
ference by-construction. The conditions have already been mentioned in Sect. 2
– network topology and locking mechanisms extracted from transient states of
practical cache-coherence protocols.

Notations. An overline (e.g., l) denotes a list. [] and (l + e) denote nil and
single-element append, respectively. ⊕l flattens the list of lists l with repeated
concatenation. (l1 + l2), (l1 − l2), and (l1 # l2) denote append, subtraction,

322 J. Choi et al.

and disjointness of lists, respectively. We use the same operation (+) for the
single-element and general append. Regarding a list of key-value pairs as a finite
map, we override notations for lists. For example, (M + l) updates multiple
key-value pairs in a finite map M . Moreover, we overload the same operation
(M +(k, v)) for a single update for simplicity. (s.fd) is used as a shorter notation
for (List.map (λs. s.fd) s). We use 〈·〉 to denote a struct and use a name (e.g.,
s.fd) to access a field value.

3.1 Syntax

The Hemiola DSL is similar to well-known rule-based hardware-description lan-
guages (HDLs) such as Bluespec [23], Kami [10], and Kôika [4]. A notable dif-
ference is that rule descriptions are restricted by predesigned rule templates to
avoid spurious interleavings among transactions.

A system S ::= 〈C, iin, irq, irs〉 is the biggest unit of the language; it con-
sists of caches (C) and channel indices for internal messages (iin) and external
(processor) inputs(irq)/outputs(irs). A cache C ::= 〈i, sinit, r〉 consists of its index
(unique within a system), an initial state (sinit), and rules (r). A rule (r) makes
state transitions within the cache, and it is always defined by one of the rule
templates provided by the language.

Each rule template must be instantiated with a rule index (should be unique
within a cache), a precondition, and a transition function, where the types of the
precondition and transition vary by template. A precondition of a rule template
usually takes input messages and a (partial) current cache state and decides
whether the rule can be executed or not. A transition function takes the same
arguments in general but returns the next cache state and output messages.
Neither state transition nor input-messages consumption happens if the precon-
dition does not hold. We will introduce the detailed rule-template forms in the
next section (Sect. 3.2).

A message m ::= 〈ty, id, val〉 is composed of a Boolean message type (request
or response), a message ID (effectively from an enumeration of message kinds),
and a value. We use value to refer to the set of legal contents of memory
addresses. A pair im ::= (i,m) is used sometimes to represent a message m in a
channel with an index i.

3.2 Rule Templates

The Hemiola DSL follows syntax and semantics of traditional rule-based HDLs,
but the major difference is that Hemiola further restricts the way of describing
rules, which itself guarantees noninterference among transactions.

Topology and Network Requirements. First of all, Hemiola requires that
the caches in a given system form a tree topology. Most cache-coherent memory
subsystems follow this topology, where leaf nodes correspond to L1 caches, and
the root corresponds to the main memory. A child and its parent in the tree
communicate using the three channels shown in Sect. 2.

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 323

Fig. 2. Locking mechanism in Hemiola

Note that the topology and network settings are required logically ; the actual
hardware implementation may use various hardware components (e.g., finite-
capacity FIFOs or buses) that can simulate the requirements.

Locking Mechanism. We saw in Sect. 2 why transient states are required
to ensure noninterference in cache-coherence protocols. Revisiting the issue
described in Fig. 1, a child should be able to handle an invalidation request
from the parent even if it is in a transient state (SM), and after handling the
request it changes its transient state to IM.

Hemiola supports a locking mechanism reflecting this discovery; the locking
is more general in that the framework looks at whether the message is from the
parent or a child. This mechanism is still enough to describe practical cache-
coherence protocols and sufficient to ensure noninterference.

In particular, Hemiola employs two kinds of locks: uplocks and downlocks. We
say a cache is uplocked (or downlocked) when it holds an uplock (or downlock),
respectively. Figure 2 depicts the locking mechanism in Hemiola. An uplock is
set when a cache (P1 in the figure) makes an upward request to its parent (P2);
it is released when the cache gets a corresponding response from the parent.
The cache cannot make any further upward requests while uplocked. On the
contrary, a downlock is set when a cache (P2 in the figure) makes a downward
request(s) to some of its children; similarly it is released when the cache gets
corresponding response(s) from the child requestee(s). The cache cannot make
any further downward requests while downlocked.

Now every cache defined in Hemiola does not need to set transient states to
consider all possible combinations among stable statuses. For instance, instead
of setting a transient state SM, it is now desirable to maintain its status S and
set an uplock to record it just made an upward request. We emphasize that
the Hemiola locks do not enforce more restrictions on protocols than what is
enforced by transient states; e.g., as an uplock makes certain messages like rqS

and rqM stall, a transient state SM makes them stall as well.
Each cache defined by Hemiola has a semantic lock state holding a lock type

(uplock or downlock) and related messages/indices. The user, however, does
not need to deal with this lock state while using the DSL; locks are managed
implicitly by Hemiola.

Note that the DSL supports design of single-cache-line protocols, and thus
the uplock and downlock are assigned per-line. The single-line protocol is then

324 J. Choi et al.

Fig. 3. Rule templates in Hemiola

naturally extended to all cache lines using a protocol compiler that will be intro-
duced in Sect. 6. This approach is sound in terms of correctness, since a trans-
action does not affect coherence for the other lines.

The Nine Rule Templates. Hemiola provides a set of rule templates for
describing protocols in a way that guarantees noninterference by-construction.
Figure 3 presents the nine rule templates. Each diagram has the form {P}C[Q]
and arrows (representing the directions of messages; e.g., a downward arrow
indicates messages from a parent) with circles (◦ for inputs and • for outputs)
and labels representing requests (rq(s)) and responses (rs(s)). It means that the
rule template is for a cache C, requires input messages (◦) with the message
types determined by the label, has a precondition P , performs a state transition
Q, and generates output messages (•). The precondition and state transition
are implicit in the sense that they are automatically checked and performed,
respectively, whenever the rule is executed. Note that some rule templates may
make local state transitions without any input/output messages (input/output
messages marked with parentheses in Fig. 3).

UL, DL, !UL, and !DL in a precondition indicate that the cache should be
uplocked, downlocked, uplock-free, and downlock-free, respectively. UL⇑, DL⇑,
UL⇓, and DL⇓ in a state transition indicate setting an uplock, setting a down-
lock, releasing an uplock, and releasing a downlock, respectively. SLT annotates
that the rule template forbids any state modification beside locking.

The rule templates are carefully designed to avoid any spurious interleavings
among transactions. We see a number of cases that are worth analyzing:

– immu and rqdd show that a cache can handle a downward request even when
uplocked. These rules do not have a precondition that the cache should be
uplock-free. This relaxation is necessary to avoid a deadlock.

– rsdd says that in order to handle a response from the parent, the cache should
be downlock-free. This precondition is required to ensure noninterference.

– rsrq forces the order of a traversal, saying that the traversal for the outer
caches must be done before traversing the inner caches. This rule is used when

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 325

Fig. 4. Transition steps of the Hemiola DSL

a transaction needs to traverse all the caches in the system, e.g., invalidating
all the other caches to obtain the M status. The forced order is important to
avoid a deadlock.

4 Verification in Hemiola

We have introduced the Hemiola DSL in Sect. 3 and provided an intuition
that rule templates ensure general noninterference, i.e., interleavings among any
transactions are safe. That said, we have not yet showed how the rule templates
guarantee such noninterference in a formal way. We also have not explained how
noninterference eases the verification of cache-coherence protocols.

In this section, we provide the semantics of the Hemiola DSL and the formal
meaning of general noninterference called serializability. We then introduce our
novel approach to proving invariants called predicate messages, which eliminates
the burden of considering interference while proving invariants.

4.1 Semantics of the Hemiola DSL

A system in Hemiola follows so-called “one-rule-at-a-time semantics” [4,5,10,34],
i.e., any state transition by concurrent rule executions can be interpreted as a
serial execution of rules. Thus, it is fair to consider that a state transition happens
by executing a single rule.

Transition Steps. Figure 4 describes the complete semantics for transition steps
of the Hemiola DSL. The semantics for a step is presented as a judgment s0

l−→
S

s1,

where S is the system to execute, s0 is a prestate, s1 is a poststate, and l is a
label generated by the state transition. The state of a system (in domain S)

326 J. Choi et al.

is a pair 〈c,M〉 of cache states (c) and message states (M). Cache states are
represented in a finite map from cache indices to cache states, and message
states are represented in a finite map from channel indices to ordered queues of
messages.

Rule [SSilent] represents the case where no state transition happens in the
current step; an empty label (lε) is generated in this case. From now on, we
assume that all the input/output messages used in the step definitions do not
share the same channel, i.e., (List.NoDupim.i). [SIns] describes the case for exter-
nal input messages coming to the system; an external-inputs label (lin(im))
is generated in this case. [SOuts] describes the opposite case, for output mes-
sages being released to the external world, generating an external-outputs label
(lout(im)).

Lastly, [SInt] deals with a state transition by a rule (r) in a cache (C).
It nondeterministically chooses a cache and a rule in the cache, checks that
the precondition holds, and applies the transition to update the state of the
system; an internal label (lint(C.i, r.i, imins, imouts)) is generated in this case,
which records a cache index, a rule index, input messages, and output messages.
Note that the semantics is based on ordered channels, so messages are enqueued
and dequeued in each state-transition case.

The step semantics is naturally lifted to one for multiple steps, presented as

a judgment s0
l=⇒
S

s1, where l is a sequence of labels generated by executions of

the steps in order. We will sometimes call such a sequence of labels a history.

We say that a state s is reachable iff there is a history l such that Sinit
l=⇒
S

s

holds, where Sinit is the initial state of the system S. We use a simpler notation

S ⇒ s for reachable states. We also call such a history l legal, denoted as S
l=⇒ •.

We call I : S → P
2 an invariant over a system S if I holds for all reachable

states, i.e., ∀s. (S ⇒ s) → I(s).

Behaviors and Correctness. A system S has a behavior �l� (denoted as S ⇓
�l�) iff Sinit

l=⇒
S

s holds, where �·� filters out silent (lε) and internal (lint) labels

so only the external parts remain. We call such a sequence of labels a trace.
Lastly, we say that a system I (“implementation”) trace-refines another system
S (“specification”), written as I
 S, iff every trace of I is also a trace of S:

I
 S � ∀t. I ⇓ t → S ⇓ t.

In order to prove trace refinement, we usually establish a simulation rela-
tion [6] between the implementation and the spec states and prove that the
relation is preserved over steps, and it is crucial to state and prove proper invari-
ants of the implementation for the simulation proof. Since the invariant proof is
indeed the most significant part of the whole correctness proof, in this paper we
would like to focus on how Hemiola helps a user state and prove invariants.

2
P is Prop in Coq, which can reasonbly be interpreted as Boolean in this paper.

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 327

Fig. 5. An example of an atomic history

4.2 Serializability in Hemiola

Serializability [3,28] is a celebrated notion of concurrency correctness. While
each transaction in a system affects multiple values, serializability guarantees
that interleaved execution of such transactions is correct in that the effect (state
change) is the same as if the transactions were executed serially, i.e., atomically
in some order with no interleaving.

In order to define serializability formally, we first provide basic definitions
of atomic histories and transactions. A history h is atomic iff it satisfies the
predicate (iminit h∼∼∼� imend) with initial messages iminit and live messages
imend, constructed inductively by the following two cases:

– Any singleton history with an internal label is an atomic history with its
input and output messages as initial and live messages, respectively.

– If h is an atomic history, (h+l) is also an atomic history if l consumes its input
messages from the live messages of h. The new live messages are constructed
by subtracting the input messages and adding the output messages of l to
the previous live messages.

Figure 5 presents an atomic history already shown in Fig. 1. h is generated
by executions of three rules, r1 ∈ C1.r, r2 ∈ P.r, and r3 ∈ C2.r. Rule r1 takes an
input message (1, rqWr) (from the channel with index 1) as an initial message
of the history. Rule r2 takes (3, rqM), the output message from r1. Finally, r3
takes (8, rqI), the output message from r2. Summing up all the rule executions,
by the definition of an atomic history we get the predicate lower-right in Fig. 5.

This example shows that an atomic history intuitively captures a transaction
flow triggered by the initial messages. Note that an atomic history does not need
to be completed, e.g., h in the example is incomplete in the sense that the live
message (rsI) is not a response sent to an external channel.

We call an atomic history (iminit h∼∼∼� imend) a transaction if its initial
messages are external requests (iminit.i ⊆ S.irq); we denote it as S �h.

With a clear notion of transactions, we can now easily define sequential histo-
ries and serializability. A history h is sequential iff the history is a concatenation
of transactions:

328 J. Choi et al.

Fig. 6. Interference breaks a predicate message

Sequential S h � ∃ t. (∀t ∈ t. S � t) ∧ h = ⊕t.

A legal history h is serializable in the system S iff there exists a sequential
history that reaches the same state:

Serializable S h � ∀s. Sinit
h=⇒
S

s → ∃hseq. Sequential S hseq ∧ Sinit
hseq==⇒
S

s.

A system S is serializable iff every legal history is serializable:

Serializable S � ∀h. Serializable S h.

4.3 Predicate Messages

Now we discuss how to exploit our notion of serializability: how does it help prove
global invariants of a system? In proving the correctness of a cache-coherence
protocol, it is very common to state an invariant like “an important property
holds whenever the system includes a certain message in a certain channel.” We
call such an invariant a predicate message, giving the intuition of messages that
logically carry predicates that must be true so long as those messages remain
in play. More formally, S � im{P} � ∀s. (S ⇒ s) → im ∈ s.M → P (s), where
s.M refers to the message state of the system. We will write just im{P} when
the system S is clear from context, also often using a shorter version id{P}
(considering only messages with a given ID) when it is not ambiguous.

Figure 6 presents an example of a predicate message. When a child C2 is
about to handle a response message rsM, which is a permission to change the
cache status to M, we expect the parent and the other child C1 to have I status
(like {C1.st = I ∧P.st = I} in the figure). However, between the sending of that
message and receipt by C2, the predicate may be broken by another transaction;
for instance, the predicate no longer holds if a state transition happens by r1 ∈
C1, which takes another (5, rsM) and updates the status of C1 to M.

Investigating this corner case carefully, we find that actually no two differ-
ent rsM messages can be in the system at the same time. It implies that now
the predicate message for rsM should have a much-more-complicated form, which
considers all possible noninterference cases. The complete desired predicate mes-
sage for (8, rsM) will then look like:

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 329

Fig. 7. Predicate messages defined as an atomic invariant

(8, rsM)

⎧
⎪⎪⎨

⎪⎪⎩

C1.st = I ∧ P.st = I ∧ // The original predicate
// Noninterference with another transaction to get M from C1

(7, rsI) /∈ s.M ∧ (5, rsM) /∈ s.M ∧
· · · // More noninterference cases will be required

⎫
⎪⎪⎬

⎪⎪⎭

It is indeed a burden to consider all possible interleavings per predicate mes-
sage. We would not have faced such a complication if we could ensure that no
other transactions interfere while handling a transaction. Serializability guaran-
tees exactly that simplification, and Hemiola provides a way of designing and
proving predicate messages in the simpler form, not taking any interference into
account.

Our novel approach to employing predicate messages in atomic histories
begins with formalizing the notion of atomic invariants. We say that IA :
IM× S → P is an atomic invariant iff IA (imo, s1) holds for any atomic history

h with s0
h=⇒
S

s1 and imi
h∼∼∼� imo.

Figure 7 shows an example of predicate messages defined in an atomic history,
formalized as an atomic invariant. An atomic invariant IA is a conjunction of
clauses (im ∈ imo → P (s)), each claiming that the predicate P holds when im
is in the live messages imo. We can prove that the atomic invariant IA holds by
induction on state-transition steps through the atomic history in the figure:

– The initial step of the atomic history is the one by r1. The live messages are
[(4, rsI)]. Since r1 changes the status of C1 to I, it is straightforward to prove
IA.

– The next step is by rp, and at this point the live messages are [(8, rsM)]. By
the induction hypothesis, we obtain the predicate message (4, rsI){C1.st = I}.
Since rp changes the status of P to I, we can prove the predicate for (8, rsM).

– The last step is by r2, and the live messages are [(10, rsWr)]. IA trivially holds
here since it does not contain any predicate for (10, rsWr).

Note that the invariant proof was straightforward since no other state transitions
interfere with an atomic history.

330 J. Choi et al.

How do atomic invariants help prove conventional invariants? If the system
S is serializable, by definition, for every reachable state there is a sequential
history that reaches the same state. Since the sequential history is a concatena-
tion of transactions, an invariant can be proven by showing that any transaction
preserves it.

Since a transaction is an (external) atomic history, we can make use of cor-
responding atomic invariants. In other words, we can employ both convention-
al/atomic invariants (I and IA) to prove the ones for the next state (si+1):

IA (mi, si) ∧ I(si) → (IA (mi+1, si+1) ∧ I(si+1)).

For instance, in proving a cache-coherence protocol, we usually want to have
an invariant claiming that at most one node of the system has M status at a
time. The predicate messages defined in Fig. 7 will play a crucial role here, e.g.,
the one for (8, rsM) says that C1 and P both have I status, which means that the
state transition by (r2 : C2.st ← M) preserves the invariant. We will see more
comprehensive uses of predicate messages in our case studies (Sect. 5).

4.4 Serializability Guarantee by the Hemiola DSL

The biggest contribution of the Hemiola framework includes the serializabil-
ity proof. The highest-level theorem simply claims that use of good topology
(OnTree S t) and the rule templates (GoodRules S t) guarantees serializability:

∀S, t. OnTree S t ∧ GoodRules S t → Serializable S.

In the proof we used a well-established technique called commuting reduc-
tions [15], showing that any interleaving transactions can be serialized by per-
forming a finite number of reductions. Interested readers are referred to Choi’s
dissertation [9], which describes more details of the proof.

5 Case Studies: Hierarchical MSI and MESI Protocols

In this section we explain how we designed, specified, and formally proved the
correctness of the following three hierarchical cache-coherence protocols: inclu-
sive/noninclusive MSI protocols and a noninclusive MESI protocol. Each pro-
tocol is parameterized by a tree that decides the topology of the memory sub-
system. In other words, whenever we instantiate the tree parameter, we get a
cache-coherence design and its correctness proof for free.

The protocols are directory-based and support arbitrary evictions. The inclu-
sive MSI protocol requires back-invalidation to maintain the cache-line inclu-
sion [30]. The noninclusive protocols employ the noninclusive-cache inclusive-
directory (NCID) [38] structure to optimize cache space.

We will introduce common points among our case-study protocols. Particu-
larly, we focus on how predicate messages are used (introduced in Sect. 4.3) to
ease the invariant proofs required to prove protocol correctness. More details
about the correctness proofs are provided in Choi’s dissertation [9].

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 331

5.1 Cache States

A cache state consists of a status, a value, a directory, and a Boolean called an
ownership bit. A status is either M, E, S, or I. The MESI protocol applies further
optimizations to the MSI protocol: if a cache line has E status, then the line is
exclusive to the cache but also clean.

A directory contains a status of its children called a directory status and a
list of child-cache indices that have the directory status. An L1 cache does not
have a directory since it has no children.

The ownership bit decides whether the cache is responsible for writing the
value back to the parent when evicted. The ownership bit intuitively constrains
which caches can have valid status; we will see how this intuition is formalized
as an invariant in Sect. 5.3.

5.2 Protocol Description with Rule Templates

We present a number of rule descriptions, used in our case studies, that employ
the rule templates provided in Hemiola. Each rule template is defined in Coq,
taking in several parameters and generating a rule. We exploited Coq’s notation
mechanism to define each rule template compactly.

1 rule l1GetMRqUpUp from template rquu {
2 receive rqWr();
3 assert (status != M);
4 send rqM();
5 }

The above code presents an actual rule definition in an L1 cache, starting with
an invocation of a particular rule template rquu, which takes an upward request
(to the cache) and sends a further request to the parent. This rule receives a
message with the ID rqWr from the processor core3 to get a write permission.
This rule template also requires to write down the precondition (assert) and
the output message (send). In this example the cache simply forwards rqM to the
parent. As explained in Sect. 3.2, the rquu rule template does not allow any state
transition except locking – the template automatically sets an uplock.

1 rule liDownIRsUpDownM from template rsud {
2 receive downRsI();
3 hold {rsbTo, rqM()};
4 status <= I;
5 dir <= M [rsbTo];
6 owned <= false;
7 send rsM();
8 }

The above rule presents another case that sends the response to the child who
requested rqM. Template rsud says that the rule takes responses from children
and responds back to the original child requestor. The rule receives the response
message with the ID downRsI. In order to execute this rule, the cache should hold

3 It is a rule defined in an L1 cache, thus an upward request is from the core.

332 J. Choi et al.

Fig. 8. Use of predicate messages in the case-study protocols

a downlock containing the index of the original requestor (rsbTo) and the request
message with the ID rqM, acting like an assertion for the lock state.

As a state transition, this rule sets its status to I, sets the directory status to
M by adding the requestor, and sets the ownership bit as false since the requestor
will make the value dirty after it obtains M. It also sends a response (rsM) to the
requestor. Lastly, the downlock is released automatically and implicitly by the
rsud rule template.

1 rule liGetSImmME from template immd {
2 receive rqS() from cidx;
3 assert (status == E || status == M);
4 assert (dir.status == I);
5 status <= I;
6 dir <= E [cidx];
7 send rsE(value);
8 }

The above rule is for the MESI protocol, fired when an intermediate cache
gets a request from a child to read the data, while the parent has status E or M.
In this case, instead of responding with rsS, the cache sends rsE to provide E.
Once the original requestor obtains E status, it can both read and write.

5.3 Invariant Proof Using Predicate Messages

Now we present how predicate messages (introduced in Sect. 4.3) are used to
prove a nontrivial invariant required for all of our three case-study protocols.

Figure 8 shows a coordination between predicate messages and conventional
invariants. Suppose that an L1 cache (shown as L1 in gray in the figure) requested
to the parent to get the M status. When it finally handles the response rsM, it
should know all the other caches (except itself) have been invalidated to prove
the desired invariant about M (denoted as L1.st = M → Invalid (λc. c �= L1)).
This proof case can be supported using the predicate message for rsM, stating
Invalid (tr−1 (C)) (the caches outside of the subtree rooted to C are invalid) when
the message goes to C. Since L1 is a leaf node in the tree, it is trivial to prove
Invalid (tr−1 (L1)) → Invalid (λc. c �= L1), so we see an example of a predicate
message helping prove a conventional invariant.

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 333

Figure 8 also shows another coordination to prove a predicate message. When
a child Ci sends the invalidation response rsI, it should know that all the caches
inside the subtree of Ci have been invalidated (denoted as Invalid (tr (Ci))).
When the parent P subsequently handles the responses, it responds with rsM to
the original requestor (C0 in the figure), requiring to prove Invalid (tr−1 (C0)),
the predicate message for rsM.

While P also changes its status to I in this state transition, how do we infer
that the caches outside P have already been invalidated, which is required to
prove the predicate over rsM? In this case, we should know that 1) P has the
ownership bit true (from a simple cache-level invariant of P) and 2) the caches
outside of a cache with ownership bit set should have I status (denoted as
P.owned = � → Invalid (tr−1 (P))) as an invariant. Combining all the predicates
and the state transition by P , we can prove the next predicate message for rsM

to the original requestor C0.

6 Compilation and Synthesis to Hardware

So far we have dealt with cache-coherence protocols for a single line. In order to
build a hardware-synthesizable multiline implementation, we developed a com-
piler that takes a single-line Hemiola protocol and generates a multiline imple-
mentation described in Kami [10].

Kami is a hardware formal-verification framework, where its own HDL and
proof tools are defined in Coq, allowing users to design, specify, verify, and syn-
thesize their hardware components. Since Kami already has a hardware-synthesis
toolchain, we can just compile a Hemiola program to Kami and use the toolchain
to run it on FPGAs.

6.1 Compilation of Hemiola Protocols

The compiler uses prebuilt hardware components described in Kami. One of
them is NCID [38], whose interfaces include asynchronous read and write of
the line status and value. Another prebuilt component holds a finite number of
miss-status holding registers (MSHRs), whose abstract interface includes regis-
tering, updating, and releasing MSHRs with respect to their types (uplock or
downlock) and locking addresses. The compiler also takes a cache configuration
as an argument to set the capacity of a cache, the number of MSHRs, etc.

One of the biggest differences between a source Hemiola protocol and the
target Kami implementation is that the target accesses multiple lines asyn-
chronously. In the source protocol, a single-line value is read (or written) imme-
diately, whereas in the target the value is accessed first by making a read (or
write) request to a cache and next by handling the response. In order to optimize
such line accesses, the compiler uses a prebuilt pipeline to deal with multiple line
accesses in parallel.

334 J. Choi et al.

6.2 Synthesis of Hemiola Protocols

Once we have obtained a multiline cache-coherence protocol implementation
from the compiler, we can use Kami’s synthesis toolchain to transliterate it to a
Bluespec [23] implementation and synthesize it to load on an FPGA.

Before synthesis, we first evaluated two Hemiola protocols, Hemiola2
and Hemiola3, instantiated from our hierarchical noninclusive MESI protocol
described in Sect. 5, using the Bluespec simulator. Hemiola3 is a 3-level pro-
tocol, consisting of four 32 KB 4-way set-associative L1 caches, two 128 KB
8-way L2 caches, and a 512 KB 16-way last-level cache. Hemiola2 is 2-level,
consisting of four L1 caches and the last-level cache. Each line holds 32 bytes
in all the protocols. We compared the performance with an existing Bluespec
implementation, RiscyOO [37], featuring a 2-level inclusive MESI protocol with
self-invalidation [30]. We set the cache sizes of RiscyOO the same as for Hemiola2.

Figure 9 shows the performance result. We measured performance by count-
ing the number of transactions performed in 5 × 105 simulation cycles, with
various workloads that make random requests but mimic some amount of tem-
poral/spatial locality of memory accesses. Though one should not draw too many
conclusions from the precise measurements, the result shows that the Hemiola
protocols are competitive with a practical implementation coded by hand.

Next we synthesized the Hemiola protocols, also shown in Fig. 9. We used
Xilinx’s Virtex-7 VC707 FPGA [1] for synthesis. Each protocol uses a minimal
clock length that can safely cover its critical path. Both Hemiola3 and Hemiola2
stayed within the FPGA’s budget of lookup tables (LUTs) and flip-flops (FFs).
We performed tandem verification covering over 109 memory requests for each
protocol on the FPGA, by connecting it to a tester module that generates a
random workload and a reference memory to check its safety and liveness.

Fig. 9. Evaluation and synthesis of Hemiola protocols

Optimization and verification of the cache-controller design are nontrivial;
the pipeline requires correct stall logic, which is as sophisticated as the logic in
pipelined processors. While the verification of the pipeline is one of our future-
work directions, we see it as orthogonal to the verification of cache-coherence
protocols, our focus with Hemiola.

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 335

7 Related Work

Model Checking. Model checking has long been widely used to verify cache-
coherence protocols. Various model checkers like Murphi [12], SMV [20], and
TLA+ [13,14] have been used.

In order to overcome the usual state-space-explosion problem, model checkers
have developed noninterference lemmas to deal with the state-space explosion by
interleavings [11,18]. In order to obtain effective lemmas, a number of approaches
used descriptions in terms of transactions (called “message flows”) [24,31,32].
Instead of looking at each transaction, Hemiola provides serializability that guar-
antees noninterference among any transactions defined on top of the framework.

In order to verify cache-coherence protocols with arbitrary numbers of cores
(but no hierarchy), parameterization has been used in designing and model-
checking the protocols [2,35,36]. Since Hemiola is built on Coq, we can take full
advantage of parameterization, and indeed the framework supports verification
of cache-coherence protocols with an arbitrary tree shape as a parameter.

In order to increase scalability further, recent approaches used modularity
in protocol design and successfully verified hierarchical cache-coherence proto-
cols [7,8,16,17]. The enforced modularity, however, made it hard to design and
verify noninclusive protocols. [7,8] tried to solve this problem using assume-
guarantee reasoning and history variables, while still maintaining the concept of
compositional verification, but faced state-space explosion again, and thus they
just verified a two-level MSI protocol with three L2 caches. [16,17] have devel-
oped the Neo theory as a safe way to compose “subtrees” of caches to have a
hierarchical protocol. They argued it is possible to verify noninclusive protocols
in the Neo framework when a directory is still inclusive but did not provide
the actual design and proof. We provided the proofs of hierarchical noninclusive
cache-coherence protocols in Hemiola, without any such restrictions.

Another notable success of cache-coherence verification employed program
synthesis to generate a protocol for a given atomic specification [25,26]. The Pro-
toGen/HieraGen synthesizer can generate various hierarchical protocols includ-
ing 3-hop protocols and even unconventional protocols like TSO-CC but does
not support noninclusive protocols as well. Furthermore, they used Murphi to
verify synthesized protocols, but in ProtoGen [26] they only succeeded up to
three caches without exhausting memory, and in HieraGen [25] they succeeded
only with the root, two cache-H, and two cache-L nodes. Since Hemiola supports
noninclusive protocols but not 3-hop ones, we see protocol-design-space cover-
age between Hemiola and ProtoGen/HieraGen as incomparable. That said, in
terms of verification, Hemiola provides a much higher level of formal assurance
by allowing verification of protocols with arbitrary tree topologies.

Theorem Proving. Theorem proving also has been used to verify cache-coherence
protocols. A number of works proved correctness of specific protocols [22,29]. A
recent success was a proof of a hierarchical MSI protocol with an arbitrary
tree topology using Coq [34], but it was not structured to promote streamlined

336 J. Choi et al.

reuse of results for other protocols. It also included rather complex and ad-hoc
invariants that needed to characterize transient states.

Another notable project designed a modular-specification approach for cache
coherence, verifying each cache against the spec while generating/proving invari-
ants automatically, using the Ivy verification tool [19,21,27]. While in Hemiola
a user should state and prove invariants manually, the framework provides seri-
alizability as a large essential invariant that can be reused by various protocols,
and then invariants become easier to prove on top of it.

8 Conclusion

We have developed a framework called Hemiola for simplified design and for-
mal proof of cache-coherence protocols. The template-based DSL ensures that
the only protocols that can be expressed are those that admit a form of per-
memory-access serializability. On top of the framework, we proved the correct-
ness of hierarchical MSI and MESI protocols as case studies, demonstrating
that Hemiola indeed eases proof burden. We also built a protocol compiler and
demonstrated these protocol implementations running on FPGAs.

Acknowledgements. We thank our reviewers for their feedback and detailed com-
ments. This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under Grant No. HR001118C0018. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or the U.S. Government.

References

1. 7 Series FPGAs Configurable Logic Block - User Guide, September 2016. https://
www.xilinx.com/support/documentation/user guides/ug474 7Series CLB.pdf

2. Banks, C.J., Elver, M., Hoffmann, R., Sarkar, S., Jackson, P., Nagarajan, V.:
Verification of a lazy cache coherence protocol against a weak memory model.
In: FMCAD 2017, Austin, TX, pp. 60–67 (2017) http://dl.acm.org/citation.cfm?
id=3168451.3168470

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc. (1987)

4. Bourgeat, T., Pit-Claudel, C., Chlipala, A., Arvind: The essence of Bluespec: a
core language for rule-based hardware design. In: PLDI, New York, NY, USA, pp.
243–257 (2020). https://doi.org/10.1145/3385412.3385965

5. Braibant, T., Chlipala, A.: Formal verification of hardware synthesis. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 213–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 14

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://dl.acm.org/citation.cfm?id=3168451.3168470
http://dl.acm.org/citation.cfm?id=3168451.3168470
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/978-3-642-39799-8_14

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 337

6. Brookes, S.D., Rounds, W.C.: Behavioural equivalence relations induced by pro-
gramming logics. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 97–108.
Springer, Heidelberg (1983). https://doi.org/10.1007/BFb0036900

7. Chen, X.: Verification of hierarchical cache coherence protocols for futuristic pro-
cessors. Ph.D. thesis, USA (2008)

8. Chen, X., Yang, Y., Gopalakrishnan, G., Chou, C.T.: Efficient methods for formally
verifying safety properties of hierarchical cache coherence protocols. Form. Meth-
ods Syst. Des. 36(1), 37–64 (2010). https://doi.org/10.1007/s10703-010-0092-y

9. Choi, J.: Structural design and proof of hierarchical cache-coherence protocols.
Ph.D. thesis (2021). https://hdl.handle.net/1721.1/130759

10. Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., Arvind: Kami: a platform
for high-level parametric hardware specification and its modular verification. In:
Proc. ACM Program. Lang. 1(ICFP), 24:1–24:30 (2017). https://doi.org/10.1145/
3110268

11. Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized veri-
fication of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD
2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30494-4 27

12. Dill, D.L.: The Mur φ verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61474-5 86

13. Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M., Yu, Y.: Checking
cache-coherence protocols with TLA+. Form. Methods Syst. Des. 22(2), 125–131
(2003). https://doi.org/10.1023/A:1022969405325

14. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

15. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975). https://doi.org/10.1145/361227.361234

16. Matthews, O., Bingham, J., Sorin, D.J.: Verifiable hierarchical protocols with net-
work invariants on parametric systems. In: FMCAD 2016, pp. 101–108. FMCAD
Inc, Austin (2016)

17. Matthews, O., Sorin, D.J.: Architecting hierarchical coherence protocols for push-
button parametric verification. MICRO 2017, pp. 477–489 (2017). https://doi.org/
10.1145/3123939.3123971

18. McMillan, K.L.: Verification of infinite state systems by compositional model check-
ing. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 17

19. McMillan, K.: Modular specification and verification of a cache-coherent inter-
face. FMCAD 2016, pp. 109–116. FMCAD Inc, Austin (2016). http://dl.acm.org/
citation.cfm?id=3077629.3077651

20. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, USA
(1993)

21. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

22. Moore, J. Strother.: An ACL2 proof of write invalidate cache coherence. In:
Hu, Alan J.., Vardi, Moshe Y.. (eds.) CAV 1998. LNCS, vol. 1427, pp. 29–38.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028728, http://dl.acm.
org/citation.cfm?id=647767.733778

23. Nikhil, R.: Bluespec system verilog: efficient, correct RTL from high level specifi-
cations, pp. 69–70 (2004). https://doi.org/10.1109/MEMCOD.2004.1459818

https://doi.org/10.1007/BFb0036900
https://doi.org/10.1007/s10703-010-0092-y
https://hdl.handle.net/1721.1/130759
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1023/A:1022969405325
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/3123939.3123971
https://doi.org/10.1145/3123939.3123971
https://doi.org/10.1007/3-540-48153-2_17
http://dl.acm.org/citation.cfm?id=3077629.3077651
http://dl.acm.org/citation.cfm?id=3077629.3077651
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/BFb0028728
http://dl.acm.org/citation.cfm?id=647767.733778
http://dl.acm.org/citation.cfm?id=647767.733778
https://doi.org/10.1109/MEMCOD.2004.1459818

338 J. Choi et al.

24. O’Leary, J., Talupur, M., Tuttle, M.R.: Protocol verification using flows: an indus-
trial experience. In: FMCAD 2009, pp. 172–179 (2009). https://doi.org/10.1109/
FMCAD.2009.5351126

25. Oswald, N., Nagarajan, V., Sorin, D.J.: HieraGen: automated generation of con-
current, hierarchical cache coherence protocols. In: ISCA 2020, pp. 888–899 (2020).
https://doi.org/10.1109/ISCA45697.2020.00077

26. Oswald, N., Nagarajan, V., Sorin, D.J.: ProtoGen: automatically generating direc-
tory cache coherence protocols from atomic specifications. In: ISCA 2018, Piscat-
away, NJ, USA, pp. 247–260 (2018) https://doi.org/10.1109/ISCA.2018.00030

27. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. SIGPLAN Not. 51(6), 614–630 (2016). https://
doi.org/10.1145/2980983.2908118

28. Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Sci-
ence Press Inc., USA (1986)

29. Park, S., Dill, D.L.: Verification of FLASH cache coherence protocol by aggregation
of distributed transactions. In: SPAA 1996, pp. 288–296. ACM, New York (1996).
https://doi.org/10.1145/237502.237573

30. Ros, A., Kaxiras, S.: Complexity-effective multicore coherence. In: PACT 2012,
pp. 241–252. Association for Computing Machinery, New York (2012). https://
doi.org/10.1145/2370816.2370853

31. Sethi, D., Talupur, M., Malik, S.: Using flow specifications of parameterized cache
coherence protocols for verifying deadlock freedom. In: Cassez, F., Raskin, J.-F.
(eds.) ATVA 2014. LNCS, vol. 8837, pp. 330–347. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6 24

32. Talupur, M., Tuttle, M.R.: Going with the flow: parameterized verification using
message flows. In: FMCAD 2008 (2008)

33. Vijayaraghavan, M.: Modular verification of hardware systems. Ph.D. thesis (2016).
http://hdl.handle.net/1721.1/106096

34. Vijayaraghavan, M., Chlipala, A., Arvind, Dave, N.: Modular deductive verification
of multiprocessor hardware designs. In: Kroening, D., Păsăreanu, C. (eds.) CAV
2015. LNCS, vol. 9207, pp. 109–127. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21668-3 7

35. Zhang, M., Bingham, J.D., Erickson, J., Sorin, D.J.: PVCoherence: designing flat
coherence protocols for scalable verification. In: HPCA 2014, pp. 392–403 (2014).
https://doi.org/10.1109/HPCA.2014.6835949

36. Zhang, M., Lebeck, A.R., Sorin, D.J.: Fractal coherence: scalably verifiable cache
coherence. In: MICRO 2010, USA, pp. 471–482 (2010). https://doi.org/10.1109/
MICRO.2010.11

37. Zhang, S., Wright, A., Bourgeat, T., Arvind, A.: Composable building blocks to
open up processor design. In: MICRO 2018, pp. 68–81 (2018). https://doi.org/10.
1109/MICRO.2018.00015

38. Zhao, L., Iyer, R., Makineni, S., Newell, D., Cheng, L.: NCID: a non-inclusive
cache, inclusive directory architecture for flexible and efficient cache hierarchies.
In: CF 2010, New York, NY, USA, pp. 121–130 (2010). https://doi.org/10.1145/
1787275.1787314

https://doi.org/10.1109/FMCAD.2009.5351126
https://doi.org/10.1109/FMCAD.2009.5351126
https://doi.org/10.1109/ISCA45697.2020.00077
https://doi.org/10.1109/ISCA.2018.00030
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/237502.237573
https://doi.org/10.1145/2370816.2370853
https://doi.org/10.1145/2370816.2370853
https://doi.org/10.1007/978-3-319-11936-6_24
https://doi.org/10.1007/978-3-319-11936-6_24
http://hdl.handle.net/1721.1/106096
https://doi.org/10.1007/978-3-319-21668-3_7
https://doi.org/10.1007/978-3-319-21668-3_7
https://doi.org/10.1109/HPCA.2014.6835949
https://doi.org/10.1109/MICRO.2010.11
https://doi.org/10.1109/MICRO.2010.11
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1145/1787275.1787314
https://doi.org/10.1145/1787275.1787314

Hemiola: A DSL and Verification Tools for Cache-Coherence Protocols 339

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Hemiola: A DSL and Verification Tools to Guide Design and Proof of Hierarchical Cache-Coherence Protocols
	1 Introduction
	2 A Motivating Example
	3 The Hemiola Domain-Specific Language
	3.1 Syntax
	3.2 Rule Templates

	4 Verification in Hemiola
	4.1 Semantics of the Hemiola DSL
	4.2 Serializability in Hemiola
	4.3 Predicate Messages
	4.4 Serializability Guarantee by the Hemiola DSL

	5 Case Studies: Hierarchical MSI and MESI Protocols
	5.1 Cache States
	5.2 Protocol Description with Rule Templates
	5.3 Invariant Proof Using Predicate Messages

	6 Compilation and Synthesis to Hardware
	6.1 Compilation of Hemiola Protocols
	6.2 Synthesis of Hemiola Protocols

	7 Related Work
	8 Conclusion
	References

