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Preface

This volume contains the papers presented at the 24th International Conference on
Descriptional Complexity of Formal Systems (DCFS 2022) which was held at the
University of Debrecen, Hungary, during August 29–31, 2022. It was jointly organized
by the Working Group 1.02 on Descriptional Complexity of the International Feder-
ation for Information Processing (IFIP) and by the Department of Computer Science at
the Faculty of Informatics of the University of Debrecen.

The DCFS conference series is an international venue for the dissemination of new
results related to all aspects of descriptional complexity including, but not limited to,
the following:

– Automata, grammars, languages, and other formal systems; various modes of
operations and complexity measures

– Succinctness of description of objects, state-explosion-like phenomena
– Circuit complexity of Boolean functions and related measures
– Size complexity of formal systems
– Structural complexity of formal systems
– Trade-offs between computational models and modes of operation
– Applications of formal systems (e.g., in software and hardware testing, in dialogue

systems, in systems modeling or in modeling natural languages) and their com-
plexity constraints

– Cooperating formal systems
– Size or structural complexity of formal systems for modeling natural languages
– Complexity aspects related to the combinatorics of words
– Descriptional complexity in resource-bounded or structure-bounded environments
– Structural complexity as related to descriptional complexity
– Frontiers between decidability and undecidability
– Universality and reversibility
– Nature-motivated (bio-inspired) architectures and unconventional models of

computing
– Blum static (Kolmogorov/Chaitin) complexity, algorithmic information

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a merger in 2002 of
two other workshops: Formal Descriptions and Software Reliability (FDSR) and
Descriptional Complexity of Automata, Grammars and Related Structures (DCAGRS).
DCAGRS was previously held in Magdeburg (1999), London (2000), and Vienna
(2001). FDSR was previously held in Paderborn (1998), Boca Raton (1999), and San
Jose (2000). Since 2002, DCFS has been successively held in London, Ontario, Canada
(2002), Budapest, Hungary (2003), London, Ontario, Canada (2004), Como, Italy
(2005), Las Cruces, New Mexico, USA (2006), Nový Smokovec, High Tatras,
Slovakia (2007), Charlottetown, Prince Edward Island, Canada (2008), Magdeburg,



Germany (2009), Saskatoon, Canada (2010), Giessen, Germany (2011), Braga,
Portugal (2012), London, Ontario, Canada (2013), Turku, Finland (2014), Waterloo,
Ontario, Canada (2015), Bucharest, Romania (2016), Milan, Italy (2017), Halifax,
Nova Scotia, Canada (2018), and Košice, Slovakia (2019). The next DCFS conferences
were planned to be held in Vienna, Austria (2020), and in Seoul, South Korea (2021),
but both of these events were canceled as in-person meetings due to the COVID-19
pandemic. The accepted papers appeared only in the conference proceedings.

This year 17 papers were submitted by authors from 14 different countries. The
number of submissions was less than usual, probably due to the current problems in the
world and to the desirable and aspired return to an in-person conference. On the other
hand, these submissions were of extraordinary quality. Therefore, after the review of
each paper by three referees, the Program Committee were able to accept 14 papers out
of the 17 submissions.

The program also included four invited talks by

– Mikołaj Bojańczyk, University of Warsaw, Poland,
– Stefano Crespi Reghizzi, Polytechnic University of Milan, Italy,
– Szabolcs Iván, University of Szeged, Hungary,
– Galina Jirásková, Slovak Academy of Sciences, Košice, Slovakia.

We thank all invited speakers, contributing authors, Program Committee members,
and external referees for their valuable contributions towards the realization of DCFS
2022.

We are also grateful to the editorial staff at Springer for their guidance and help
during the process of publishing this volume, and for supporting the event through
publication in the LNCS series.

Partial financial support for the conference was provided by the Department of
Computer Science and by the Faculty of Informatics of the University of Debrecen.

Finally, we would like to thank the members of the organizing committee who
worked hard to make this edition successful and all participants who, either in-person
or virtually, contributed to the success of the conference.

We are looking forward to DCFS 2023 in Potsdam, Germany.

June 2022 Yo-Sub Han
György Vaszil
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Polyregular Functions

Mikołaj Bojańczyk

Institute of Informatics, University of Warsaw, Poland
bojan@mimuw.edu.pl

Transducers are like automata, but instead of accepting/rejecting they produce an
output, such as a string or a tree. This talk is about a class of string-to-string functions,
called the polyregular functions, which can be seen as a candidate for the notion of
regular string-to-string transducers of polynomial growth. The class has many equiv-
alent characterisations, including monadic second-order logic, two-way automata, an
imperative programming language with for loops, and functional programming
languages.



On Scattered Context-free Order Types
(Extended Abstract)

Szabolcs Iván1

Department of Informatics, University of Szeged, Hungary
szabivan@inf.u-szeged.hu

1 Introduction

When the alphabet R of a language L�R� is linearly ordered, the language itself can be
seen as a linearly ordered set, by the lexicographic ordering \ in which xay\xbz if
a\b and x\xy if y 2 Rþ . As an example, with R ¼ fa; bg and a\b, the order types
of the languages a�, a� þ b� and b�a� are x, xþx and x2, respectively, with x
denoting the order type of the natural numbers. (For the last one, consider the chain
e\a\aa\. . .\b\ba\baa\. . .\bb\. . .)

Clearly, we can encode any such R by a constant-length homomorphism into
fa; bg� preserving the order type of the language (e.g. for R ¼ fa; b; c; dg we can use
faa; ab; ba; bbg as the image of the letters) so generally it suffices to consider the
binary alphabet when we are interested only in the order types. An order type is called
regular (context-free, resp.) if it is the order type of some regular (context-free, resp.)
language. Since the set R� of all R-words is countable as well, the order type of any
language is countable; on the other hand, since every countable order type can be
embedded into the order type g of the rationals and L ¼ faa; bbg�ab has the order type
g (since it is a dense ordering without least and greatest elements), every countable
order type arises as the order type of some language.

An operational characterization of the regular order types was given in [11]. It was
shown in [2] that an ordinal is regular if and only if it is less than xx.

The central topic of the presentation, the study of context-free order types was
initiated in [1]. From the model checking aspect of interactive programs, studying
scattered order types might have its actual usage: an order type is scattered if it does not
have a dense subordering. Hausdorff assigned a (countable) ordinal to the (countable)
scattered orderings (see e.g. [13]), called its rank. In our results, we use a slightly
modified definition of the original rank as follows: finite order types have rank 0 and if
an order type is a finite sum of f-sums of scattered order types each having a rank less
then a, then its order type is at most a. Formally we can define for each ordinal a a class
Ha of (scattered, countable) order types as H0 consisting of the finite order types and
Ha being the smallest class containing each order type of the form

P
j2f1;...;ng

P
i2Z

oj;i with

1 Support of the ITM NKFIA TKP2021 grant is acknowledged.



each oj;i being a member of some Hb with b\a. Then the rank of a (scattered
countable) order type o is the least ordinal a with o 2 Ha. Due to Hausdorff’s theorem,
every scattered order type has a rank. As examples, x, f, xk and xx have ranks 1, 1, k
and x respectively, for the latter one we can write e.g. xx ¼ 1þxþx2 þx3 þ . . .
which is an x-sum of order types having a finite rank.

2 Selected Results

It is known [3] that an ordinal is regular if and only if it is less than xx and it is
context-free if and only if it is less than xxx

. Also, the rank of any scattered regular
(context-free, resp.) order type is less than x (xx, resp.) [7, 11]. The other reason why
it is interesting to study scattered context-free orderings is that it is decidable whether a
context-free grammar G generates a scattered language [5] while it is undecidable
whether it generates a dense one [6]. For the general case, it is even undecidable
whether the order type of a context-free language is g [6]. However, for scattered
context-free order types we do have some positive results: it is known [10] that the
order type of a well-ordered language generated by a prefix grammar (i.e. in which each
nonterminal generates a prefix-free language) is computable, thus the isomorphism
problem of context-free ordinals is decidable if the ordinals in question are given as the
lexicograpic ordering of prefix grammars. Also, the isomorphism problem of regular
orderings is decidable as well [4, 14]. It is unknown whether the isomorphism problem
of scattered context-free orderings is decidable – a partial result in this direction is that
if the rank of such an ordering is at most one (that is, the order type is a finite sum of the
terms x, �x and 1), then the order type is effectively computable from a context-free
grammar generating the language [8, 9]. Moreover, it is also decidable whether a
context-free grammar generates a scattered language of rank at most one. It is a very
plausible scenario though that the isomorphism problem of scattered context-free
orderings is undecidable in general – the rank 1 is quite low compared to the upper
bound xx of the rank of these orderings, and there is no known structural character-
ization of scattered context-free orderings. Clearly, among the well-orderings, exactly
the ordinals smaller than xxx

are context-free but for scattered orderings the main
obstacle is the lack of a finite “normal form” – as every x-indexed sum of the terms x
and �x is scattered of rank two, there are already uncountably many scattered
orderings of rank two and thus only a really small fraction of them can possibly be
context-free. So it makes sense to study language classes lying strictly between the
regular and the context-free languages. One candidate can be that of the deterministic
context-free languages: for these it is known that their order types are exactly the
(general) context-free order types [7].

Another candidate for the next step is the class of the one-counter languages: these
are the ones that can be recognized by a pushdown automaton having only one stack
symbol. In [12], a family of well-ordered languages Ln�fa; b; cg� was given for each
integer n� 0 so that the order type of Ln is xx�n (thus its rank is x� n) and Kuske
formulated two conjectures: i) the order type of well-ordered one-counter languages is

On Scattered Context-free Order Types xiii



strictly less than xx2
and more generally, ii) the rank of scattered one-counter lan-

guages is strictly less than x2. Of course the second conjecture implies the first.
In the main part of the presentation we aim to prove this second conjecture.

References

1. Bloom, S.L., Ésik, Z.: Regular and algebraic words and ordinals. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) Algebra and Coalgebra in Computer Science, vol. 4624,
pp. 1–15. Springer, Berlin, Heidelberg (2007). 10.1007/978-3-540-73859-6_1

2. Bloom, S.L., Choffrut, C.: Long words: the theory of concatenation and omega-power.
Theor. Comput. Sci. 259(1), 533–548 (2001)

3. Bloom, S.L., Ésik, Z.: Algebraic ordinals. Fundam. Inform. 99(4), 383–407 (2010)
4. Bloom, S.L., Ésik, Z.: The equational theory of regular words. Inform. Comput. 197(1), 55–

89 (2005)
5. Ésik, Z.: Scattered context-free linear orderings. In: Mauri, G., Leporati, A. (eds.) Devel-

opments in Language Theory, vol. 6795, pp. 216–227. Springer, Berlin, Heidelberg (2011).
10.1007/978-3-642-22321-1_19

6. Ésik, Z.: An undecidable property of context-free linear orders. Inform. Process. Lett. 111
(3), 107–109 (2011)

7. Ésik, Z., Iván, S.: Hausdorff rank of scattered context-free linear orders. In: Fernández-Baca,
D. (eds.) LATIN 2012: Theoretical Informatics, vol. 7256, pp. 291–302. Springer, Berlin,
Heidelberg (2012). 10.1007/978-3-642-29344-3_25

8. Gelle, K., Iván, S.: On the order type of scattered context-free orderings. In: The Tenth
International Symposium on Games, Automata, Logics, and Formal Verification, 2–3
September 2019, pp. 169–182 (2019)

9. Gelle, K., Iván, S.: The order type of scattered context-free orderings of rank one is com-
putable. In: Alexander, C., et al. (eds.) SOFSEM 2020: Theory and Practice of Computer
Science - 46th International Conference on Current Trends in Theory and Practice of
Informatics, SOFSEM 2020, Limassol, Cyprus, 20–24 January 2020, Proceedings of Lecture
Notes in Computer Science, vol. 12011, pp. 273–284. Springer, Cham (2020). 10.1007/978-
3-030-38919-2_23

10. Gelle, K., Iván, S.: The ordinal generated by an ordinal grammar is computable. Theor.
Comput. Sci. 793, 1–13 (2019)

11. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite words.
RAIRO – Theor. Inform. Appl. 14(2), 131–141 (1980)

12. Kuske, D.: Logical aspects of the lexicographic order on 1-counter languages. In: Chatterjee,
K., Sgall, J. (eds.) Mathematical Foundations of Computer Science 2013 - 38th International
Symposium, MFCS 2013, Klosterneuburg, Austria, 26–30 August 2013. Proceedings, vol.
8087 of Lecture Notes in Computer Science, vol. 8087, pp. 619–630. Springer, Berlin,
Heidelberg (2013). 10.1007/978-3-642-40313-2_55

13. Rosenstein, J.G.: Linear orderings. Pure Appl. Math. (1982)
14. Thomas, W.: On frontiers of regular trees. ITA 20(4), 371–381 (1986)

xiv S. Iván

https://doi.org/10.1007/978-3-540-73859-6_1
https://doi.org/10.1007/978-3-642-22321-1_19
https://doi.org/10.1007/978-3-642-29344-3_25
https://doi.org/10.1007/978-3-030-38919-2_23
https://doi.org/10.1007/978-3-030-38919-2_23
https://doi.org/10.1007/978-3-642-40313-2_55


Operations on Unambiguous Finite Automata
(Extended Abstract)

Galina Jirásková1

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01,
Košice, Slovakia

jiraskov@saske.sk

Abstract. We investigate the complexity of basic regular operations on lan-
guages represented by unambiguous finite automata. We get tight upper bounds
for intersection (mn), left and right quotients (2m � 1), positive closure
3
4 � 2n � 1
� �

, star 3
4 � 2n
� �

, shuffle (2mn � 1), and concatenation 3
4 � 2mþ n � 1
� �

.
To describe witnesses, we use a binary alphabet for intersection and left and
right quotients, a ternary alphabet for positive closure and star, a five-letter
alphabet for shuffle, and a seven-letter alphabet for concatenation. We also
discuss some partial results for complementation (between 2logloglogn andffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2n=2) and union (between mnþmþ n and mþ n � ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p � 2m=2 where
m� n).

1 Introduction

A nondeterministic finite automaton (with multiple initial states, NFA) is unambiguous
(UFA) if it admits at most one accepting computation on every input string. Ambiguity
in finite automata was first considered by Schmidt [15] in his unpublished thesis, where
he developed a lower bound method for the size of unambiguous automata based on the
rank of certain matrices. He also obtained a lower bound of 2Xð

ffiffi
n

p Þ on the conversion of
unambiguous finite automata into deterministic finite automata (DFAs).

Leung [10] improved the UFA-to-DFA trade-off to the tight upper bound 2n. He
described, for every n, a binary n-state UFA with a unique initial state whose equiv-
alent DFA requires 2n states. A similar binary example with multiple initial states was
given by Leiss [8], and a ternary one was presented already by Lupanov [11]; notice
that the reverse of Lupanov’s witness for NFA-to-DFA conversion is deterministic.
Using an elaborated Schmidt’s lower bound method, Leung [11] described, for every n,
an n-state NFA, in fact, a DFA with multiple initial states, whose equivalent UFA
requires 2n � 1 states.

Stearns and Hunt [17] showed that it can be tested in polynomial time whether or
not a given nondeterministic finite automaton is unambiguous. They also provided
polynomial-time algorithms for the equivalence and containment problems for unam-
biguous finite automata.

1 Research supported by VEGA grant 2/0132/19.



Hromkovič et al. [4] further elaborated a lower bound method for UFAs. Using
communication complexity they showed that so-called exact cover of all 1’s with
monochromatic sub-matrices in a communication matrix of a language provides a
lower bound on the size of any UFA for this language, and they simplified some proofs
presented in [15, 17].

Okhotin [13] examined unambiguous automata over a one-letter alphabet. He
proved that the UFA-to-DFA trade-off in the unary case is given by a function in

eHð
ffiffiffiffiffiffiffiffiffiffi
nðlnnÞ23

p
Þ, while the NFA-to-UFA trade-off is e

ffiffiffiffiffiffi
nlnn

p ð1þ oð1ÞÞ. He also obtained the
tight upper bound ðn� 1Þ2 þ 1 for star, an upper bound mn, tight if m; n are relatively
prime, for concatenation, and a lower bound n2�e for complementation of unary
unambiguous automata.

Here we discuss the results on the complexity of basic regular operations on lan-
guages represented by unambiguous finite automata over an arbitrary alphabet obtained
by Jirásek, Jirásková, and Šebej [6]. To get upper bounds, we provide a construction of
a UFA recognizing the language resulting from an operation. In the case of intersection,
the corresponding product automaton is unambiguous. In all the remaining cases, we
first describe a nondeterministic automaton for the resulting language, and then count
the number of its reachable non-empty sets. Such a number provides an upper bound on
the size of an equivalent partial deterministic, so unambiguous, subset automaton.

To get lower bounds, we first restate the lower bound method from [10, 15]. To any
NFA N, we assign a matrix MN whose rows are indexed by sets that are reachable in N
and columns by sets that are co-reachable in N, and whose entry ðS; TÞ includes 0 if S
and T are disjoint and it includes 1 otherwise. The rank of such a matrix provides a
lower bound on the number of states in any unambiguous automaton recognizing the
language LðNÞ. Then, using the known fact that the rank of the matrix is 2n � 1 if its
rows and columns are indexed by all the non-empty subsets of a set of size n and its
entries are as described above, we get an observation that the number of reachable sets
in any NFA provides a lower bound on the size of any equivalent UFA if all the
non-empty sets are co-reachable in the given NFA.

We use this observation to get lower bounds for quotients, positive closure, shuffle,
and concatenation. We describe witness languages in such a way that in an NFA for the
resulting language, all the non-empty sets are co-reachable, and the number of
reachable sets is as large as possible. In the case of our intersection witnesses, the
matrix corresponding to the resulting product automaton is an identity matrix of size
mn, while in the case of star, we must inspect carefully the rank of the corresponding
matrix.

An upper bound on the complexity of complementation of a language represented
by a UFA is given by the number of reachable set in a given UFA, as well as by the
number of its co-reachable sets. We show that the minimum of these two numbers is at
most 20:79nþ logn. This upper bound can be further decreased to

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2n=2 as shown
by Indzhev and Kiefer [5]. A superpolynomial lower bound on the complexity of
complementation on unambiguous automata has been recently obtained by Raskin [14].

xvi G. Jirásková



2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages and
automata theory. For details and all the unexplained notions, the reader may refer to [3,
16].

A nondeterministic finite automaton (NFA) is a 5-tuple N ¼ ðQ;R;D; I;FÞ, where
Q is a finite nonempty set of states, R is a finite nonempty set of input symbols called
the input alphabet, D�Q� R� Q is the transition relation, I�Q is the set of initial
states, and F�Q is the set of final states. Each element ðp; a; qÞ of D is called a
transition of N. A computation of N on an input string a1a2 � � � an is a sequence of
transitions ðq0; a1; q1Þðq1; a2; q2Þ � � � ðqn�1; an; qnÞ 2 D�. The computation is accepting
if q0 2 I and qn 2 F; in such a case we say that the string a1a2 � � � an is accepted by N.
The language accepted by the NFA N is the set of strings
LðNÞ ¼ fw 2 R�j w is accepted byNg.

An NFA N ¼ ðQ;R;D; I;FÞ is unambiguous (UFA) if it has at most one accepting
computation on every input string, and it is (partial) deterministic (DFA) if j Ij ¼ 1
and for each state p in Q and each symbol a in R, there is at most one state q in Q such
that ðp; a; qÞ is a transition of N. It follows immediately from the definition that every
(partial) deterministic automaton is unambiguous.

The transition relation D may be viewed as a function � : Q� R ! 2Q, and it can be
extended to the domain 2Q � R� in the natural way. We denote this extended function
by � as well. Then LðNÞ ¼ fw 2 R�j I � w\F 6¼ ;g.

Every NFA N ¼ ðQ;R; �; I;FÞ can be converted to an equivalent deterministic
automaton DðNÞ ¼ ð2Q;R; �; I; fS 2 2Qj S\F 6¼ ;gÞ, called the subset automaton of
N [16]. Removing the empty set from the subset automaton results in an equivalent
partial deterministic, so unambiguous, automaton. This gives the following
observation.

Proposition 1. Every language accepted by an n-state NFA is recognized by a UFA of
at most 2n � 1 states. □

A subset S of the state set Q of an NFA N ¼ ðQ;R; �; I;FÞ is reachable if S ¼ I � w
for some string w, and it is co-reachable if it is reachable in the reverse of N obtained
from N be reversing all its transitions and by swapping the roles of its initial and final
states. Using these notions we get the following characterization of unambiguous
automata.

Proposition 2. A nondeterministic finite automaton is unambiguous if and only if
j S\T j � 1 for each reachable set S and each co-reachable set T. □

If the reverse of an NFA is deterministic, then each co-reachable set in N is of size
one,which gives the next observation.

Proposition 3. An nondeterministic finite automaton is unambiguous if its reverse is
(partial) deterministic. □

Now we restate the lower bound method from [10, 15].

Operations on Unambiguous Finite Automata xvii



Proposition 4 (Lower bound method for UFAs). Let N be an NFA. Let M be the
matrix with rows (columns) indexed by reachable (co-reachable) sets of N, in which
the entry ðS; TÞ includes 0 if S and T are disjoint, and 1 otherwise. Then every UFA
recognizing LðNÞ has at least rankðMÞ states.
Proof. Let A be a minimal n-state unambiguous automaton recognizing LðNÞ. Consider
a matrix M 'A whose rows are indexed by the states of A, and columns are indexed by
strings generating the co-reachable sets in N. The entry ðq;wÞ of M 'A is 1 if wR is
accepted by A from the state q, and it is 0 otherwise. Since A is unambiguous, for every
column in M 'A there is at most one row that contains a 1. It follows that the row of MN

indexed by a set S is a sum of the rows of M'A corresponding to the states in S. Thus
every row of MN is a linear combination of rows in M 'A, and therefore
rankðMNÞ� rankðM'AÞ� n. □

Let Mn be a matrix with rows and columns indexed by all the non-empty subsets of
a set of size n, and such that the entry ðS; TÞ is 0 if S and T are disjoint, and it is 1
otherwise. Then rankðMnÞ ¼ 2n � 1 [9, Lemma 3]. This gives the following corollary.

Proposition 5. If every non-empty set is co-reachable in a nondeterministic finite
automaton, then the number of its reachable sets provides a lower bound on the
number of states in any equivalent unambiguous automaton. □

3 Results

Let us start with the trade-offs between deterministic, nondeterministic, and unam-
biguous finite automata. Every unambiguous automaton of n states can be simulated by
a DFA of at most 2n states obtained by the subset construction. To get tightness,
consider an NFA from from Fig. 1. Since its reverse is deterministic, this NFA is
unambiguous. As shown by Leung [10, Theorem 1], every equivalent DFA has at least
2n states.

Every NFA of n states can be simulated by a partial deterministic, so unambiguous,
subset automaton of at most 2n−1 states. To get tightness of this upper bound, consider
the binary NFA from Fig. 2, a witness for complementation on NFAs from [7, The-
orem 5]. Every non-empty set is reachable in this NFA, and since the reverse of this

1 2 3 4 · · · n−1 na a

a

b b b b

b b
b

a a a

Fig. 1. A binary UFA-to-DFA witness meeting the upper bound 2n [10].
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NFA is, in fact, the same NFA, every non-empty set is co-reachable as well. Hence
every equivalent UFA has at least 2n−1 states. Moreover, every equivalent DFA has at
least 2n states, since the empty set is reachable in the NFA from Fig. 2. The trade-offs
between these three models of automata are shown in Fig. 3.

Now we continue with operational complexity on languages represented by
unambiguous finite automata. Table 1 shows the known results on the complexity of
basic regular operations on languages represented by deterministic and nondetermin-

1 2 3 · · · n−1 n
a, b a, b a, b a, b a, b

b

b

b

b
b

b

b
b

Fig. 2. A binary NFA-to-UFA witness meeting the upper bound 2n−1.

DFA

UFA

NFA
2n

2n 2n − 1

Fig. 3. The trade-offs between deterministic, nondeterministic, and unambiguous finite automata.

Table 1. The complexity of regular operations on languages represented by deterministic and
nondeterministic finite automata [2, 7, 12, 18].

Operation DFA Rj j NFA Rj j
Reversal 2n 2 n 2
Intersection mn 2 mn 2
Left quotient 2m � 1 2 mþ 1 2
Right quotient m 1 m 1
Shuffle ? mn 2
Concatenation m � 2n � 2n�1 2 mþ n 2

Positive closure 3
4 � 2n � 1 2 n 1

Star 3
4 � 2n 2 nþ 1 1

Complementation n 1 2n 2
Union mn 2 mþ n 2
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istic finite automata, while Table 2 summarizes the corresponding results for unam-
biguous automata from Jirásek Jr., Jirásková, Šebej [6]. Both tables also display the
size of alphabet used to describe witness languages. Let us discuss the results for UFAs
in more detail.

Reversal. Since the reverse of an unambiguous automaton is unambiguous, the upper
bound is n for the reversal operation. This upper bound is met by a one-string unary
language an�1 recognized by an n-state partial deterministic, so unambiguous,
automaton. Its reversal is the same language which cannot be accepted by any non-
deterministic automaton with less than n states.

Intersection. Notice that the product automaton for intersection of two unambiguous
automata is unambiguous. This gives an upper bound mn for the intersection operation.
The binary languages fw 2 a; bf g j jwja ¼ m� 1g and fw 2 a; bf g j jwjb ¼ n�
1g meet this upper bound since in the corresponding product automaton each singleton
set is reachable and co-reachable, and therefore the corresponding matrix is the identity
matrix of size mn.

Left and Right Quotient. The left (right) quotient of a given language is recognized by
a nondeterministic automaton obtained from an automaton for the given language by
changing the set of initial (final) states. Applying the subset construction to the
resulting automaton and omitting the empty set results in an incomplete deterministic,
so also unambiguous, automaton for the language resulting from the quotient operation.
This gives the upper bound 2m � 1 in both cases. To get witness for left quotient,
consider the partial deterministic, so unambiguous, automaton from Fig. 4 and its left
quotient by the language a� recognized by a one-state unambiguous automaton. In the
corresponding nondeterministic automaton for the left quotient, each non-empty set is
reachable and co-reachable; notice that a shifts every subset cyclically by one, and b
eliminates the state m. A similar idea works for the right quotient of the language
recognized by the automaton from Fig. 4 by the empty string. Let us recall that the

Table 2. The complexity of regular operations on languages represented by unambiguous finite
automata [6].

Operation UFA Rj j
Reversal n 1
Intersection mn 2
Left quotient 2m � 1 2
Right quotient 2m � 1 2
Shuffle 2mn � 1 5
Concatenation 3

4 � 2mþ n � 1 7

Positive closure 3
4 � 2n � 1 3

Star 3
4 � 2n 3

Complementation � 20:8n −

Union (m� n) mnþmþ n� � �mþ n � 20:8m 4
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upper bound on the complexity of right quotient on DFAs and NFA is just n since
changing the set of final states in any DFA or NFA results in a DFA or NFA,
respectively. However, changing the set of final states in an unambiguous automaton
may not be unambiguous.

Shuffle. The shuffle of two languages represented by UFAs of m and n states is
recognized by an mn-state NFA. This gives an upper bound 2mn � 1 for the shuffle
operation on unambiguous automata. To describe witnesses, we use a five-letter
alphabet and consider the languages recognized by partial deterministic, so unam-
biguous, automata shown in Fig. 5; cf.[1]. In the corresponding shuffle automaton, each
non-empty set is reachable and co-reachable.

Concatenation. An automaton for the concatenation of two languages can be con-
structed from the corresponding unambiguous automata by adding the e-transition from
every final state of the first automaton to the initial state of the second automaton. In the
resulting automaton, at least 2mþ n�2 set of states are unreachable – those including a
fixed final state of the first automaton and not including the initial state of the second
automaton. After excluding the empty set, we get an upper bound 3

4 � 2mþ n � 1 for the
concatenation operation. For tightness, we consider the languages recognized by
unambiguous automata shown in Fig. 6 defined over the seven-letter alphabet

1 2 · · · m−1 m
a, c a, c a, c a, c

a

d d, e d, e d, e

1 2 · · · n−1 n
b, d b, d b, d b, d

b

c c, e c, e c, e

Fig. 5. Quinary witnesses for shuffle meeting the upper bound 2mn − 1.

1 2 · · · m−1 ma a a a

a

b b b

Fig. 4. A binary witness for left quotient (by a*) meeting the upper bound 2m − 1.
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a; b; c; d; a; b; cf g; notice that the reverse of the first automaton as well as the second
automaton are deterministic. In the corresponding automaton for concatenation of these
two languages, each non-empty set is co-reachable, while 3

4 � 2mþ n � 1 non-empty sets
are reachable.

Positive Closure. To get an automaton for the positive closure of a regular language
represented by an unambiguous automaton, we only need to add the e-transition from
every final state of this automaton to its initial state. In the resulting automaton, each set
of states that contains a fixed final state and does not contain the initial state is
unreachable which, after excluding the empty set, gives the upper bound 3

4 � 2n � 1. For
tightness, we consider the binary witness DFA for star from [18], and we add a loop on
a new symbol c in each state, except for the state n� 1 to get a ternary partial
deterministic, so unambiguous, automaton shown in Fig. 7. The third symbol guar-
antees the co-reachability of every non-empty subset in the corresponding NFA for
positive closure, while by strings over a; bf g we get the reachability of 3

4 � 2n � 1
non-empty sets.

Star. In the case of the star operation, we need to add a new initial (and final) state in
the construction from the previous paragraph which increases the upper bound by one.

1 2 · · · m−1 m
a, c a, b, c a, b, c a, b, c

c

α, β, γ, a, b, d α, β, γ, d α, β, γ, d α, β, γ

1 2 · · · n−1 nα α, β α, β α, β

α, β

a, b, c, d, β a, b, c, d, γ a, b, c, d, γ a, b, c, d, γ

Fig. 6. Septenary witnesses for concatenation meeting the bound 3
4 � 2mþ n � 1.

1 2 · · · n−2 n−1 na a, b a, b a, b a, b

a, b

b, c c cc c

Fig. 7. A ternary witness for positive closure meeting the upper bound 3
4 � 2n � 1.
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The witness is the same as for the positive closure, but now we have to inspect carefully
the binary matrix corresponding to the automaton for its star since now we cannot have
the case when all non-empty sets are co-reachable.

Complementation. The complementation operation looks to be really challenging on
unambiguous automata. A lower bound of X n2�eð Þ has been obtained by Okhotin [13],
while a superpolynomial lower bound has been recently provided by Raskin [14].
Although we are not able to improve these lower bounds, we can decrease the trivial
upper bound 2n to 20:79nþ logn. The idea of the proof is to observe that given an n-state
unambiguous automaton, the complement of its language is recognized by an unam-
biguous automaton of min Rj j; Cj jf g states, whereR and C are the families of reachable
and co-reachable sets in a given UFA, respectively. If the maximum of sizes of
reachable sets is k, then

Rj j� n
1

� �
þ n

2

� �
þ � � � þ n

k

� �

Cj j � kþ 1ð Þ � 2n�k

since every co-reachable set may have just one state from a fixed reachable set of
size k. If k� n=2, then Cj j is small enough. Otherwise, Rj j is upper bounded by an

increasing function r kð Þ ¼ n � en
k

� �k
and Cj j is upper bounded by a decreasing function

function c kð Þ ¼ n � 2n�k , and we show that min r kð Þ; c kð Þf g is at most 20:79nþ logn.
Recently, Indzhev and Kiefer [5] decreased this upper bound to

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2n=2 by
showing that the size of a UFA for the complemented language recognized by an n-
state unambiguous automaton is upper bounded by the minimum of the number of
cliques and co-cliques (independent sets) of a graph with n vertices, and then by
showing that in every such graph the product of the number of its cliques with the
number of its cocliques is bounded by nþ 1ð Þ � 2n.
Union. First, notice that the standard NFA for union is unambiguous if two languages
represented by unambiguous automata are disjoint. Without loss of generality, we may
assume that m� n. Since K [ L ¼ K [ L\Kcð Þ, and the languages K and L\Kc are
disjoint, we get an upper bound mþ n � 20:79mþ logm for union on unambiguous auto-
mata. Taking into account the result from [5], this upper bound can be decreased to
mþ n � ffiffiffiffiffiffiffiffiffiffiffiffi

mþ 1
p � 2m=2. To get a lower bound of mnþmþ n, we consider the quaternary

partial deterministic, so unambiguous, automata with all states final such that in the first
automaton, the symbol a performs a cyclic permutation, while b maps each state,
except for the initial one, to itself, and c; d perform the identity. In the second
automaton, the symbols a and b perform the identity, while c and d play the same role
as a and b in the first automaton. Then, in the NFA for their union, all the non-empty
sets are co-reachable, while mnþmþ n sets of size one and two are reachable.
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4 Open Problems

In this section we state some problems that remain open in the research of the com-
plexity of regular operations on languages represented by unambiguous automata. The
problem of finding the exact complexity of complementation seems to be the most
challenging.

Open Problem 1. What is the exact complexity of complementation for unambiguous
automata?

Even some better lower or upper bounds for the complementation operation would
be of interest; recall that the known lower bound is 2logloglogn [14], while the best known
upper bound is

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2n=2 [5]. We used the results for complementation to get an
upper bound for union. Nevertheless, the gap between lower and upper bound is large
in the case of union.

Open Problem 2. What is the complexity of union for unambiguous automata?
Our strategy for finding a witness for positive closure was to take the binary witness

for the star operation on DFAs, and then define the transition on one more symbol to
guarantee the co-reachability of all non-empty subsets in an NFA for positive closure.
Perhaps, a new, completely different, witness could be described over a binary
alphabet. A similar question arises in the case of the star operation.

Open Problem 3. What is the complexity of positive closure or star for unambiguous
automata in the binary case?

In the case of shuffle and concatenation, our witnesses are defined over a five-letter
and seven-letter alphabet, respectively. Our aim was to have proofs as simple as
possible in [6], and we did not consider the possibility of decreasing the size of input
alphabet.

Open Problem 4. Can unambiguous witnesses for shuffle or concatenation be
described over a smaller alphabet?

The research on the complexity of operations for unambiguous automata [6] was
really interesting, funny, and exciting for all three of us, and we believe that trying to
solve the open problems stated above could be interesting, funny, and exciting as well.
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