Skip to main content

Yet Another Canonical Nondeterministic Automaton

  • Conference paper
  • First Online:
Book cover Descriptional Complexity of Formal Systems (DCFS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13439))

Included in the following conference series:

  • 232 Accesses

Abstract

Several canonical forms of finite automata have been introduced over the decades. In particular, if one considers the minimal deterministic finite automaton (DFA), the canonical residual finite state automaton (RFSA), and the átomaton of a language, then the átomaton can be seen as the dual automaton of the minimal DFA, but no such dual has been presented for the canonical RFSA so far. We fill this gap by introducing a new canonical automaton that we call the maximized prime átomaton, and study its properties. We also describe how these four automata can be extracted from suitable observation tables used in the automata learning context.

This work was supported by the Estonian Research Council grant PRG1210. H. Maarand was also supported by the ERDF funded Estonian CoE project EXCITE (project 2014-2020.4.01.15-0018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Birget, J.: Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43(4), 185–190 (1992). https://doi.org/10.1016/0020-0190(92)90198-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 1004–1009 (2009). http://ijcai.org/Proceedings/09/Papers/170.pdf

  4. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Proceedings of Symposium on Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y. (1963)

    Google Scholar 

  5. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27 (2014)

    Article  Google Scholar 

  6. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Inform. 51, 339–368 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116(5), 356–360 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kameda, T., Weiner, P.: On the state minimization of nondeterministic finite automata. IEEE Trans. Comput. 19(7), 617–627 (1970)

    Article  MathSciNet  Google Scholar 

  9. Lombardy, S., Sakarovitch, J.: The universal automaton. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas]. Texts in Logic and Games, vol. 2, pp. 457–504. Amsterdam University Press (2008)

    Google Scholar 

  10. Myers, R.S.R., Adámek, J., Milius, S., Urbat, H.: Coalgebraic constructions of canonical nondeterministic automata. Theor. Comput. Sci. 604, 81–101 (2015)

    Article  MathSciNet  Google Scholar 

  11. Nerode, A.: Linear automaton transformations. Proc. Amer. Math. Soc. 9, 541–544 (1958)

    Article  MathSciNet  Google Scholar 

  12. Tamm, H.: Generalization of the double-reversal method of finding a canonical residual finite state automaton. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 268–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19225-3_23

    Chapter  MATH  Google Scholar 

  13. Tamm, H.: New interpretation and generalization of the Kameda-Weiner method. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 116:1–116:12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2016)

    Google Scholar 

  14. Tamm, H., van der Merwe, B.: Lower bound methods for the size of nondeterministic finite automata revisited. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 261–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_19

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Maarand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maarand, H., Tamm, H. (2022). Yet Another Canonical Nondeterministic Automaton. In: Han, YS., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2022. Lecture Notes in Computer Science, vol 13439. Springer, Cham. https://doi.org/10.1007/978-3-031-13257-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13257-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13256-8

  • Online ISBN: 978-3-031-13257-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics