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Spectral analysis of masked signals in the context
of image inpainting

Sylvie Le Hégarat-Mascle1 and Emanuel Aldea1

SATIE Laboratory, Paris-Saclay University, France
{sylvie.le-hegarat,emanuel.aldea}@u-psud.fr

Abstract. This paper proposes a computationally efficient algorithm
for evaluating a sum of squared differences in the image domain in the
presence of arbitrary mask configurations. Among the many potential
applications of this algorithm, we consider for illustration an image in-
painting task. The results show that on a diverse sample of hundreds
of simulated holes in the tested images, the proposed technique is more
effective than the baseline normalized cross-correlation, even when the
masks are properly dealt with by the baseline.
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1 Introduction

In image processing, a lot of tasks have been performed in the Fourier domain,
given the capability of the Discrete Fourier Transform (DFT) to provide a dis-
criminative spectral representation of a uniformly spaced discrete signal. Com-
putationally wise, the DFT has been appealing as well due to the Fast Fourier
Transform algorithm which allowed for addressing a wide range of applications in
a practical manner. Specifically, image registration is a particularly suited task,
since Fourier domain representations allow for recovering the translation offset,
as well as for inferring the relative rotation and scale up to some extent [17,
16, 15, 10]. The classification task may also be addressed with great success, as
the spectra of images with rich content featuring real-world environments often
contain diverse frequencies that may be exploited for robust discrimination [2,
21, 9].

One important but often irrelevant drawback of Fourier domain analysis is the
requirement for the uniform sampling of the signal domain (in our case, the image
domain). Although this does not raise particular concerns for most applications
due to the widespread use of standard image sensors which sample uniformly
the surrounding environment, in some cases either the support for the signal of
interest might not satisfy the above constraint, or it is otherwise detrimental
to process the entire domain indiscriminately. The most common situations are
when 1) only some categories of objects in a scene should be considered for
Fourier analysis and/or some categories of objects should be entirely ignored, 2)
some context-specific masks underline the sub-part of interest in the field of view
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of the sensor, and 3) a part of multiple disjoint parts of the object of interest
are visible. In all these circumstances, the absent area or the area containing
irrelevant data would in fact contribute as well to the spectrum of the signal,
and thus bias its representation and directly impact the subsequent analysis.

The community proposed various strategies for accounting for masked areas
in a manner consistent with the Fourier transform, however these algorithms
usually fail to preserve faithfully the spectrum of the regions of interest [20, 8, 13].
In contrast, Padfield [14] introduced an algorithm which directly and explicitly
integrates the masking into the FFT algorithm steps. A normalized crossed-
correlation (NCC) is computed in the Fourier domain, which is thereafter used
for solving image registration. We propose to generalize this idea by extending
the initial approach and demonstrate that 1) it may be used to compute other
similarity criteria related to norms and 2) it may be applied to other tasks
beyond registration.

2 Use of the masked Fourier transform

To measure the consistency between two areas of two different images, several
criteria have been proposed, among them the NCC and the sum of squared differ-
ences (SSD). Both are computed on image subparts defined as spatial domains.
To be able to compute a map giving the value of the considered consistency mea-
sure in one pass (in contrast with using a sliding window), we aim at formulating
the consistency measure based on the Fast Fourier Transforms (FFT). Besides,
we assume that the considered measure has to be evaluated on a domain which
is not necessarily rectangular.

Let us consider f1 and f2 as the two considered images, with f2 being the
moving image. Let us denote by D1 the f1 2D domain and by D2(u, v) the f2
translated/shifted by the 2D vector of coordinates (u, v). Then, Du,v = D1 ∩
D2(u, v) denote the intersection (or overlap) between the two domains, so that
the sums involved in the consistency measures are computed on Du,v.

In [14], Padfield expressed the sums
∑

(x,y)∈Du,v
1,

∑
(x,y)∈Du,v

f1(x, y) and∑
(x,y)∈Du,v

f1(x, y)
2 (and the corresponding expressions for f2) after introducing

the masks m1 and m2 corresponding to the indicator functions of the D1 and
D2 domains, and their Fourier transforms Mi = F(mi), i ∈ {1, 2}:

|Du,v| =
∑

(x,y)∈Du,v

1 = F−1(M1 ·M∗
2 )(u, v), (1)

f1 =
1

|Du,v|
∑

(x,y)∈Du,v

f1(x, y) =
F−1(F1 ·M∗

2 )(u, v)

F−1(M1 ·M∗
2 )(u, v)

, (2)

∑
(x,y)∈Du,v

f1(x, y)
2 = F−1(F(f1 · f1) ·M∗

2 )(u, v), (3)

with Fi = F(fi), i ∈ {1, 2}, and all the multiplications in these equations being
elementwise (Hadamard product), and M∗

2 denotes the complex conjuguate of
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the Fourier transform of M2 (that is also the Fourier transform of the transposed
of m2).

2.1 Average of Squared Differences with masks

In this work, we derive the formulation of the Average of Squared Differences
either centered or not centered, using the Fourier transform, i.e. without resorting
to a sliding window. Indeed, conversely to the NCC measure, the SSD has been
very popular due to its convenient summation properties, which are valuable for
considering multichannel images such as color ones. Note that in the standard
case, this measure is not normalized since the support has a set size and the
normalization would be useless. In our case however, we will explicitly focus on
the normalized (i.e., averaged with respect to the number of valid pixels) version
since the masks will modify the support size.

Using the previous notations, we express the sum of the squared differences
as follows:

SSD(u, v) =
∑

(x,y)∈Du,v

((
f1(x, y)− f1

)
−

(
f2(x− u, y − v)− f2,u,v

))2
(4)

=
∑

(x,y)∈Du,v

f1(x, y)
2 +

∑
(x,y)∈Du,v

f2(x− u, y − v)2 (5)

−2
∑

(x,y)∈Du,v

f1(x, y)f2(x− u, y − v)− |Du,v|
(
f1 − f2,u,v

)2
=

[
F−1(F(f1 · f1) ·M∗

2 )) + F−1(M1 · F(f
′

2 · f
′

2))− (6)

2F−1(F1 · F ∗
2 )−

(
F−1(F1 ·M∗

2 )−F−1(F2 ·M∗
2 )
)2]

(u, v),

with f
′

2 being the f2 image flipped (central symmetry).
The previous equation stands for the SSD with centered differences. In some

cases, it might be advisable to consider the uncentered differences, and this
version of the SSD is even simpler to express:

SSD(f1, f2) = F−1(F(f1 ·f1) ·M∗
2 ))+F−1(M1 ·F(f

′

2 ·f
′

2))−2F−1(F1 ·F ∗
2 ). (7)

Note that the computation of the uncentered SSD involves two less inverse
Fourier transforms than that of the centered SSD. Then, the map of the av-
erage of squared differences (ASD) is provided by dividing pixel per pixel SSD
map values (Eq. (6) or (7)) by F−1(M1 ·M∗

2 ) map values:

ASD(f1, f2) =
SSD(f1, f2)

F−1(M1 ·M∗
2 )

. (8)

2.2 Normalized Cross Correlation with masks

In [14], following this reformulation of the intermediate terms which accounts
for the impact of the masks m1 and m2 on the Fourier transform, the final
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evaluation of the NCC becomes:

NCC(f1, f2) =
F−1(F1·F∗

2 )−F−1(F1·M∗
2 )·F−1(M1·F∗

2 )

F−1(M1·M∗
2 )√

F−1(F(f1·f1)·M∗
2 )−

(F−1(F1·M∗
2 ))2

F−1(M1·M∗
2 )

√
F−1(M1·F(f ′

2·f ′
2))−

(F−1(M1·F∗
2 ))2

F−1(M1·M∗
2 )

(9)

3 Inpainting with the masked Fourier transform

Inpainting is a radical form of image restoration in which pixels inside a missing
region of the image are filled with information provided by the surrounding areas,
and potentially by the entire domain. The concept of self-similarity is central to
this task, since the main underlying assumption is that repeating patterns from
other parts of the image will be relevant for the missing area, and will thus be
imported there as well. In the spatial domain, the inpainting task has been tra-
ditionally addressed, as an ill-posed problem, by total variation regularization,
by dictionary based approaches [5, 6], by diffusion with partial differential equa-
tions [11, 22] or by some hybrid strategy [3, 1]. Compared to these commonly
encountered approaches, methods which use explicitly the Fourier transform of
the deteriorated input image are less common. Some works focus on some spe-
cific cases of inpainting which are particularly suited for spectral analysis (e.g.
removal of text overlay [18]). In [23], the FFT is used as an accelerating step
for patch matching in exemplar based image inpainting, while in [12] the in-
painting task is performed in the Fourier space of the image representation (i.e.
some coefficients are assumed to be missing). In [19], the image is decomposed
in decomposed in texture and non-texture components, then texture inpainting
and denoising is performed in a subsequent step. In [7], the authors employ an
alternative to the FFT, namely nonharmonic analysis, in order to minimize the
impact of the side lobes appearing on truncated data. None of these works try
to cope explicitly with the impact of the mask on the extracted frequencies, nor
they propose a fully spectral, computationally efficient approach.

In this work, we propose to take advantage of the fact that we are able to
compute a consistency criterion only considering the available pixels (i.e., fully
disregarding the missing ones) thanks to the use of Fourier transform based ex-
pressions introduced in Section 2. Based on these latter, we are then able to
propose an efficient strategy for solving the inpainting problem in which the
mask represents the area to be filled. The proposed algorithm searches, for each
area including missing pixels, another area which presents similar structures and
colors than the ones near the missing pixels. This search can be performed glob-
ally or locally depending on the assumptions. We then expect such an approach
to be all the more performing that the image presents repetitive structures or
textures.

The global outline is given by Algorithm 1. In the considered algorithm, as
well as in the conducted experiments in Section 4, we consider RGB images.
However, it is straightforward to apply the proposed approach in another color
space, or even to multispectral (or hyperspectral) images. The size l of the search
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Algorithm 1 Inpainting by research of similar areas; input: RGB image I,
search area side length l, boolean bu indicating if ASD is centered; output: RGB
image Ĩ. FFT stands for the Fast Fourier Transform and IFFT for the Inverse
Fast Fourier Transform.
1: L← list of I areas with missing pixels
2: Initialize Ĩ to I
3: for each element Aj of L do
4: (x, y)← Aj center coordinates
5: d← Aj min square bounding box side length
6: f1 ← rectangular tile centered on (x, y) and having side length equal to l
7: Cut a box of side length d at the center of f1
8: n← ⌈log2(d)⌉
9: f2 ← rectangular tile centered on (x, y) and having side length equal to 2n

10: m1 ← binary mask of f1 valid pixels
11: M1 ← FFT(m1)
12: m2 ← binary mask of f2 valid pixels
13: M2 ← FFT(m2)
14: M̌12 ← IFFT(M1 ·M∗

2 )
15: Initialize map S to 0 in every pixel
16: for each channel k of f1 do
17: for i ∈ 1, 2 do
18: fi,k ← channel k of fi
19: Fi ← FFT(fi,k)
20: f2

i,k ← fi,k · fi,k
21: Gi ← FFT(f2

i,k)
22: end for
23: F̌12 ← IFFT(F1 · F ∗

2 )
24: Ȟ12 ← IFFT(G1 ·M∗

2 )
25: Ȟ21 ← IFFT(M1 ·G∗

2)
26: if bu then
27: J̌12 ← IFFT(F1 ·M∗

2 )
28: J̌21 ← IFFT(M1 · F ∗

2 )
29: end if
30: S ← S + Ȟ12 + Ȟ21 − 2F̌12 + bu

(
J̌12−J̌21

M̌12

)
31: end for
32: S ← S

M̌12

33: (û, v̂)← argmin(u,v) S(u, v)

34: Fill the missing values in Ĩ by pasting the values of I around (x+ û, y + v̂)
35: end for
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area is an input parameter left to the user. Note that using a global search, the
Fourier transforms associated to the search area (the whole image in this case)
can be computed once at the beginning of the algorithm. However, in this case,
we lose the support of a locality constraint. Note also that, to benefit from fast
Fourier transform algorithms, l has to be a power of 2. In the extraction of f1
and f2 the original image can be padded with 0 (masked pixels) if necessary.
Finally, since the patch that is researched in the image (around the area to
fill) is extracted from the image itself, it is necessary to mask the pixels of the
patch (to avoid to reselect the original patch location), which is simply done by
“cutting” a box of patch size in original image (and filling it with black pixels).

4 Experimental results

We performed experiments related to the inpainting task on images selected from
the publicly available DAFNE challenge dataset [4]. As previously stated, the
proposed algorithm is generally applicable to grayscale or color images, but the
samples which are present in DAFNE offer a good diversity in terms of appear-
ance and style of the content, with a good balance between repeating patterns
and more singular structures. The hole creation process is performed by ran-
domly and uniformly removing disk patches of content from the selected images.
Evaluation metrics Two widely used metrics are considered for the numerical
evaluation. First, the Root Mean Squared Error (RMSE) is considered, then we
also compute a metric which is more specific for benchmarking image reconstruc-
tion tasks, namely the peak signal-to-noise ration (PSNR). Although PSNR is
partly related to the RMSE, it highlights better the method performance inde-
pendently of the numerical range of the studied signal values.
Algorithm variants Based on the general idea for inpainting with the masked
Fourier transform, we consider three variants depending on the similarity mea-
sure which is employed in searching for the most visually close data: (1) the nor-
malized cross correlation (NCC, cf. Eq. (9)) computed on the intensity image,
(2) a weighted sum of the three intensity-based criteria that may be potentially
used: NCC, centered ASD (cf. Eq. (6) and Eq. (8)) and uncentered ASD (cf.
Eq. (7) and Eq. (8)) called uASD, (3) the uASD computed on the three color
channels (benefiting from good summation property), called 3D uASD.

Tables 1 and 2 show the obtained results in terms of evaluation metric statis-
tics computed on 100 holes per fresco. We clearly see that the NCC is not
sufficient to find a good image patch to fill a given hole, mainly since it is “only’
based on intensity relative variations. Adding the two criteria based on squared
differences significantly improves the results (between 2 and 8 dB depending on
the considered fresco) while significantly reducing the standard deviation. Fi-
nally, the benefit of color information is also visible, varying however with the
content of the fresco: the Lanzani fresco presents rather homogeneous colors (cf.
Figure 1, second line) whereas the Dellafrancesca fresco has a variety of colors (cf.
Figure 1, third line) allowing for a more significant improvement of performance.
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Table 1. RMSE statistics obtained on three frescoes for three algorithms based on
different consistency measures; statistics (mean, median and standard deviation after
± symbol) are derived from 100 simulated holes. Best results are highlighted in green.

Algorithm Tiepolo Lanzani DellaFrancesca
mean median mean median mean median

NCC 35.64 31.76 36.32 33.92 35.85 30.01
±27.67 ±17.15 ±21.73

NCC+ASD 25.86 20.56 29.09 28.14 29.74 27.28
+uASD ±19.20 ±11.52 ±14.41

3D uASD 24.74 20.13 28.69 26.99 27.40 25.28
±19.02 ±12.03 ±13.81

Table 2. PSNR statistics obtained on three frescoes for three algorithms based on
different consistency measures; statistics (mean, median and standard deviation after
± symbol) are derived from 100 simulated holes. Best results are highlighted in green.

Algorithm Tiepolo Lanzani DellaFrancesca
mean median mean median mean median

NCC 47.61 41.66 41.58 40.35 42.76 42.79
±21.87 ±11.92 ±13.14

NCC+ASD 52.85 50.36 45.41 44.08 45.79 44.70
+uASD ±19.79 ±10.66 ±12.16

3D ASD 54.0 50.78 45.88 44.91 47.66 46.23
±19.92 ±11.01 ±12.56

Finally, let us have a qualitative look at the obtained results. Figure 1 shows
the whole frescoes with simulated holes and the inpainting results from 3D uASD,
while Figure 2 shows some selected subareas. Indeed, Figure 1 allows us to check
quickly that holes have been filled with consistent values since at first glance it
is difficult to see the location of the simulated holes (without the help of the
left image) whereas Figure 2 allows us to evaluate the visual quality of the local
reconstruction (fresco subareas of size 128× 128 pixels), as well as to point out
some remaining imperfections. Specifically, in Figure 2, for each line consider-
ing details from a different fresco, left side shows a subarea that is rather well
reconstructed (it is difficult to guess where the holes were even focusing on this
subarea), while the right side shows a subarea with at least one partially flawed
reconstruction: one hole filled with an incorrect shade of white (first line), a dis-
continuity in the leg of the soldier (second line) and appearing inconsistencies in
the drapery of tunics (third line). However, all these imperfections are explain-
able and we hope to reduce them by searching in future works a patch candidate
for the filling not only in translation but also in rotation.
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Fig. 1. Reconstructed frescoes: original image with simulated holes (left) and inpainting
result (right); first line: Tiepolo fresco (“The Institution of the Rosary”), second line:
Lanzani fresco (“Sant Antonio protegge Pavia”), and third line: Della Francesca fresco
(“Exaltation of the Cross”).
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Fig. 2. Details of the reconstructed frescoes: simulated holes (left) and inpainting result
(right); first line: Tiepolo fresco, second line: Lanzani fresco, and third line: Della
Francesca fresco.



10 S. Le Hégarat-Mascle et E. Aldea

5 Conclusion

In this work, we extended the strategy initially proposed by [14] beyond NCC,
to more consistency measures between masked image subparts. We have also
addressed with success a novel task, namely inpainting, which has not been con-
sidered until now with these techniques, despite its suitability with the method
assumptions. For future work, we intend to fully exploit the other properties
of the Fourier transform (e.g. following Fourier–Mellin approach) which would
allow us to perform more complex rotation and scaling invariant queries, and to
characterize more in detail the computational advantage of the proposed algo-
rithm.
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