Skip to main content

Cloud-Based Visually Aided Mobile Manipulator Kinematic Parameters Calibration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13373))

Abstract

Mobile manipulators are often comprised of an extensive kinematic chain resulting from an industrial robot mounted on top of an autonomous mobile robot. In such a way, the system not only retains the parameters embedded in the two sub-systems, hence DH parameters for the industrial robot and odometry parameters for the mobile robot, but also includes the relative transformation between the two parts and an additional transformation for a camera mounted on the kinematic chain.In this complex setup, it is relatively simple to introduce kinematic inaccuracies, or in some cases, to operate the system in such a way that the kinematic parameters vary(e.g., rubber wheels on high payload).Estimating the values of such parameters might be too demanding for the on-board computing system.In this work, we propose a cloud-based visually aided parameter estimation method, which constantly receives data from the mobile manipulator and generates better estimates of the kinematic parameters through an UKF dual estimation.The overall system architecture is presented to the reader, together with the reasons for relying to a cloud based paradigm, for then giving a theoretical analysis and real world experiments and results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the nomenclature and acronym, refer to RiA R15.08 where Autonomous Mobile Robots (AMR), Industrial Mobile Manipulator (IMM), Autonomous Guided Vehicle (AGV) etc. are defined.

  2. 2.

    The unscented transformation is a method to compute the evolution of a random variable through a nonlinear map.

References

  1. Wang, R., Wu, A., Chen, X., Wang, J.: A point and distance constraint based 6r robot calibration method through machine vision. Robot. Comput. Integr. Manuf. 65, 101959 (2020)

    Article  Google Scholar 

  2. Özgüner, O., et al.: Camera-robot calibration for the Da Vinci robotic surgery system. IEEE Trans. Autom. Sci. Eng. 17(4), 2154–2161 (2020)

    Article  Google Scholar 

  3. Shah, M., Bostelman, R., Legowik, S., Hong, T.: Calibration of mobile manipulators using 2D positional features. Measurement 124, 322–328 (2018)

    Article  Google Scholar 

  4. Zhou, Z., Li, L., Wang, R., Zhang, X.: Experimental eye-in-hand calibration for industrial mobile manipulators. In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 582–587. IEEE (2020)

    Google Scholar 

  5. Xuan, J.-Q., Xu, S.-H., et al.: Review on kinematics calibration technology of serial robots. Int. J. Precis. Eng. Manuf. 15(8), 1759–1774 (2014)

    Article  Google Scholar 

  6. Bostelman, R., Hong, T., Marvel, J.: Survey of research for performance measurement of mobile manipulators. J. Res. Nat. Inst. Stand. Technol. 121, 342 (2016)

    Article  Google Scholar 

  7. Yang, M., Yang, E., Zante, R.C., Post, M., Liu, X.: Collaborative mobile industrial manipulator: a review of system architecture and applications. In: 2019 25th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Huang, Z., Wang, Q.: Industrial robot control system optimized by wireless resources and cloud resources based on cloud edge multi-cluster containers. Int. J. Syst. Assur. Eng. Manage. 1–10 (2021). https://doi.org/10.1007/s13198-021-01254-0

  9. Vick, A., Vonásek, V., Pěnička, R., Krüger, J.: Robot control as a service—towards cloud-based motion planning and control for industrial robots. In: 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 33–39. IEEE (2015)

    Google Scholar 

  10. Dey, S., Mukherjee, A.: Robotic SLAM: a review from fog computing and mobile edge computing perspective. In: Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services, pp. 153–158 (2016)

    Google Scholar 

  11. Tzafestas, S.G.: Mobile robot control and navigation: a global overview. J. Intell. Robot. Syst. 91(1), 35–58 (2018). https://doi.org/10.1007/s10846-018-0805-9

    Article  Google Scholar 

  12. Dyumin, A., Puzikov, L., Rovnyagin, M., Urvanov, G., Chugunkov, I.: Cloud computing architectures for mobile robotics. In: 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), pp. 65–70. IEEE (2015)

    Google Scholar 

  13. Saha, O., Dasgupta, P.: A comprehensive survey of recent trends in cloud robotics architectures and applications. Robotics 7(3), 47 (2018)

    Article  Google Scholar 

  14. Li, S., Zheng, Z., Chen, W., Zheng, Z., Wang, J.: Latency-aware task assignment and scheduling in collaborative cloud robotic systems. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 65–72. IEEE (2018)

    Google Scholar 

  15. Shukla, S., Hassan, M.F., Tran, D.C., Akbar, R., Paputungan, I.V., Khan, M.K.: Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Clust. Comput. 1–24 (2021). https://doi.org/10.1007/s10586-021-03279-3

  16. Cesen, F.E.R., Csikor, L., Recalde, C., Rothenberg, C.E., Pongrácz, G.: Towards low latency industrial robot control in programmable data planes. In: 2020 6th IEEE Conference on Network Softwarization (NetSoft), pp. 165–169. IEEE (2020)

    Google Scholar 

  17. Mutti, S., Pedrocchi, N.: Improved tracking and docking of industrial mobile robots through UKF vision-based kinematics calibration. IEEE Access 9, 127664–127671 (2021)

    Article  Google Scholar 

  18. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158. IEEE (2000)

    Google Scholar 

  19. Fiorenzani, T., Manes, C., Oriolo, G., Peliti, P.: Comparative study of unscented Kalman filter and extended kalman filter for position/attitude estimation in unmanned aerial vehicles. In: Institute for Systems Analysis and Computer Science (IASI-CNR), Rome, Italy, Report, p. 08 (2008). http://www.iasi.cnr.it/new/publications.php/id_p/2/anno/0/id_autore/0/id_tipologia/6/rep/3459. http://www.iasi.cnr.it/ResearchReports/R08008

  20. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Tranans. Autom. control 45(3), 477–482 (2000)

    Article  MathSciNet  Google Scholar 

  21. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693 (2014)

    Article  Google Scholar 

  22. Stanford Artificial Intelligence Laboratory et al.: Robotic operating system. www.ros.org

  23. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–123 (2000)

    Google Scholar 

  24. Labbe, R.: filterpy. https://github.com/rlabbe/filterpy

  25. Van Der Merwe, R.: Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. Oregon Health and Science University (2004)

    Google Scholar 

  26. Park, F.C., Martin, B.J.: Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Tranans. Robot. Autom. 10(5), 717–721 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mutti, S., Renò, V., Nitti, M., Dimauro, G., Pedrocchi, N. (2022). Cloud-Based Visually Aided Mobile Manipulator Kinematic Parameters Calibration. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics