Skip to main content

Combining Convolutional Neural Networks and Anatomical Shape-Based Priors for Cardiac Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13373))

Abstract

We investigate whether leveraging high-resolution semantic segmentation from convolutional neural networks on Cardiac Tomography Angiography imaging, coupled with a shape-prior-based segmentation capable of enforcing the anatomical correctness can provide improved segmentation capabilities. While fully integrated approaches may be devised in principle, we investigate a simpler three-step approach for ease of implementation where, after leveraging a convolutional network to produce initial labels, we re-segment the labels using a fully geometric shaped-based algorithm followed by a post-processing refinement via active surfaces. Following the semantic segmentation, our second step is capable of generating a topologically correct cardiac model, albeit with lower resolution compared to the input labels, and is therefore capable of repairing any non-anatomical mislabeling. The post-processing step then recaptures the lost small-scale structure making the combined strategy successful in recovering a topologically correct segmentation of the imaging data of quality comparable, if not superior, to the initial labels. Our results show dice scores comparable to those obtained by using deep learning alone but with much improved performance in terms of Hausdorff distance due to the removal of erroneous islands and holes which often evade notice using only dice scores. In addition, by design, our segmentation is topologically correct. This preliminary investigation fully demonstrates the advantages of a hybrid semantic-geometric approach and motivates us in pursuing the investigation of a more integrated strategy in which semantic labels and geometric priors will be integrated as competing penalty terms within the optimization algorithm.

This work was supported by the National Institutes of Health (NIH) grant number R01-HL-143350.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boellaard, R., O’Doherty, M.J., Weber, W.A., et al.: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 37, 181–200 (2010). https://doi.org/10.1007/s00259-009-1297-4

    Article  Google Scholar 

  2. Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_13

    Chapter  Google Scholar 

  3. Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 161–168 (2001)

    Google Scholar 

  4. Comelli, A., et al.: Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomed. Eng. Lett. 11(1), 15–24 (2020). https://doi.org/10.1007/s13534-020-00179-0

    Article  Google Scholar 

  5. Comelli, A., et al.: Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med. 12 (2020). Article no. 103701, https://doi.org/10.1016/j.compbiomed.2020.10370

  6. Comelli, A., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005

    Article  Google Scholar 

  7. Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/j.artmed.2019.01.002

  8. Comelli, A., et al.: A smart and operator independent system to delineate tumours in positron emission tomography scans. Comput. Biol. Med. 102, 1–15 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.002

    Article  Google Scholar 

  9. Dahiya, N., Fan, Y., Bignardi, S., Sandhu, R., Yezzi, A.: Dependently coupled principal component analysis for bivariate inversion problems. In: Proceedings of the \(25^{th}\) International Conference on Pattern Recognition (ICPR), pp. 10592–10599 (2021). https://doi.org/10.1109/ICPR48806.2021.9413305

  10. Dahiya, N., Yezzi, A., Piccinelli, M., Garcia, E.: Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7(5–6), 690–706 (2019)

    Article  Google Scholar 

  11. D’Antoni, F., et al.: Artificial intelligence and computer vision in low back pain: a systematic review. Int. J. Environ. Res. Public Health 18 (2021). Art. no. 10909, https://doi.org/10.3390/ijerph182010909

  12. Fan, Y., Dahiya, N., Bignardi, S., Sandhu, R., Yezzi, A.: Directionally paired principal component analysis for bivariate estimation problems. In: Proceedings of the \(25^{th}\) International Conference on Pattern Recognition (ICPR), pp. 10180–10187 (2021). https://doi.org/10.1109/ICPR48806.2021.9412245

  13. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. ArXiv. 1606.02147 (2016)

  14. Piccinelli, M., et al.: Diagnostic performance of the quantification of myocardium at risk from MPI SPECT/CTA 2G fusion for detecting obstructive coronary disease: a multicenter trial. J. Nucl. Cardiol. 25(4), 1376–1386 (2017). https://doi.org/10.1007/s12350-017-0819-x

    Article  Google Scholar 

  15. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379–387. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  16. Soret, M., Bacharach, S.L., Buvat, I.I.: Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932–945 (2007). https://doi.org/10.2967/jnumed.106.035774

    Article  Google Scholar 

  17. Stefano, A., Comelli, A.: Customized efficient neural network for COVID-19 infected region identification in CT images. J. Imaging 7, 131 (2021). https://doi.org/10.3390/jimaging7 080131

  18. Verduna, F.R., et al.: Image quality in CT: from physical measurements to model observers. Phys. Med. 31, 823–843 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bignardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bignardi, S. et al. (2022). Combining Convolutional Neural Networks and Anatomical Shape-Based Priors for Cardiac Segmentation. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics