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Abstract. Continual Learning requires the model to learn from a stream
of dynamic, non-stationary data without forgetting previous knowledge.
Several approaches have been developed in the literature to tackle the
Continual Learning challenge. Among them, Replay approaches have em-
pirically proved to be the most effective ones [16]. Replay operates by sav-
ing some samples in memory which are then used to rehearse knowledge
during training in subsequent tasks. However, an extensive comparison
and deeper understanding of different replay implementation subtleties
is still missing in the literature. The aim of this work is to compare
and analyze existing replay-based strategies and provide practical rec-
ommendations on developing efficient, effective and generally applicable
replay-based strategies. In particular, we investigate the role of the mem-
ory size value, different weighting policies and discuss about the impact
of data augmentation, which allows reaching better performance with
lower memory sizes.

Keywords: Continual learning - Replay-based approaches - Catastrophic
Forgetting.

1 Introduction

Traditional machine learning models learn from independent and identically dis-
tributed samples. In many real-world environments, however, such properties on
training data cannot be satisfied. As an example, consider a robot learning a
sequence of different tasks. For artificial neural networks, learning a new task
causes a deterioration of performance on the previous one. This phenomenon
is known as Catastrophic Forgetting [I8]. Continual learning [I9] is a branch of
machine learning which focuses on learning from a sequence of tasks while at the
same time preventing catastrophic forgetting. Although many approaches have
been developed with different degrees of success, preventing catastrophic forget-
ting is still a difficult task. Moreover it is difficult to compare these approaches
since there is not a standard evaluation protocol [g].

The aim of this work is to deepen our understanding of replay-based strate-
gies [21211[24126], a specific category of continual learning strategies, and provide
practical recommendations to achieve a better efficiency-efficacy trade-off in their
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implementation. Replay strategies avoid forgetting by training the model on both
current samples and some samples of the past tasks. In this paper, we exten-
sively compare replay-based strategies on different benchmarks and settings to
better characterize the role played by their main components in the mitigation of
forgetting. We explore three main research directions. The first (Sec. [ concerns
the role of memory size. We extensively test the most popular replay strategies
varying this parameter, finding out that the memory size value depends not
only on the size of the dataset but also on the difficulty of the tasks and the
number of classes involved in the learning process. The second direction (Sec.
[6) is related to the balancing of the memory buffer. In the literature the replay
buffer is usually balanced to have an equal amount of samples of each past task
or class. We propose many weighting policies to distribute samples, unbalanced
by task. We discover recent memories are more useful with respect to others,
confirming the observation on the human brain [3[23]. Finally, we test the role
of data augmentation [32] in a continual learning scenario (Sec. [[l). We find out
that performance increases by augmenting the memory, particularly with a low
memory budget.

2 Related Works

The problem of learning from a sequence of tasks was posed since the origin
of artificial intelligence [29,80]. However, only in 1989 Closkey [18] dealt with
catastrophic forgetting directly. In 1995 a new method was proposed to prevent
it named Replay [26]. This simple method consists of storing in a buffer some
samples and presenting them during consecutive tasks. During the last few years
we have witnesses to a significant interest in this area and many strategies have
been developed. Replay-base approaches have proved to be effective [IL2,[525]
and they differ mainly by the selection algorithm. Buzzega et al. in [5], proved
the effectiveness of the standard Replay strategy [26] using a set of "tricks", even
without changing the selection algorithm. Moreover Replay-based approaches are
biologically-plausible: previous experiences rehearsal is believed to be important
for stabilizing new memories [31].

Despite this prolific research paper production, none of these works compares
and investigates replay-based strategies extensively.

3 Design Choices

Replay-based approaches rely on a simple yet effective mechanism: replay some
previous samples to avoid catastrophic forgetting. However this apparently sim-
ple mechanism hides many possible modifications. In this section we describe
three possible choices and variations concerning continual learning and replay-
based strategies.
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3.1 Replay Buffer

Replay buffer is the principal component of a replay-based strategy.

The buffer structure define how samples are distributed. Samples can be bal-
anced in the buffer by task or class. In this case the amount of samples belonging
to the same task/class is the same. This structure rely on the assumption that
the task label is known.

Selection and Discarding procedures are the principal components of a replay-
based strategy. The standard Replay strategy [26] assumes that every sample is
important for learning, thus select and discard randomly samples, taking into
consideration the buffer structure. More advanced approches are possible and
demonstrate to be effective with more realistic beanchmarks. ASER [27] uses
data shapley values [9] to score samples and keep only the most informative ones.
Selecting examples in GSS [2] consists of maximizing the diversity of samples in
the replay buffer as suggested in [20] but using the gradient values. ICarl [24]
instead uses an hearding strategy to select and discard samples.

3.2 Memory size

The size of the memory buffer is a common parameter among all the replay-
based strategies. Despite the importance of this parameter only few papers test
extensively its impact using different continual learning strategies.

In a realistic application this parameter depends on the hardware resources
or time constraints for training. When applying a continual learning strategy in a
new setting it is essential to know the amount of samples sufficient to have good
performances. For this purpose we investigated the influence of this parameter
using different strategy and benchmark (Sec. H). The aim is to provide some
practical recommendation useful to apply a continual learning strategy in new
domains.

3.3 Weighting Policies

In literature, selection policies do not takes into account the importance of each
task. However learning could be difficult for some tasks and it could require more
replay of samples.

In a realistic scenario, using a random buffer, we don’t have a-priori knowl-
edge of information such as the nature of the current task, the represented classes,
the number of samples or the difficulty of the current task. In this setting we
have only the possibility to balance the amount of samples belonging to each
previous task. For this reason we experiment with some weighting policies to
verify the effects of recent and old memories in the learning process (Sec. [l).

This experiment is motivated by some recent findings on the human episodic
memory [3,23], suggesting that episodic encoding occurs preferentially at the
end of events.
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3.4 Augmentation

Data augmentation is a helpful, machine learning technique to help improving
the generalization capabilities of a deep network [32]. In a continual learning
scenario, using data augmentation, we can store original samples in the buffer
and then augment them at training time to have more variety and hopefully
increase accuracy. In this way, intuitively we can have a smaller buffer size.
Data augmentation in continual learning is explored by Buzzega et al. in [5],
in this case, crops and horizontal-flips are applied in the input stream and in
the replay buffer. This augmentation leads to an increment in the test accuracy
using the Replay strategy. In a realistic scenario, the training set augmentation is
not always possible: the training time increases with an augmented dataset. We
investigated the augmentation technique in section[7l The aim of this experiment
is to verify whether the augmentation of the training set (and which in particular)
is indeed needed to achieve better performance and which augmentation strategy
is most impactful.

4 Experimental Setup

The goal of this section is to describe benchmarks, models and replay-based
strategies used in the experiments. For the experimental part we used Avalanche
[15] the reference continual learning framework based on PyTorch. The goal
of this library is to provide a shared and collaborative open-source codebase
for fast prototyping, training and reproducible evaluation of continual learning
algorithms.

4.1 Benchmarks and Models

Continual learning algorithm are evaluated by benchmarks: they specify how the
stream of data is created by defining the originating dataset(s), the amount of
samples, the criteria to split the data in different tasks or experiences [6] and so
on. In literature, different benchmarks are used to evaluate results.

We select benchmarks belonging to the New Classes scenario i.e. data sam-
ples contained in the training set at time-step ¢ are related to a new dependent
variable Y to be learned from the model. We select three three of them for our ex-
periments: Split-MNIST 28], Split-CIFAR-10 [33] and Split- TinyImagenet [17].
These benchmark are derived respectively from MNIST [7], CIFAR-10 [12] and
TinyImagenet [13] datasets. We also include CORe50-NC [14] in our experi-
ments, a benchmark specifically designed for continual learning. This benchmark
is divided in 9 tasks, the first task contains 10 classes, the remaining 8 classes.
In our experiments, we set the number of tasks of each benchmark to 5, except
for COReb0-NC, with a random order of classes.

Concerning the neural network models, for Split-MNIST we use a Multi-
Layer Perceptron with 3 layers and 300 ReLU units at each layer. For Split-
Cifar10, Split-TinyImagenet and CORe50-NC we exploit the ResNet-18 model
[10] instead.



Practical Recommendations for Replay-based Continual Learning Methods 5

4.2 Strategies

We selected four strategies among the most popular and promising rehearsal
approaches.

Replay. We select Replay [221[26] because it is powerful, simple and easily
adjustable. It is also a simple way to prevent catastrophic forgetting, and it per-
forms better with respect to more complicated strategies [5]. In our experiment
we use random sampling and we randomly choose the samples to discard, to
maintain simplicity.

GDumb. Greedy Sampler and Dumb Learner (GDumb) [2I] is a simple
approach that is surprisingly effective. The model is able to classify all the labels
since a given moment ¢ using only samples stored in the memory. Whenever it
encounters a new task, the sampler just creates a new bucket for that task and
starts removing samples from the one with the maximum number of samples.
Samples are removed randomly. Compared to others, with the same memory
size, this strategy is more efficient, in terms of execution time and resources.
In particular setting this simple strategy can outperforms other approaches.
However, it is not a valid continual learning strategy, since for each new task the
model does not adapt, it must be re-trained from scratch.

ICarl. Incremental Classifier and Representation Learning (ICarl) [24] is a
a hybrid approach between rehearsal and regularization. The model parameters
are updated by minimizing both a classification loss and a distillation loss. The
replay memory is managed by a herding strategy: a sample is added if it causes
the average feature vector over all exemplars to best approximate the average
feature vector over all training examples. The order of its elements matters, with
exemplars earlier in the list being more important. Reducing the exemplar set
means discarding the less important samples. We selected ICarl because it is an
effective hybrid strategy, in particular with low memory budget.

GSS. Gradient based Sample Selection [2] is a replay-based strategy. The
selection of the memory buffer population is seen as a constraint selection prob-
lem. The goal is to optimize the loss on the current examples without increasing
the losses on the previously learned ones. Selecting examples consists of maxi-
mizing the diversity of samples in the replay buffer using the gradient. The first
way to select samples is based on integer quadratic programming, the second
solution consists of a faster greedy-alternative and it is sufficient to achieve good
performances. Scores for each sample is based on the maximal cosine similarity
with a fixed number of others random samples in the buffer. The probability
of choosing a specific sample to be replaced is its normalized score. The score
of the candidate is then compared to the score of the new sample to determine
whether the replacement should happen or not.

Avalanche [15] includes many Continual Learning strategies. It has been nec-
essary to validate the strategies used in the experiments. We made sure to re-
produce results of the original paper with the new Avalanche implementation.
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5 Memory Size Experiment

This experiment is designed to understand the impact of memory size for every
selected strategy and have an insight on the amount of samples sufficient to have
good performances in a classification task as we propose in section In our
work, we analyze a vast set of results and try to generalize those across different
benchmarks and strategies.

5.1 Grid search and Final Models

We select the models through a grid search and we choose a fixed order of classes.
The selected parameters for the grid search are chosen following the parameters
used in other works [2L4L5LITLI7,2T]. The memory buffer is balanced by task i.e.
the memory contains an equal number of samples belonging to each task. For
each benchmark we use 10% of the training set as validation set and a batch size
of 32 examples. We use 4 epochs for Split-MNIST, 50 epochs for Split-CIFARI10,
100 epochs for Split-Tiny-Imagenet and CORe50-NC. GSS takes up to 10x higher
execution time with respect to other strategies. As a result it was necessary to
simplify the grid search for Split-MNIST benchmark and we did not test it using
other benchmarks.

We have averaged the results of final models over 3 runs changing in each
of them the classes order in a random manner. We plot the accuracy values in
Figures [l 2 [B] @ For each curve we calculate the elbow point, depicted with
a black square. In this case, it indicates the optimal trade-off between accuracy
and memory size. These values give us an idea of the memory sizes useful to
have good performance.

5.2 Discussion

Our results show that the Replay strategy is a powerful and simple mechanism
that most of the time is able to achieve good performance. Instead, ICarl has
a particular behaviour: it performs well with lower memory size. This is due to
the herding strategy as confirmed in other works [424]. In the following sections
we analyze more in detail these results.

Split-MNIST. Replay strategy achieved the best performance with respect
to the others. However, GDumb is able to reach good performance with high
memory size and a considerably lower training time. ICarl is valid and effective
using a smaller memory size. Concerning GSS, the performance are worse than
others strategies, but the parameters used for grid search are fewer.

Split-CIFAR-10. Interestingly, in Split-CIFAR-10 the Replay strategy is
effective only for high memory sizes. Instead, ICarl is much more effective with
low memory sizes, it reaches with only 200 samples in memory the same accuracy
of Replay strategy with 800 samples in memory. GDumb is not effective in this
more challenging benchmark.

Split-Tiny-Imagenet. The performance of various strategies are poor. In-
stead, ICarl gains accuracy as memory size increases. This behaviour is different
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with respect to Split-MNIST and Split-CIFAR-10. This is due to the difference
in their tasks, since, contrarily to Cifar and MNIST, Tiny-Imagenet has 200
classes. In fact, if a benchmark includes more classes than another, a greater
memory size should be granted.

CORe50-NC. In this benchmark, Replay strategy is the most effective with
both low and high memory sizes. GDumb and ICarl are ineffective with this
benchmark. ICarl slowly increases its accuracy as the memory size increases up
to 800. In this case, we can observe a trend inversion in the accuracy values.

This experiment give an insight on the memory size value needed to have
good performance. Results show that in most of the case 1% of the training set
is sufficient to achieve reasonable results.
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6 Examples Weighting

The goal of this experiment is to verify the effects of recent and old memories
in the learning process. Recent or old memories can have a different impact on
the learning process as we declared in section We propose and investigate 7
alternatives to the balanced policy over tasks.

6.1 Weighting Policies

We propose different weighting policies i.e. methods to distribute samples, for
the replay strategy, unbalanced by task. We report them in table [Il with their
abbreviations.

Except for Balanced policy, all the policies are parametrized by a factor
parameter. This variable regulates the relevance of a task with respect to the
others. For example, in Increasing policy the number of memory samples for
each task is factor — time greater than the number of memory samples for the
previous task. If the amount of samples of first task is x, there will be factor x x
samples for the second, factor? * x for the third and so on.

A particular case is the Middle policy that works assigning greater weights
to middle distance tasks. For this reason, once a new task arrives, the splitting
is recalculated according to the new distribution. Some tasks may need more
weight than before, as a result the medium policy does not exploit the full buffer
due to those re-calibration. Contrarily, the Middle+replications replicates some
random samples to fill the buffer. MiddleHigh policy gives more weight to middle
and low distance samples. In this case the amount of samples of low distance
task is the same as the one of middle distance task. The weight of other task
is e regulated by the factor parameter. Using the same priciples we prosose
MiddleLow and MiddleLow+replications.

6.2 Grid Search and Final Models

We exploit the same grid search parameter and architecture adopted in the first
experiment described in section [B.1] for the Split-MNIST [28] benchmark with 5
experiences. We average the final results over 6 runs using 3 as factor parameter.
In table[Ilwe report the accuracy and standard deviation of these policies varying
the memory size.

6.3 Discussion

The results highlight that the balanced policy is the best among all. Besides
this, the results are interesting. Let us analyze results starting with the most
simple weighting policies: Decreasing, Increasing and Middle. For most memory
size values, the Increasing policy achieves better results than the Decreasing, but
lower with respect to the Middle policy. From this observation we can infer that
the most valuable samples are those from low and middle distances from the
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Table 1. Accuracy and std of the final models, averaged over 6 runs. Bal.=Balanced;
Dec.=Decreasing; Inc.=Increasing; Mid.=Middle; Mid.+=Middle+replications;
Mid.Hig.=MiddleHigh; Mid.Low=MiddleLow; Mid.Low+=MiddleLow-+replications

Bal. Dec. Inc. Mid. Mid.+ Mid.Hig. Mid.Low |Mid.Low-+}
50 |74.54+3.64(60.36+4.03(62.724+2.43|71.63+4.14|66.02+3.07 |71.05+5.55 |70.59+5.51 |66.51+5.22
100(82.85+1.24(72.80+3.71|73.56+3.22|77.48+3.32 (77.556+1.77 |81.01+1.55 |77.41+2.31 [77.92+2.37
200(85.59+0.69(79.37+4.83(77.244+2.82|83.18+1.30 |82.93+1.52 [84.07+2.30 [85.14+1.25|83.72+3.01
500(90.69+0.42(84.084+5.04(83.89+3.62|89.09+0.72 |89.57+0.68|89.02+1.07 |88.94+0.68 |89.48+1.18
800(91.83+0.43(87.194+3.27(86.894+3.07|91.48+0.55 |90.78+0.55 [91.334+0.79 |90.64+0.75 [91.70+1.05
1k (92.944+0.36|87.18+2.04|88.60+1.73{91.36+0.6 92.5240.78 [92.704+0.43(92.484+0.45 {91.9240.94
2k [94.69+0.31[90.60+1.71[91.284+1.32{94.154+0.17 [93.58+0.67 [94.58+0.23[94.504+0.71 [93.66+1.08
4k [(95.5640.21|92.43+1.83|93.01+0.79(95.034+0.57 (94.97+0.32 [95.354+0.19 |95.35+0.67 (95.38+0.24
5k |95.76+0.22(93.54+1.49(94.144+0.82|95.25+0.31 |94.71+0.65 (95.71+0.26 (95.394+0.34 |95.34+0.30

current task. We continue our analysis with the other policies. We observe that
the best policy among all is MiddleHigh, confirming our previous statement.
The performance of this policy is similar to those of the Balanced strategy.
Concerning the policies with replications, results are not better with respect to
the same policy without replications. This might depend on the fact that we
replicate data without further transformations decreasing the diversity of the
data.

7 Augmentation

The aim of this experiment is to investigate on the augmentation technique in a
continual learning scenario as we propose in section 34l Inspired by Buzzega et
al. [5] we test different augmentation strategy applied only in the memory sam-
ples. The goal is to verify if the augmentation of the training set is indeed needed
or if augmenting the buffer memory is sufficient to achieve better performance.

7.1 Settings and Results

The experiments have been performed with the Split-CIFAR-10 benchmark.
Model, epochs, and batch size are the same described in [ In this experiment,
we fix the learning rate to 0.01 and the momentum to 0. We average the results
over 4 runs using different memory size and varying the type of augmentation:
Vertical-Flip, Horizontal-Flip, Resize-Crop and Rotation. Results are reported
in Table

Table 2. Experiment 3. Accuracy and std of final models averaged over 4 runs

Memory size
20 50 250 500 750 1000
Original | 19.804+0.54 | 22.04+0.77 |38.744+3.92| 44.97+4.08 | 53.144+1.36 |57.42+3.39
Vertical | 20.48+1.13 | 23.124+1.29 |37.86+2.22(45.85+2.17|53.33+1.57(54.28+1.06
Horizontal| 20.02+0.33 {23.73+1.31|35.09£4.73| 44.564+3.30 | 50.11+£2.82 [55.46+0.57
Crop 19.5940.91 | 23.07+0.83 [36.63+5.82] 45.43+4.29 | 51.714+2.03 [56.924+1.49
Rotation [20.50+0.57| 23.07+0.83 [36.63+5.82{45.43+ 4.29] 51.714+2.03 {56.92+1.49
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7.2 Discussion

In this case, the data augmentation shows just a slight increment in accuracy.
We suppose that this is due to the training set’s lack of augmentation and
the transformation used. However, our experimental results reflect the findings
reported in [5]: data augmentation is effective with low memory size. With 20
and 50 of memory size, accuracy is significantly higher.

8 Conclusion and Future Works

This work aims to deepen replay-based strategies, providing some insights and
practical recommendations on specific implementation issues. We have validated
many replay-based strategies already implemented in Avalanche. We investigated
multiple aspect of continual learning strategies by means of three experiments.

Concerning the memory size experiment we extensively investigated the be-
havior of each strategy and benchmark varying the memory size. For each bench-
mark and for each strategy we found the amount of samples sufficient to have
reasonably good results and we provided a general guideline to set this parameter
in unseen benchmarks. We understand the role of memory samples of different
tasks, testing different weighting policies. The variation of the standard balanced
policy has proved to be useful to understand the impact of samples belonging
to different tasks. We found out that Middle and Low distance tasks are more
important than others. This paves the way to other experiments regarding this
aspect, as well as to the development of new strategies exploiting this discovery.

We explored the usage of data augmentation in continual learning. We con-
firmed the results presented in [5], remarking the importance of augmenting not
only the memory buffer, but also the training set. However, augmenting only the
memory buffer helps to improve the accuracy, in particular with lower memory
size. More experiments concerning these strategies could be performed. Con-
cerning the weighting experiment in chapter [@ it could be interesting to test
the weighting policies with more challenging benchmarks. In our experiment
we fixed the factor parameter but it could be interesting to test other values.
Another possible modification is changing the type of augmentation, since we
simply replicate some samples. Regarding the augmentation experiment, it could
be interesting to observe the same phenomenon on more challenging benchmarks.
Concerning the type of augmentation, we test only simple augmentation tech-
niques. It could be interesting to test other neural-based technique.
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