Studies in Computational Intelligence

Volume 1059

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence—quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, selforganizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output.

Indexed by SCOPUS, DBLP, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

Advanced Metaheuristic Algorithms and Their Applications in Structural Optimization

Ali Kaveh School of Civil Engineering Iran University of Science and Technology Tehran, Iran Kiarash Biabani Hamedani School of Civil Engineering Iran University of Science and Technology Tehran, Iran

ISSN 1860-949X ISSN 1860-9503 (electronic) Studies in Computational Intelligence ISBN 978-3-031-13428-9 ISBN 978-3-031-13429-6 (eBook) https://doi.org/10.1007/978-3-031-13429-6

@ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The main purpose of the present book is to develop a general framework for population-based metaheuristic algorithms based on some basic concepts of set theory. The basic idea of the framework is to divide the population of individuals into a number of subpopulations of identical sizes. Then, in each iteration of the search process, different subpopulations independently explore the search space and do not communicate with each other. The division process is carried out in such a way that the diversity in each subpopulation is maintained automatically. Furthermore, subpopulations are close to each other in terms of their average fitness values. The reason for this is that individuals are fairly distributed among the subpopulations. Once an iteration is completed, subpopulations are merged to constitute the population of the next generation. However, before the next iteration starts, the population is redivided into subpopulations, and then the search process continues. In this way, a high diversity is maintained in the subpopulations throughout the search process. The main aim of the framework is to maintain an appropriate balance between global exploration and local exploitation abilities during the search process. It has been recognized for many years that a successful metaheuristic algorithm should be able to perform a wide exploration in the early stages and a deep exploitation during the final stages of the search process. The proposed framework makes it possible that different subpopulations independently explore the search space at the same time. As a result, in the early stages of the search process, the candidate solutions are scattered all over the search space instead of focusing on a small region. This guarantees that different regions of the search space are evenly explored and that the search is not limited to a small region, which significantly reduces the possibility of getting trapped in local optima and premature convergence. Therefore, exploration is favored in the early stages of the search process. In addition, because of the presence of different subpopulations, as the search process continues, the search is guided towards different promising regions of the search space rather than concentrating on the most promising region obtained so far. Therefore, exploitation is promoted during the final stages of the search process. The number of subpopulations can change with the number of iterations.

Chapter 1 explains the purpose of the book and provides an overview of the remaining chapters. In Chap. 2, the set-theoretical shuffled shepherd optimization algorithm is introduced and applied to the optimal design of reinforced concrete cantilever retaining walls. Chapter 3 introduces the set-theoretical variants of the teaching-learning-based optimization algorithm for structural optimization with frequency constraints. In Chap. 4, enhanced versions of the shuffled shepherd optimization algorithm are developed for structural optimization. In Chap 5, a number of set-theoretical metaheuristic algorithms are applied to reliability-based design optimization of truss structures. In Chap. 6, optimal analysis is used in the service of frequency-constrained optimization of cyclic symmetric structures with settheoretical Jaya algorithm. Discrete structural optimization with set-theoretical Jaya algorithm is discussed in Chap. 7. In Chap. 8, enhanced forensic-based investigation algorithm is introduced and its application to structural optimization with frequency constraints is examined. In Chap. 9, improved slime mould algorithm is developed for structural optimization with frequency constraints. Finally, in Chap. 10, improved arithmetic optimization algorithm is proposed for discrete structural optimization.

We would like to take this opportunity to acknowledge a deep sense of gratitude to a number of colleagues and friends who have helped us in different ways in the process of writing this book. Our special thanks are due to Dr. Thomas Ditzinger, the Editorial Director of Interdisciplinary and Applied Sciences and Engineering from Springer, for his constructive comments and suggestions during the preparation of this book. Our sincere appreciation is extended to our Springer colleagues who prepared the layout design of this book. We would also like to thank our colleagues, Dr. Mohammad Kamalinejad, Mr. Ataollah Zaerreza, and Mr. Ali Joudaki, for their contribution to our shared knowledge. Finally, we especially appreciate the support and patience of our wives, Mrs. L. Kaveh and Mrs. M. Bakhshian, during the preparation of this book.

We would like to thank the publishers who permitted some of our papers to be utilized in the preparation of this book, consisting of Springer, Elsevier, and Budapest University of Technology and Economics.

Every effort has been made to render this book error-free. However, the authors would appreciate any remaining errors being brought to his attention through their email addresses: alikaveh@iust.ac.ir (Ali Kaveh) and kiarashbiabani@yahoo.com (Kiarash Biabani Hamedani).

Tehran, Iran June 2022 Ali Kaveh Kiarash Biabani Hamedani

Contents

1	Intro	duction	1			
	1.1	Introduction	1			
	1.2	Organization of the Present Book	3			
	Refe	rences	6			
2	Set-Theoretical Shuffled Shepherd Optimization Algorithm					
	for Optimal Design of Reinforced Concrete Cantilever					
	Reta	ining Wall Structures	9			
	2.1	Introduction	9			
	2.2	Shuffled Shepherd Optimization Algorithm (SSOA)	11			
	2.3	Set-Theoretical Shuffled Shepherd Optimization Algorithm				
		(ST-SSOA)	12			
	2.4	Definition of the Optimization Problem	16			
	2.5	Analysis of Cantilever Retaining Walls	20			
		2.5.1 Active and Passive Earth Pressure Coefficients	20			
		2.5.2 Stability Analysis of Cantilever Retaining Walls	22			
	2.6	Results and Discussion	24			
	2.7	Concluding Remarks	40			
	Refe	rences	41			
3	Set-7	Cheoretical Variants of the Teaching–Learning-Based				
	Opti	mization Algorithm for Structural Optimization				
	with	Frequency Constraints	43			
	3.1	Introduction	43			
	3.2	Teaching-Learning-Based Optimization (TLBO)				
		Algorithm	45			
	3.3	Set-Theoretical Variants of the Teaching-Learning-Based				
		Optimization Algorithm	47			
		3.3.1 Ordered Set-Theoretical				
		Teaching-Learning-Based Optimization				
		(OST-TLBO) Algorithm	48			

		3.3.2	Set-Theoretical Multi-Phase	
			Teaching-Learning-Based Optimization	
			(STMP-TLBO) Algorithm	49
	3.4	Formu	lation of Truss Optimization Problem with Frequency	
		Constr	aints	54
	3.5	Numer	ical Examples	55
		3.5.1	A 37-Bar Planar Truss	56
		3.5.2	A 52-Bar Dome Truss	59
		3.5.3	A 120-Bar Dome Truss	64
		3.5.4	A 200-Bar Planar Truss	75
	3.6	Conclu	Iding Remarks	80
	Refer	ences .		83
4	Enha	nced Se	t-Theoretical Versions of the Shuffled Shepherd	
	Opti	mizatior	Algorithm for Structural Optimization	85
	4.1	Introdu	uction	85
	4.2	Overvi	ew of the Shuffled Shepherd Optimization	
		Algori	thm (SSOA)	88
	4.3	Parame	eter-Free Shuffled Shepherd Optimization Algorithm	
		(PF-SS	SOA)	90
	4.4	Set-Th	eoretical Multi-phase Shuffled Shepherd	
		Optimi	ization Algorithm (STMP-SSOA)	95
	4.5	Formu	lation of the Optimization Problems	99
		4.5.1	Size Optimization of Truss Structures	
			with Frequency Constraints	99
		4.5.2	Discrete Size Optimization of Steel Frame	
			Structures	101
	4.6	Numer	ical Examples	103
		4.6.1	A 120-Bar Dome-Like Truss	104
		4.6.2	A 200-Bar Planar Truss	108
		4.6.3	A 3-Bay 15-Story Steel Frame Structure	114
		4.6.4	A 3-Bay 24-Story Steel Frame Structure	122
	4.7	Conclu	Iding Remarks	138
	Refer	ences .		139
5	Set-T	'heoreti	cal Metaheuristic Algorithms	
	for R	eliabilit	y-Based Design Optimization of Truss	
	Struc	ctures .	• • • •	141
	5.1	Introdu	uction	141
	5.2	Set-Th	eoretical Variants of the Population-Based	
		Optimi	ization Algorithms	144
		5.2.1	Set-Theoretical Variants	
			of the Teaching–Learning-Based Optimization	
			Algorithm	144
		5.2.2	Set-Theoretical Variant of the Shuffled Shepherd	
			Optimization Algorithm	148

Contents

		5.2.3 Set-Theoretical Variant of the Jaya Algorithm	150
	5.3	System Reliability Analysis of Truss Structures	151
		5.3.1 Generation of Safety Margins for Truss Structures	153
		5.3.2 The Branch and Bound Method	154
		5.3.3 Evaluation of the System Reliability	156
	5.4	System Reliability-Based Design Optimization of Truss	
		Structures	156
	5.5	Numerical Examples	157
		5.5.1 Statically Indeterminate 16-Member Planar Truss	158
		5.5.2 Statically Indeterminate 65-Member Truss Bridge	159
		5.5.3 Statically Indeterminate 67-Member Truss Bridge	162
	5.6	Concluding Remarks	164
	Refe	rences	166
	0	terel Anglesia in the Combo of Freeman of Comparison I	
0	Opti	imal Analysis in the Service of Frequency-Constrained	1.00
	Stru	International Contention of the Set-Theoretical Jaya Algorithm	169
	0.1	Introduction	109
	6.2	Free vibration Analysis of Structures	172
	6.3	Efficient Free vibration Analysis of Cyclic Symmetric	172
		Structures	1/3
		6.3.1 Structural Matrices in the Cartesian	174
		and Cylindrical Coordinate Systems	1/4
		6.3.2 Efficient Eigensolution Method for Free Vibration	170
		Analysis of Cyclic Symmetric Structures	178
	6.4	Mathematical Formulation of the Optimization Problem	181
	6.5	Optimization Algorithms	183
		6.5.1 Jaya Algorithm	183
		6.5.2 Set-Theoretical Jaya Algorithm	185
	6.6	Results and Discussion	185
		6.6.1 A 600-Bar Single-Layer Dome-Like Truss	187
		6.6.2 A 1410-Bar Double-Layer Dome-Like Truss	189
	6.7	Concluding Remarks	198
	Refe	prences	200
7	Disc	rete Structural Optimization with Set-Theoretical Java	
	Algo	orithm	203
	7.1	Introduction	203
	7.2	Structural Optimization with Discrete Design Variables	205
	7.3	Classical Java Algorithm (JA)	207
	7.4	Set-Theoretical Java Algorithm (ST-JA)	208
	7.5	Numerical Examples	211
		7.5.1 A 72-Bar Spatial Truss Structure	212
		7.5.2 A 47-Bar Planar Power Line Tower	217
		7.5.3 A 52-Bar Planar Truss Structure	223
		7.5.4 A 160-Bar Spatial Truss Structure	228
	7.6	Concluding Remarks	236
	Refe	prences	242

8	Enha	nced Forensic-Based Investigation Algorithm	245
	8.1	Introduction	245
	8.2	Forensic-Based Investigation (FBI) Algorithm	247
		8.2.1 Forensic Investigation Process	247
		8.2.2 Mathematical Model	248
	8.3	Enhanced Forensic-Based Investigation (EFBI)	252
	8.4	Formulation of the Optimization Problem	257
	8.5	Numerical Examples	259
		8.5.1 A 52-Bar Dome-Like Truss	260
		8.5.2 A 120-Bar Dome-Like Truss	261
		8.5.3 A 600-Bar Dome-Like Truss	265
	8.6	Concluding Remarks	271
	Refer	rences	276
9	Impr	oved Slime Mould Algorithm	279
	9.1	Introduction	279
	9.2	Overview of the Slime Mould Algorithm (SMA)	282
	9.3	Proposed Improved Slime Mould Algorithm (ISMA)	286
	9.4	Formulation of the Optimization Problem	288
	9.5	Numerical Examples	291
		9.5.1 A 600-Bar Dome-Like Truss	292
		9.5.2 A 1180-Bar Dome-Like Truss	299
		9.5.3 A 1410-Bar Dome-Like Truss	304
	9.6	Concluding Remarks	320
	Refer	rences	321
10	Impr	oved Arithmetic Optimization Algorithm	323
	10.1	Introduction	323
	10.2	Overview of the Arithmetic Optimization Algorithm (AOA)	325
		10.2.1 Initialization Phase	326
		10.2.2 Exploration Phase	327
		10.2.3 Exploitation Phase	328
	10.3	Proposed Improved Arithmetic Optimization Algorithm	
		(IAOA)	329
	10.4	Structural Optimization with Discrete Design Variables	333
	10.5	Numerical Examples	335
		10.5.1 A 72-Bar Space Truss	335
		10.5.2 A 384-Bar Double-Layer Barrel Vault	340
		10.5.3 A 3-Bay 15-Story Steel Frame	351
	10.6	Application to High-Dimensional Structural Optimization	
		Problems	354
	10.7	Concluding Remarks	358
	Refer	rences	360