Skip to main content

Computational Universality and Efficiency in Morphogenetic Systems

  • Conference paper
  • First Online:
  • 216 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13419))

Abstract

The topic of computational universality and efficiency of various types of abstract machines is still subject of intensive research. Besides many crucial open theoretical problems, there are also numerous potential applications, e.g., in construction of small physical computing machines (nano-automata), harnessing algorithmic processes in biology or biochemistry, efficient solving of computationally hard problems and many more. The study of computability and complexity of new abstract models can help to understand the borderline between non-universality and universality, or between tractable and intractable problems.

Here we study computational universality (in Turing sense) and computational complexity in the framework of morphogenetic (M) systems—computational models combining properties of membrane systems and algorithmic self-assembly of pre-defined atomic polytopes. Even very simple morphogenetic systems can exhibit complex self-organizing behaviour and phenomena such as controlled growth, self-reproduction, homeostasis and self-healing. We present two small universal M systems, one of which is additionally self-healing. Then we show how the borderline P versus NP can be characterized by some properties of morphogenetic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset rewriting systems. Theor. Comput. Sci. 412(17), 1581–1591 (2011)

    Article  MathSciNet  Google Scholar 

  2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to distributed self-stabilizing algorithms. Synth. Lect. Distrib. Comput. Theory 8(1), 1–165 (2019)

    Article  Google Scholar 

  3. Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 322(8), 549–560 (1905)

    Article  Google Scholar 

  4. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science (2011)

    Google Scholar 

  5. Mange, D., Madon, D., Stauffer, A., Tempesti, G.: Von Neumann revisited: a Turing machine with self-repair and self-reproduction properties. Robot. Auton. Syst. 22(1), 35–58 (1997)

    Article  Google Scholar 

  6. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. Ann. Math. Stud. 34, 43–98 (1956)

    MathSciNet  Google Scholar 

  7. Păun, A., Popa, B.: P systems with proteins on membranes. Fund. Inform. 72(4), 467–483 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006). https://doi.org/10.1007/11779148_27

    Chapter  Google Scholar 

  9. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  10. Qang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. 40(1), 1–41 (1961)

    Article  Google Scholar 

  11. Rogozhin, Y.: Small universal Turing machines. Theor. Comput. Sci. 168(2), 215–240 (1996)

    Article  MathSciNet  Google Scholar 

  12. Smolka, V., Drastík, J., Bradík, J., Garzon, M., Sosík, P.: Morphogenetic systems: models and experiments. Biosystems 198, Article no. 104270 (2020). https://doi.org/10.1016/j.biosystems.2020.104270

  13. Sosík, P.: Morphogenetic computing: computability and complexity results. Nat. Comput. (2022, submitted)

    Google Scholar 

  14. Sosík, P., Drastík, J., Smolka, V., Garzon, M.: From P systems to morphogenetic systems: an overview and open problems. J. Membrane Comput. 2(4), 380–391 (2020). https://doi.org/10.1007/s41965-020-00057-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Sosík, P., Garzon, M., Drastík, J.: Turing-universal self-healing computations in morphogenetic systems. Nat. Comput. 20, 739–750 (2021)

    Article  MathSciNet  Google Scholar 

  16. Sosík, P., Garzon, M., Smolka, V., Drastík, J.: Morphogenetic systems for resource bounded computation and modeling. Inf. Sci. 547, 814–827 (2021)

    Article  MathSciNet  Google Scholar 

  17. Sosík, P., Smolka, V., Drastík, J., Bradík, J., Garzon, M.: On the robust power of morphogenetic systems for time bounded computation. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725, pp. 270–292. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_18

    Chapter  Google Scholar 

  18. Sosík, P., Smolka, V., Drastík, J., Moore, T., Garzon, M.: Morphogenetic and homeostatic self-assembled systems. In: Patitz, M.J., Stannett, M. (eds.) UCNC 2017. LNCS, vol. 10240, pp. 144–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58187-3_11

    Chapter  MATH  Google Scholar 

  19. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 7–72 (1950)

    Google Scholar 

  20. van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity, pp. 1–66. Elsevier, Amsterdam (1990)

    Google Scholar 

  21. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–66. Springer, Cham (2006). https://doi.org/10.1007/3-540-30296-4_4

    Chapter  Google Scholar 

  22. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Silesian University in Opava under the Student Funding Scheme, project SGS/8/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sosík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sosík, P., Drastík, J. (2022). Computational Universality and Efficiency in Morphogenetic Systems. In: Durand-Lose, J., Vaszil, G. (eds) Machines, Computations, and Universality. MCU 2022. Lecture Notes in Computer Science, vol 13419. Springer, Cham. https://doi.org/10.1007/978-3-031-13502-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13502-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13501-9

  • Online ISBN: 978-3-031-13502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics