
PSPACE-Completeness of Reversible Deterministic Systems

Erik D. Demaine∗ Robert A. Hearn† Dylan Hendrickson∗ Jayson Lynch‡

Abstract

We prove PSPACE-completeness of several reversible, fully deterministic systems. At the
core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara
and a framework for motion planning through gadgets), showing that any system that can
implement three basic gadgets is PSPACE-complete. We then apply this framework to four
different systems, showing its versatility. First, we prove that Deterministic Constraint Logic
is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a
new PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin and Toffoli from
40 years ago, newly establishing hardness when only two balls move at once. Third, we prove
PSPACE-completeness of zero-player motion planning with any reversible deterministic inter-
acting k-tunnel gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching hall-
ways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete
with just a single gadget, the 3-spinner. These results should in turn make it even easier to
prove PSPACE-hardness of other reversible deterministic systems.

1 Introduction

Reversible deterministic systems arise in various situations, some of the most important of which
come from physics because fundamental existing physical theories are reversible and deterministic1.
In particular, due to the thermodynamics of information, reversible computation can potentially
use significantly less energy than irreversible computation because Landauer’s Principle requires
physical systems expend kBT ln 2 energy per bit of information lost.2 Thus understanding how
reversible systems can solve computationally difficult problems may help in designing general-
purpose reversible computing hardware.

More precisely, a system is deterministic if its configuration at each time in the future is entirely
determined by its current configuration. A system is reversible if, in addition, its configuration at
each time in the past is entirely determined by its current configuration. The systems we consider
all satisfy, or nearly satisfy, the stronger property of time-reversal symmetry : evolution forward
in time and backward in time obey the same rules, so by looking at a sequence of configurations
it is not possible to determine whether time is moving forwards or backwards. To reverse time,
we simply need to reverse the direction of motion of each moving part in each of the systems
we consider. In one system, we use a slightly more general symmetry by replacing each ‘rotate

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA,
{edemaine,dylanhen}@mit.edu

†bob@hearn.to
‡University of Waterloo Cheriton School of Computer Science, Waterloo, ON, Canada, jayson.lynch@uwaterloo.ca
1The time evolution of the wave-function in the Standard Model is deterministic even if the observation of macro-

scopic phenomena is probabilistic.
2Here kB ≈ 1.4 ·10−23 is the Boltzmann constant and T is the temperature in kelvins. At room temperature, this

comes to about 2.8 · 10−21 joules per bit. Current chips are rapidly approaching this limit; see [Fra20, DLMT16].

1

ar
X

iv
:2

20
7.

07
22

9v
1 

 [
cs

.C
C

] 
 1

4 
Ju

l 2
02

2

{edemaine,dylanhen}@mit.edu
bob@hearn.to
jayson.lynch@uwaterloo.ca


clockwise’ gadget with a ‘rotate counterclockwise’ gadget, and vice-versa. A physicist might call
this parity–time (PT) symmetry; see, e.g., [ÖRNY19].

In this paper (Section 2), we develop a framework for proving PSPACE-completeness of re-
versible deterministic systems. Our framework extracts and simplifies a framework implicit in the
work of Tsukiji and Hagiwara [TH11], who proved PSPACE-hardness for Langton’s reversible ‘ant’
model of artificial life in two geometries, the square and hexagonal grids. Their hardness reductions
construct five core gadgets in each grid, and show that these gadgets suffice for PSPACE-hardness
by a reduction from satisfiability in Quantified Boolean Formulas (QBF). Our framework decreases
the number of required gadgets to just three, showing that some of the previous gadgets are unnec-
essary (essentially, redundant) and others can be simplified. The framework also guarantees that
the gadgets are connected together without crossings, making it well suited to reducing to planar
systems (which all of our applications are).

We then apply our framework to analyzing the complexity of four reversible deterministic sys-
tems:

1. We prove in Section 3 that Deterministic Constraint Logic is PSPACE-complete. While this
result was already claimed 14 years ago [DH08, HD09], we describe in Section 3.1 an error in
the previous reduction. The new framework enables a correct proof of the same result.

2. We develop in Section 6 a new PSPACE-hardness proof for the ‘billiard ball’ reversible model
of computation, introduced and analyzed by Fredkin and Toffoli in 1982 [FT82]. In this model,
unit-radius 2D balls move without friction and collide elastically with pinned or movable
objects, according to classical physics. Unlike the previous proof, our PSPACE-hardness result
works even in the case when only two balls ever move at once (and the rest are stationary),
which results in a substantially simpler proof (no longer needing complex timing arguments
to guarantee simultaneity).

3. We prove in Section 4 that zero-player motion planning through gadgets is PSPACE-complete
when the gadgets include any reversible deterministic interacting k-tunnel gadget and a ‘ro-
tate clockwise’ gadget (a 1-state 3-location gadget where an entering signal simply exits
along the clockwise-next location). This result can be thought of as extending Table 1 in the
motion-planning-through-gadgets framework [DHL20] to add a ‘zero-player’ column in the
unbounded row, analogous to zero-player Deterministic Constraint Logic [HD09]. Our proof
indeed uses the same simulations as for motion planning with a positive number of players
[DHL20] to reduce to one core case — locking 2-toggles and rotate clockwise — and then
shows that that case is PSPACE-complete.

4. We prove in Section 5 that zero-player motion planning with one very simple gadget called a
‘3-spinner’ is PSPACE-complete. Specifically, a 3-spinner has two states — ‘clockwise’ and
‘counterclockwise’ — and three locations at which the signal can enter; after entering, the
gadget flips its state and the signal exits in the next port in the order given by the state. This
result is weaker than Tsukiji and Hagiwara’s PSPACE-hardness of ‘ant’ on a hexagonal lattice
[TH11], because the vertices in the lattice act exactly as 3-spinners. We effectively translate
this result into the motion-planning-through-gadgets framework of Demaine et al. [DHL20],
and simplify it significantly.

All of the systems we consider can straightforwardly be simulated using polynomial space, so
the decision problems are in PSPACE.

2



2 The Framework

Our framework for proving PSPACE-hardness, which is a modest simplification of one due to Tsukiji
and Hagiwara [TH11], can be understood in terms of the motion-planning gadgets framework of
Demaine et al. [DHL20]. In particular, it is closely related to, and can be described in terms of,
the ‘input/output gadgets’ of Ani et al. [ADHL22]. We will describe it independently.

The framework may apply to any setting with a single signal deterministically navigating a
planar network of gadgets with the following properties. Each gadget has some designated ports.
When the signal enters the gadget at one of its ports, it then exits the same gadget at one of its
port, which is determined by the entrance port and any previous traversals of that gadget. The
network links gadgets by connecting the ports of the gadgets in disjoint pairs: when the signal exits
at a port, it enters at the paired port.

To describe the “behavior” of a gadget, we define a traversal to be of the form a→ b for any two
ports a and b of the gadget. A gadget implements a sequence [a1 → b1, . . . , ak → bk] of traversals
if, when the sequence of the signal’s entrance ports to the gadget is [a1, . . . , ak], the sequence of
exit ports from the gadget is [b1, . . . , bk]. Note that a gadget implements any prefix of a sequence
it implements.

All of the gadgets we consider in this section are symmetric under time-reversal, meaning if
we perform a sequence of traversals followed by its time-reverse, the gadget is returned to its
original state. Formally, if a gadget implements two sequences X = [a1 → b1, . . . , ak → bk] and
Y = [c1 → d1, . . . c` → d`], then it also implements

XX−1Y = [a1 → b1, . . . , ak → bk, bk → ak, . . . , b1 → a1, c1 → d1, . . . , c` → d`].

In the language of Hendrickson [Hen21], our gadgets can be modeled as ‘prefix-closed gizmos’, and
time-reversal symmetry means they satisfy the ‘implication property’ X,Y =⇒ XX−1Y .

If every gadget in a network is symmetric under time-reversal, then the entire network is as
well: if we reverse the direction of the signal by returning it to the just-exited port instead of
the port paired to just-exited port, it will retrace its steps in reverse, eventually returning to the
initial configuration. This is a special case of a result applying to implication properties in general
[Hen21].

2.1 Required Gadgets

We are now ready to describe the gadgets which we will show suffice for PSPACE-hardness.
We describe each gadget by specifying some sequences it implements. The gadgets then also

implement all prefixes of implemented sequences, and all sequences required for time-reversal sym-
metry. We don’t fully specify the behavior of the gadgets: they are allowed to do anything if the
signal arrives in an unspecified sequence, and this does not affect our PSPACE-hardness result
because it never happens in the networks created by the reduction. The required behavior of our
gadgets is summarized in Table 1. In addition, for each gadget G described below, we also allow
our network to include the gadget G after [α1 → β1, . . . , αi → βi], which behaves like G would
after having performed the traversals α1 → β1, . . . , αi → βi in that order. That is, if G implements
[α1 → β1, . . . , αi → βi, a1 → b1, . . . , ak → bk], then G after[α1 → β1, . . . , αi → βi] implements
[a1 → b1, . . . , ak → bk].

Our first, and most complicated gadget, is the Switch. This corresponds to three of Tsukiji and
Hagiwara’s gadgets, the ‘Switch & Pass,’ ‘Switch & Turn,’ and ‘Pseudo-Crossing,’ which are all
equivalent except for the cyclic order of ports in the planar embedding, and that Switch & Turn
merges the ports we call Set and Out. The Switch has 5 ports, called ‘Set,’ ‘Out,’ ‘Test,’ ‘T-Out,’

3



Gadget Ports Cyclic Order Implements

Switch

Set
Out
Test
T-Out
F-Out

Any order
[Set→ Out,Test→ T-Out]
[Test→ F-Out]

Reversible Fan-in
a
b
c

(Only one possible)
[a→ c]
[b→ c]

A/BA Crossover

A
B
a
b

A, B, a, b
[A→ a]
[B → b, A→ a]

Table 1: Summary of time-reversal-symmetric gadgets required for PSPACE-hardness. Each gadget im-
plements all sequences generated from those under Implements by prefixes and time-reversal symmetry
(X,Y =⇒ XX−1Y ).

and ‘F-Out.’ It implements [Set→ Out,Test→ T-Out] and [Test→ F-Out]. Intuitively, it has an
internal state which is initially False, and is set to True by the traversal Set→ Out. Entering Test
reveals the current state. Time-reversal symmetry implies that the Switch is reusable: for instance,
it must also implement

[Set→ Out,Test→ T-Out,T-Out→ Test,Out→ Set,Test→ F-Out].

There are really 12 different Switch gadgets (up to rotation and reflection), based on the cyclic
order of the ports. We allow any cyclic order of the ports; our PSPACE-hardness applies to any
individual order.

Our next gadget is the Reversible Fan-in. Tsukiji and Hagiwara call this gadget ‘CONJ.’ It has
three ports a, b, and c, and implements [a → c] and [b → c]. Intuitively, it is a fan-in that sends
both a and b to c, but—as required by time-reversal symmetry—remembers which entrance was
taken so that when the signal returns to c, it exits the port it originally entered.

Our final gadget is the A/BA Crossover. The A/BA Crossover has four ports A, B, a, and b in
cyclic order, and implements [A → a] and [B → b, A → a]. Tsukiji and Hagiwara build a slightly
more powerful crossover they call ‘CROSS,’ which also implements [A→ a,B → b]. However, this
is not necessary for PSPACE-hardness, and the A/BA Crossover can easily be constructed using
Tsukiji and Hagiwara’s Pseudo-Crossing (which is a particular planar embedding of a Switch) and
CONJ.

2.2 PSPACE-Hardness

We now prove PSPACE-hardness for the natural decision problem concerning these gadgets: given
a planar network containing Switches, Reversible Fan-ins, and A/BA Crossovers (including these
gadgets after some traversals), a starting port which the signal enters first, and a target port, does
the signal ever reach the target port? We reduce from QBF, still following Tsukiji and Hagiwara
[TH11] with some simplification and slightly different abstractions.

We first ignore the requirement of planarity, showing PSPACE-hardness for general networks
containing just Switches and Reversible Fan-ins. Then we argue that A/BA Crossovers suffice for
all required crossings in a planar embedding of the networks we construct.

4



Q2
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

Q1
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

Qn
In 

Write 

Out 

T-In 

F-In 

T-Out 

F-Out 

CNF Evaluation
In 

T-Out 

F-Out 

x1 x2 xn 

Figure 1: The high-level structure of the network produced by our reduction. The signal begins at In on
Q1, evaluates the formula, and eventually arrives at T-Out or F-Out on Q1 depending on its truth value.

Given a quantified formula Q1x1 : · · ·Qnxn : φ(x1, . . . , xn) where φ is a 3-CNF formula, we
construct a network of Switches and Reversible Fan-ins. At a high level, the network consists of a
series of ‘quantifier gadgets,’ ending in ‘CNF evaluation.’ When the signal arrives at a quantifier
gadget, the quantifier gadget sets the variable it controls, and then queries the next quantifier.
Depending on the response, it may perform a second query with the other setting of its variable,
and then it sends a response to the previous quantifier. The final quantifier Qn instead queries
the CNF evaluation, which computes the value of φ under the current variable assignment. The
structure of the reduction is shown in Figure 1.

Because we are working with gadgets which are symmetric under time-reversal, we need our
quantifier gadgets have this symmetry as well. Quantifiers need to be used multiple times, so we will
reset them in the way suggested by time-reversal symmetry: the signal needs to backtrack across
its entire path through each quantifier gadget before returning to the previous quantifier. We will
describe the desired behavior of quantifier gadgets which are symmetric under time-reversal, and
later show how to build them using Switches and Reversible Fan-ins.

We specifically discuss universal quantifiers; existential quantifiers require only a minor modifi-
cation. A universal quantifier gadget Qi has eight locations, named in cyclic order ‘F-Out’, ‘T-Out’,
‘In’, ‘Write-Out’, ‘Write-In’, ‘Out’, ‘T-In’, and ‘F-In.’3 The gadget is activated when the signal
arrives at In, and the signal proceeds to Out to query the next quantifier; the variable xi is currently
set to False.

Eventually, the signal returns at either T-In or F-In, indicating the truth value of the remainder
of the formula with the current variable assignment up to xi. If it enters at F-In, the universally
quantified formula is false, so it passes this along to Qi−1 by exiting at F-Out. If it enters at T-In,
we need to try the other assignment, which means we need to reset the quantifiers after Qi by
backtracking through them. So the quantifier gadget ‘remembers’ that it received one True signal,
and sends the signal back out T-In. Due to reversibility, the signal eventually returns to Out, at
which point it is sent to Write-Out to set xi to True. The signal goes through a series of Switches
in the CNF evaluation, and then returns at Write-In. Now Qi sends the signal to Out, this time
with the other setting of xi. Eventually the signal returns again at either T-In or F-In, and it is

3Tsukiji and Hagiwara call these ‘OUTi,FALSE,’ ‘OUTi,TRUE,’ ‘INi,’ ‘Ixi ,’ ‘Oxi ,’ ‘INi+1,’ ‘OUTi+1,TRUE,’ and
‘OUTi+1,FALSE,’ respectively.

5



sent straight to T-Out or F-Out to answer the query from Qi−1.
Once Qi−1 has dealt with the response, the signal returns to Qi at the same one of T-Out or

F-Out it exited, at which point everything is reversed, ending with the signal exiting at In with xi
set to False, and Qi and all later quantifiers in their initial configuration.

Formally, we need a universal quantifier to implement these sequences (and those implied by
time-reversal symmetry), corresponding to the first query to Qi+1 returning False, the first query
returning True but the second returning False, and both queries returning True, respectively:

• [In→ Out,F-In→ F-Out]

• [In→ Out,T-In→ T-In,Out→Write-Out,Write-In→ Out,F-In→ F-Out]

• [In→ Out,T-In→ T-In,Out→Write-Out,Write-In→ Out,T-In→ T-Out]

An existential quantifier gadget is constructed by swapping T-In with F-In and T-Out with F-Out
on a universal quantifier gadget.

The signal starts at In on Q1, which queries the truth value of the whole formula. It eventually
arrives at either T-Out or F-Out depending on the answer; we make T-Out on Q1 the target port.
If we connect In, T-Out, and F-Out to themselves, then after evaluating the formula the signal will
backtrack all the way to the beginning, and repeat this cycle.

The final quantifier Qk interfaces directly with the CNF evaluation instead of another quantifier.
The CNF evaluation maintains the current variable assignment, initially with all variables False.
It has a path for each variable xi which is connected to Write-Out and Write-In on Qi; traversing
this path forwards sets xi True, and then traversing it backwards returns xi to False. The CNF
evaluation has three additional ports In, T-Out, and F-Out, analogous to those on a quantifier
gadget. When the signal arrives at In, it exits at either T-Out or F-Out depending on the truth
value of the formula under the current variable assignment. These ports are connected to Out,
T-In, and T-Out on Qk in the same way as other quantifiers.

By the designed behavior of quantifier gadgets and CNF evaluation, the signal arrives at T-Out
on Q1 if and only if the quantified formula is true. We still need to fill in the details: how do we
build quantifier gadgets and CNF evaluation and of Switches and Reversible Fan-ins, and how do
we handle crossings?

2.2.1 CNF evaluation

Our CNF evaluation is the same as Tsukiji and Hagiwara’s, and is shown in Figure 2. There is
a switch for each literal in φ. For each variable xi, there is a path that goes through all switches
corresponding to instances of xi (or ¬xi) in φ, and traversing this path sets xi to True. When
the signal enters In, it checks each clause in series. For each clause, it goes through the switches
corresponding to literals in the clause, and emerges in one of two locations depending on whether
the clause is satisfied. If it is not satisfied, the signal exits at F-Out, and otherwise it proceeds to
the next clause, exiting at T-Out once it has passed every clause. Later, it will return to either
T-Out or F-Out and reverse its path back to In; the Reversible Fan-ins remember the path taken
and necessarily send it back along the same path.

2.2.2 Quantifier gadgets

Our quantifier gadgets are essentially the same as Tsukiji and Hagiwara’s, the only differences are
due to planar arrangement and that we must build their Switch & Turn gadget out of a Switch
and a Reversible Fan-in. The universal quantifier gadget is shown in Figure 3. The existential

6



x

c
a

b

Test 

Set 

F-Out 

Out 

T-Out 
In 

T-Out 

F-Out 

¬y

Test 

Set 

F-Out 

Out 

T-Out 

z

Test 

Set 

F-Out 

Out 

T-Out 

c
a

b

¬x

c
a

b

Test 

Set 

F-Out 

Out 

T-Out 

y

Test 

Set 

F-Out 

Out 

T-Out 

z 

Test 

Set 

F-Out 

Out 

T-Out 

c
a

b

C
la

us
e 

1 
tru

e 

Clause 1 false 

C
la

us
e 

2 
tru

e 

a b
c

Clause 2 false 

x-In x-Out y-In y-Out z-In z-Out 

Figure 2: Our CNF evaluation. Each clause consists of three Switches corresponding to the literals in the
clause, with Reversible Fan-ins to merge paths. A variable and its negation differ in the positions of T-Out
and F-Out on the corresponding Switch. When the signal enters In, if any literal in the first clause is true it
will take the edge labeled “Clause 1 true” and otherwise will take the edge labeled “Clause 1 false.” All the
exits for false clauses merge and lead to F-Out. If all clauses are true, the signal will traverse them in series
and then exit T-Out. For each variable xi, there is also a path from xi-In to xi-Out which goes through
Set→ Out on the switch corresponding to each instance of xi or ¬xi.

quantifier gadget is constructed by exchanging the roles of T-In with F-In and T-Out with F-Out,
so there is a direct path from T-In to T-Out which crosses some edges linking F-In and F-Out to

7



c
a b

a

b
cF-Out 

T-Out 

Set Out 

Test 

Test 

Set 

F-Out 

Out 

T-Out 

In 

Write-Out Write-In 

Out 

T-In 

F-In 

T-Out 

F-Out 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

x y 

Figure 3: The universal quantifier gadget built from two
Switches (squares) and two Reversible Fan-ins (triangles). The
top Switch begins is after [Test→ F-Out], the bottom left Re-
versible Fan-in is after [a → c], and the other two gadgets are
their default versions. Edges between gadgets are labeled for
later use.

1 

2 

3 

4 

5 

6 

7 

8 9 

10 

Figure 4: A Hasse diagram of the
order relation on used edges in our
quantifier gadgets (Figure 3). That
a is above b indicates that whenever
both edges are used, a was used more
recently and will be unused sooner.

the other ports. This similarity is sensible: for existential quantifiers if the formula is false we need
to try again with the other value, but for universal quantifiers if the formula is true we are allowed
to attempt the other required value for the variable.

We must check that the universal quantifier gadget correctly implements the behavior described
above. Recall that the signal will first arrive at In. It proceeds to the upper left switch, taking
[F-Out→ Test] and leaving the Switch in its default state. Then signal takes [a→ c] in the upper
right Fan-in and leaves at Out. If it now enters F-In, it goes directly to F-Out. If instead it enters
T-In, it goes from Test to F-Out on the bottom switch, goes along edge 8 to the Reversible Fan-In
(which is after [a → c]), and traverses [c → a]. Then the signal traverses Set → Out on the top
switch, and returns to the bottom switch via the Reversible Fan-in, leaving both the Switch and
Reversible Fan-in in different states than before. The signal then backtracks from F-Out to Test
on the bottom Switch, and exits T-In, where it just entered. Now if the signal enters Out, the
Reversible Fan-in sends it back to Test on the top Switch along edge 2. But the top Switch has
been activated, so the signal exits the Switch at T-Out and exits the quantifier at Write-Out. It
next enters Write-In, at which point it traverses Set→ Out on the bottom Switch, and exits Out.
Finally, if the signal now enters F-In, it is still sent to F-Out, and if it enters T-In then it goes
from Test to T-Out on the bottom switch (which has now been activated) and exits the quantifier
at T-Out.

8



2.2.3 Planarity

Finally, we argue that we can use A/BA Crossovers to avoid crossings in the network produced by
this reduction.

Note that each edge in the network is directed, in the sense that the first traversal across the
edge is in a predetermined direction which we call forwards, and all future traversals alternate
direction—we never traverse an edge twice consecutively in the same direction. At any time while
running the system, we say an edge is used if it has been traversed forwards more recently than
backwards. Initially no edges are used, and they are used and unused throughout the process. For
two edges x and y which cross, an A/BA Crossover suffices for their crossing provided that whenever
both x and y are used, always the same edge—say x—was traversed forwards more recently, and
also x will be traversed backwards sooner in the future. In this case, we can set x to be the A→ a
tunnel and y to be the B → b tunnel of an A/BA Crossover. If x and y are never both used, either
orientation of the A/BA Crossover will work.

So we just need to argue that there is a consistent order edges (other than the few we showed
can avoid crossings) are used. There are no crossings outside the CNF evaluation and quantifier
gadgets, so we need only check those gadgets. For the CNF evaluation, this is straightforward:

• For i < j, the path to set xi is used before the path to set xj .

• Within the path to set xi, the edges are used in order.

• All paths for setting variables are used before edges involved in testing the current value.

• The edges involved in testing the current value are used in order. Specifically, there is a
partial order on these edges based on when it is possible to traverse one and then another on
the way from In to T-Out or F-Out. We arbitrarily extend this partial order to a total order,
or equivalently, for two edges which can’t both be used, we arbitrarily choose which is A and
which is B in the A/BA Crossover.

For quantifier gadgets, the numbering listed in Figure 3 works as an order for all edges other
than x and y. More generally, a Hasse diagram of the “is sometimes used after” partial order on
these edges is shown in Figure 4, and positioning A/BA Crossovers to respect this order suffices for
all crossings between these edges. It is straightforward to verify this partial order by considering
the behavior of our quantifier gadgets.

For crossings inside a quantifier gadget which involve edge x or y, we need a different approach:
for instance, if edge 2 crosses x, then the signal will sometimes traverse 2, then x, then 2 backwards,
which isn’t supported by the default A/BA Crossover. When x or y is involved in crossing, we use
an A/BA crossover as follows:

• If x crosses y, make x the B → b tunnel since it is always used first.4

• If x or y crosses 1, make 1 the B → b tunnel since it is always used first.

• If x or y crosses 3, 4, 5, 9, or 10, make x or y the B → b tunnel since they are always used
first.

• If x or y crosses 2, 6, 7, or 8, use an A/BA Crossover after A → a, and make the numbered
tunnel a → A. By time-reversal symmetry, the A/BA Crossover after A → a implements
[a→ A,B → b, A→ a], which corresponds for instance to traversing 2 forwards, x backwards,
and then 2 backwards, which is what is needed.

4Alternatively, avoid this crossing by adjusting the Reversible Fan-in connecting x and y.

9



To carefully check that this arrangement of A/BA Crossovers works for the quantifier gadget,
we can consider the possible sequences of edge traversals. Using ·−1 for backwards traversals, these
are (generated by time-reversal symmetry from)

• [1, 2, 6, 10]

• [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 10]

• [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 7, 9]

which correspond to the sequences the quantifier gadget was built to implement. It is straightfor-
ward to verify, for each pair of edges, that an A/BA Crossover as described supports all of the
ways that pair of tunnels is used. For instance, the possible sequences for just 2 and x are [2] and
[2, x, 2−1], which are [a → A] and [a → A,B → b, A → a] on the A/BA Crossover involved, and
both of these are implemented by an A/BA Crossover after A → a. It suffices to check just the
sequences listed, since taking the closure under time-reversal symmetry does not give rise to any
new intermediate configurations.

Hence we have the main result of this section:

Theorem 1 Given a planar network of Switches, Reversible Fan-ins, A/BA Crossovers, and these
gadgets after some traversals, a starting location, and a target location, it is PSPACE-complete to
determine whether the signal ever reaches the target location from the starting location. This result
holds even when all Switches have any particular cyclic order of ports.

To apply this framework to a specific problem, we simply need to describe the signal and how
it moves along wires, and then construct a Switch (with ports in any order), Reversible Fan-in, and
A/BA Crossover.

3 Deterministic Constraint Logic

Constraint Logic is a problem about graph orientation reconfiguration introduced by Hearn and
Demaine [DH08, HD09] as a tool for proving hardness results. A constraint graph is a directed
planar graph where each edge has weight 1 or 2, which are colored red and blue, respectively.5

Each vertex in a constraint graph is either an AND vertex, which has two red and one blue edge,
or an OR vertex, which has three blue edges. Each vertex is required to have at least 2 total
weight in edges pointing towards it. Edges change orientation, while maintaining this constraint.
Hearn and Demaine show how to ‘tie up’ loose edges, allowing the use of degree-2 vertices with any
combination of colors, for which the required weight is only 1 (so a single red edge satisfies it).

In this paper, we are specifically interested in Deterministic Constraint Logic (DCL), in which
edges flip according to the following deterministic rule. Each time step, an edge flips if it didn’t
flip in the previous time step and it can flip without violating the in-weight constraint of the vertex
it is currently directed towards, or it did flip in the previous time step but no other edge pointing
towards the vertex it is now directed towards can flip this time step.

Here are the basic behaviors that result from the deterministic rule:

• Begin with a path of edges of any color, all pointing to the left. If the leftmost edge flips, all
the edges in the path will flip, one in each time step.

5In grayscale, blue edges are darker than red edges. Figures also draw blue edges thicker than red edges.

10



• If a blue edge flips to point towards an OR vertex, in the next time step the blue edge which
was already pointing towards the OR vertex will flip.

• If a blue edge flips to point towards an AND vertex, in the next time step both red edges
pointing towards that vertex will flip.

• If both red edges flip to point towards an AND vertex in the same time step, in the next time
step the blue edge will flip.

• If one red edge but not the other flips to point towards an AND vertex, in the next time step
the same red edge will flip again.

The decision problem in Deterministic Constraint Logic is whether some specified edge will
eventually flip, given a constraint graph and the set of edges that are considered to have flipped in
time step 0.

3.1 Issue with Existing Proof

Hearn and Demaine’s proof of PSPACE-hardness for Deterministic Constraint Logic [HD09] has
a subtle issue. When their universal quantifier receives a ‘satisfied in’ signal, it records this fact,
much like our universal quantifier gadget. When it receives a second ‘satisfied in’ signal (assuming
the signal did not enter ‘try out’ in between), it erases the record of the first one; this is by design,
to reset the gadget for the next variable assignment.

The existential quantifier tries assigning its variable False, then True, and then False again, and
passes every ‘satisfied in’ signal it gets to ‘satisfied out’ to inform the previous quantifier. If the
existential quantifier is satisfied when its variable is False but not True, it sends two such signals
instead of one. This is the problem: if the previous quantifier is universal, the second signal cancels
the first one, and that quantifier behaves as though there was no signal. The simplest formula for
which the reduction fails is ∀x∃y : ¬y. Modifying the existential quantifier to test each assignment
exactly once does not fix the problem, because then if the quantifier is satisfied by both values for
its variable, it sends two signals to the previous quantifier. In particular, ∀x∃y : y ∨ ¬y would fail.

The proof may be fixable by modifying the existential quantifier gadget to ensure it only ever
sends one signal; it would likely be about as complicated as the universal quantifier. The approach
our framework takes is different: it adds an additional query return line, so instead of just ‘satisfied
in’ we have both T-in and F-in, and quantifier gadgets are guaranteed to receive exactly one response
for each query.

3.2 PSPACE-Hardness

Our PSPACE-hardness proof for Deterministic Constraint Logic uses many of the same elements as
Hearn and Demaine’s. The signal is a flipping edge, which propagates along paths in the direction
opposite the orientation of the edges in the path. Like Hearn and Demaine, our gadgets will
sometimes contain ‘bouncing’ edges which flip in a periodic way, and we ensure the length of each
path through a gadget is a multiple of this period—for us, the period is 2, though Hearn and
Demaine used a period of 4. The ports of our gadgets are always blue edges, which are connected
by joining them with a degree-2 vertex. The target edge is the edge corresponding to the target
port, and it flips if and only if the signal reaches the target port.

While DCL itself is symmetric under time reversal, it is possible to build a DCL gadget which
is not, by including periodically bouncing edges calibrated such that the signal enters out of phase
with when it exits. Some of Hearn and Demaine’s gadgets [HD09] behave this way. However, all of

11



B b

A

a

Figure 5: An A/BA Crossover for Deterministic Constraint Logic, from Hearn and Demaine [HD09].
Glowing auras indicate edges that flip every time step—the state shown is the state immediately before the
signal enters the gadget, so that when the signal enters, the blue edge at the entered port and all glowing
edges simultaneously flip from the shown configuration.

Set Out

Test

F-Out T-Out

Set Out

Test

F-Out T-Out

Figure 6: A Switch for Deterministic Constraint Logic. Left: the initial configuration. Right: the configu-
ration after the traversal Test→ T-Out.

our gadgets will be symmetric under time reversal in all of their relevant behavior, as is required
for the framework we are using.

We simply need to build valid Switch, Reversible Fan-in, and A/BA Crossover gadgets. A
Reversible Fan-in is simply an OR vertex, which always takes 2 time steps to traverse. We use
Hearn and Demaine’s A/BA crossover, which we reproduce in Figure 5. This A/BA crossover
always takes an even number of time steps to traverse, and contains bouncing edges with period 2.

Our Switch gadget is a bit more complicated, and is shown in Figure 6. If the signal arrives
at Set, it exits at Out and reflects the configuration by flipping the bottom four edges and setting
the left red edge bouncing instead of the right red edge. If the signal arrives at Test, it exits either
F-Out or T-Out based on which red edge is currently bouncing, and sets one of the top red edges
bouncing. Every traversal through this gadget takes four time steps.

12



Figure 7: The locking 2-toggle. Dotted lines indicate state transitions upon the signal traversing a tunnel.
All the locking 2-toggles we show have this layout, which Demaine et al. [DHL20] call the ‘parallel’ locking
2-toggle (and Demaine et al.’s results imply that any single planar embedding is sufficient).

4 Locking 2-Toggles

Our next application is a zero-player version of decision problems considered by Demaine et
al. [DHL20], and also fits in the framework from Section 2. The locking 2-toggle is a gadget
with two directed tunnels, where traversing either one flips its direction and disables the other
tunnel until the traversed tunnel is traversed again in the opposite direction. A diagram is shown
in Figure 7. To adapt the locking 2-toggle to the fully deterministic setting, we say that if the
signal arrives at a port where it cannot currently cross the tunnel, it ‘bounces off,’ exiting the same
port. The locking 2-toggle is symmetric under time-reversal.

The locking 2-toggle alone is boring in this setting: because it has separate tunnels, the signal
is restricted to a linear path. Since the locking 2-toggle obeys time-reversal symmetry, when the
signal bounces it will backtrack everything it has done, and not produce interesting new behavior.
In particular, the reachability question can be solved in logarithmic space.

To make a more interesting problem, we introduce a zero-player analog of the ‘branching hall-
ways’ used in one-player motion planning. This is a new gadget we call rotate clockwise, and the
other enantiomer rotate counterclockwise. Rotate clockwise has three ports, and the signal always
exits immediately clockwise of the port it entered. This is like a 3-spinner which doesn’t change
state. Rotate Clockwise and the notion of bouncing off of closed ports also appear in Asynchronous
Ballistic Reversible Logic [Fra17], which is similar to the model just defined, but with signals.

Rotate clockwise is not symmetric under time-reversal: the time-reversed rotate clockwise is ex-
actly rotate counterclockwise. But we will build gadgets which are symmetric under time-reversal—
at least, provided the sequence of input ports is one we need to account for—out of rotate clockwise
and locking 2-toggles.

The decision problem is whether, in a given network of locking 2-toggles and rotate clockwise,
the signal ever reaches some location. For PSPACE-hardness, we need to construct a Switch, a
Reversible Fan-in, and an A/BA Crossover. These gadgets are shown in Figure 8. The A/BA
Crossover is the same as the one built by Demaine et al. [DHL20] for the nondeterministic setting,
with branching hallways replaced by rotate clockwise. We are able to construct all of these gadgets
with just rotate clockwise, without using rotate counterclockwise.

Demaine et al. [DHL20] showed that any gadget from a large class—what they call interacting-

13



SetOut

Test

F-Out T-Out

a

c

b

Figure 8: The Switch and Reversible Fan-in built out of locking 2-toggles and rotate clockwise. It is easy
to verify correctness. Note that we cannot rely on time-reversal symmetry; we must check each desired
sequence followed by its time-reverse, and this needs to return the gadget to its initial state. The A/BA
Crossover from Demaine et al. [DHL20] is complicated to build with parallel locking 2-toggles, so we omit
it.

tunnels reversible deterministic gadgets—can simulate the locking 2-toggle. These simulations do
not use any branching hallways, so they work in our fully deterministic model as well. Hence zero-
player motion planning with any interacting-tunnels reversible deterministic gadget and rotate
clockwise is PSPACE-complete.

Our gadgets for locking 2-toggles, including those from Demaine et al. involved in building the
A/BA Crossover, don’t rely on the precise behavior of rotate clockwise: any instances of rotate
clockwise could be replaced with rotate counterclockwise, and the reduction would still work. In
fact—though this is more complicated to verify because the resulting gadgets are nondeterministic
(in particular, the player can choose to turn around at any time, but this is the only resulting
nondeterminism)—all instances of rotate clockwise can be replaced with branching hallways, yield-
ing a reduction to one-player motion planning with locking 2-toggles. This is a new and arguably
simpler proof of PSPACE-hardness than the original by Demaine et al. [DHL20].

5 3-Spinners

One additional application of our framework is a strictly more general decision problem, and thus
a strictly weaker hardness result, than the hexagonal-lattice version of Langton’s ant which Tsukiji
and Hagiwara prove PSPACE-complete [TH11]. We include it because it resolves a question posed
by Demaine et al. [DGLR18], who were not aware of Tsukiji and Hagiwara’s work: this result
implies that 1-player motion planning with 3-spinners is PSPACE-complete, since the player would
never have nontrivial decisions to make because 3-spinners obey time-reversal symmetry. We are
able to simplify the gadgets involved a bit because we will not restrict to a hexagonal lattice like
Tsukiji and Hagiwara do.

The 3-spinner is a particular gadget which fits in the framework described in Section 2 and is
symmetric under time-reversal. It has three locations a1, a2, and a3, and implements all sequences
which alternate between traversals of the form ai → ai+1 and ai → ai−1 with indices mod 3. That
is, the first time the signal enters a 3-spinner, it exits one position ‘clockwise’ of the entrance, the
next time it exits one position ‘counterclockwise,’ and this alternates. A diagram of the 3-spinner
is shown in Figure 9.

Zero-player motion planning with 3-spinners asks whether the signal ever reaches some location
in a network of 3-spinners. To prove PSPACE-hardness even in planar networks, we just need to
show how to build a Switch, a Reversible Fan-in, and an A/BA Crossover out of 3-spinners. These

14



Figure 9: The 3-spinner. In the left state, the signal is sent one port counterclockwise, and in the right
state it is sent one port clockwise, as indicating by the dotted arrows. Each traversal flips the state. The
circular arrow indicates the current state.

Set Out

Test T-OutF-Out a

b

c

a

B

b

A

Figure 10: The Switch, Reversible Fan-in, and A/BA Crossover built out of 3-spinners, based on gadgets
from Tsukiji and Hagiwara [TH11]. Correctness is easily verified by testing each desired sequence of input
ports. The A/BA Crossover is the combination of a (differently laid out) Switch and a Reversible Fan-in.

constructions are simplified versions of gadgets by Tsukiji and Hagiwara. Our gadgets are shown
in Figure 10.

6 Billiard Balls

Our final application is the billiard ball model, which was introduced by Fredkin and Toffoli [FT82]
and is one of the best known reversible models of computation. In the billiard ball model, there are
circular balls colliding elastically with each other and with fixed mirrors. For simplicity, all balls
have the same size and mass, and will only move at a single nonzero speed. This model is based
on classical physics, and in fact exactly matches the classical kinetic theory of perfect gasses.

The decision problem we consider is whether a ball ever reaches a particular position, given
a configuration of mirrors and initial positions and velocities of balls. Fredkin and Toffoli [FT82]
proved that this model can perform arbitrary computation by showing how to build and string
together Fredkin gates; it follows that the decision problem is PSPACE-complete.

We present a new proof of PSPACE-hardness using our framework. The primary advantage
this proof has over Fredkin and Toffoli’s is that only a constant number—in particular, two—of
balls will be moving at any time, and the two moving balls will always be in close proximity. This
means there are fewer details to work out relating to issues like timing; Fredkin and Toffoli had to
ensure that signals from disparate parts of the construction arrive at a logic gate simultaneously.

The balls in our construction all have a radius of 1√
2
, and will move only horizontally or vertically.

The types of collisions that will occur are shown in Figure 11. One can think of a head-on collision

15



Figure 11: The billiard ball model. Filled circles depict initial positions of balls, and empty circles depict
intermediate or final positions. Diagonal lines are mirrors, and horizontal or vertical lines are paths taken by
balls. Left: a ball bounces off of mirrors. Middle: two moving balls collide. If only one ball arrives, it goes
straight through, but if both balls arrive simultaneously, they bounce off each other. Right: A moving blue
ball collides with a stationary red ball, transferring its momentum and leaving the blue ball not grid-aligned.

Figure 12: A signal consisting of two billiard balls is sent from the top left to the bottom right. The paths
of the two balls have the same length.

with a stationary ball as moving the stationary ball backwards by the ball diameter, and teleporting
the moving ball forwards by the same amount.

The signal will be represented by two balls moving along parallel paths 2
√

2 (i.e. twice the
diameter) apart. This signal is easy to route, as demonstrated by Figure 12. We will always have
the two balls aligned with each other when the signal enters a gadget. Full crossovers, and in
particular A/BA crossovers, are trivial: simply have two paths the signal might take cross each
other. For simplicity, our diagrams show the paths separated by 3 units, rather than the actual
distance 2

√
2 ≈ 2.8.

All that remains is constructing the Switch and Reversible Fan-In. Our Switch is shown in its
initial state Figure 13. The key idea is that stationary balls inside the gadget might (depending on
the state) be in the way of one of the balls in the signal entering at Test, effectively making that
ball arrive slightly earlier. This change in timing affects whether that ball collides with the other
ball in the signal, resulting in two possible places for the signal to end up.

The three relevant traversals are shown in Figure 14. Since the model has time-reversal sym-
metry, any gadget built in it also has time-reversal symmetry, so we only need to check that the
sequences listed in Table 1 are implemented correctly.

16



Test

Set

Out

T-O ut

F-O ut

Figure 13: The Switch for the billiard ball model. Each port is marked with a pair of green lines, along
which the two balls of the signal may enter or exit.

Finally, our Reversible Fan-in is shown in Figure 15. It works in a very similar way to Switch,
but in reverse, and essentially combining the Set traversal with one of the Test traversals. If the
signal enters at a, the balls collide and arrive at c. If the signal enters at b, the signal balls do not
collide, and arrive at c with a slightly different timing. To correct the timing, we have the signal
entering at b first remove two balls from the path near c.

7 Conclusion

This paper has analyzed the complexity of three simple models of reversible deterministic systems:
the framework itself, Deterministic Constraint Logic, and 0-player motion-planning gadgets. As
mentioned in the Introduction, our new results in the last model can be thought of as extending
Table 1 of [DHL20] to add a ‘zero-player’ column in the unbounded row (similar to DCL’s role in
Constraint Logic [HD09]). These results raise three natural open questions:

1. Can we fully characterize the complexity of zero-player motion planning with a reversible
deterministic k-tunnel gadget and rotate clockwise, e.g., by showing that the problem is in P
— or even L — if the gadget does not have interacting tunnels? This would nicely complement
the analogous characterization for one-player motion planning [DHL20].

17



Test

Set

Out

T-O ut

F-O ut

Test

Set

Out

T-O ut

F-O ut

Test

Set

Out

T-O ut

F-O ut

Figure 14: The ways a signal moves through the switch. Left: in the initial state, the signal bounces
straight from Test to F-Out. The two balls don’t collide where there paths cross. Middle: the blue ball
hits the green, which hits the purple, leaving two balls in the path of the Test port. The red ball’s path
is extended north so that two balls exit at Out simultaneously; the two red balls in its path save the same
amount of time as the two balls in the blue ball’s path. Right: with the purple and green balls in the way
of the signal entering Test, the green ball arrives soon enough to collide with the red ball, resulting in the
signal exiting at F-Out. The two additional red balls are again to help synchronize the exit signal.

c

b 

a 

c

b

a

c

b

a

Figure 15: The Reversible Fan-in for the billiard ball model. Left: the gadget in its initial state. Middle:
the signal enters at a. The signal balls ricochet off each other, and then exit at c. They each collide with
two stationary balls, so the balls exiting c get there at the same time. Right: The signal enters at b. The
blue ball knocks the green ball, which knocks the purple ball, clearing the vertical path to c. The red ball
and the purple ball then exit at c without colliding. The red zigzag to the north and two additional red balls
are to make the timing correct.

18



2. What about the bounded case: can we characterize the complexity of zero-player motion
planning with a k-tunnel DAG gadget and rotate clockwise?

3. What is the complexity of zero-player motion planning with other 2-state 3-port reversible
deterministic gadgets?

Our proof of PSPACE-hardness of the billiard ball model, for deciding whether a ball will ever
reach a target location, used at most two balls moving at any time. Does the problem remain
PSPACE-hard for systems in which only a single ball is moving at any time?

Another direction is analyzing the complexity of other reversible deterministic systems in com-
puter science, ideally using the framework or applications of this paper. One such system to study
is Asynchronous Ballistic Reversible Logic [Fra17], which is asynchronous by removing the ordering
assumptions from the model. Can the ideas from this paper be used to design universal circuits in
this model? We conjecture that asynchronicity is easy to deal with in our approach which has only
a single signal traveling through the system.

References

[ADHL22] Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains, games,
and complexity: 0/1/2-player motion planning through input/output gadgets. In Pro-
ceedings of the 16th International Conference and Workshops on Algorithms and Com-
putation (WALCOM 2022), 2022. arXiv:2005.03192.

[DGLR18] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings of the
9th International Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21,
2018.

[DH08] Erik D. Demaine and Robert A. Hearn. Constraint Logic: A uniform framework for
modeling computation as games. In Proceedings of the 23rd Annual IEEE Conference
on Computational Complexity, pages 149–162, June 2008.

[DHL20] Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a general com-
plexity theory of motion planning: Characterizing which gadgets make games hard. In
Proceedings of the 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), pages 62:1–62:42, 2020.

[DLMT16] Erik D. Demaine, Jayson Lynch, Geronimo J. Mirano, and Nirvan Tyagi. Energy-
efficient algorithms. In Proceedings of the 7th Annual ACM Conference on Innova-
tions in Theoretical Computer Science (ITCS 2016), pages 321–332, Cambridge, Mas-
sachusetts, January 14–16 2016.

[Fra17] Michael P. Frank. Asynchronous ballistic reversible computing. In Proceedings of the
2017 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8, 2017.

[Fra20] Michael P Frank. Fundamental physics of reversible computing–an introduction. Tech-
nical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020.

[FT82] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal of
theoretical physics, 21(3):219–253, 1982.

19



[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC Press,
2009.

[Hen21] Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the gadget
framework for motion planning. PhD thesis, Massachusetts Institute of Technology,
2021.

[ÖRNY19] Ş. K. Özdemir, S. Rotter, F Nori, and L. Yang. Parity–time symmetry and exceptional
points in photonics. Nature Materials, 18:783–798, 2019.

[TH11] Tatsuie Tsukiji and Takeo Hagiwara. Recognizing the repeatable configurations of time-
reversible generalized Langton’s ant is PSPACE-hard. Algorithms, 4(1):1–15, 2011.

20


	1 Introduction
	2 The Framework
	2.1 Required Gadgets
	2.2 PSPACE-Hardness
	2.2.1 CNF evaluation
	2.2.2 Quantifier gadgets
	2.2.3 Planarity


	3 Deterministic Constraint Logic
	3.1 Issue with Existing Proof
	3.2 PSPACE-Hardness

	4 Locking 2-Toggles
	5 3-Spinners
	6 Billiard Balls
	7 Conclusion

