Skip to main content

Bubble Based Micromanipulators in Microfluidics Systems: A Mini-review

  • Conference paper
  • First Online:
  • 2355 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13456))

Abstract

Bubbles in liquid have the advantages of controllability, compressibility and biocompatibility, so they are introduced into microfluidic system to drive the fluid and operate micro-objects including cells. In recent years, the acoustic and optothermal bubbles are the two most widely used and efficient bubbles in microfluidic devices. Therefore, the aim of this study is to review recent advances in acoustic bubble-based micromanipulators and optothermal bubble-based micromanipulators in microfluidic systems. The principles and applications of fluid control and micro-object operation of these two kinds of bubble-based manipulators are introduced and the prospects and challenges are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hashmi, A.: Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12(21), 4216–4227 (2012)

    Article  Google Scholar 

  2. Patel, M.V.: Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab Chip 12(1), 139–145 (2012)

    Article  Google Scholar 

  3. Ahmed, D.: A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9(18), 2738–2741 (2009)

    Article  Google Scholar 

  4. Chen, Y.: Onset of particle trapping and release via acoustic bubbles. Lab Chip 16(16), 3024–3032 (2016)

    Article  Google Scholar 

  5. Ozcelik, A.: An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Anal. Chem. 86(10), 5083–5088 (2014)

    Article  Google Scholar 

  6. Bertin, N.: Bubble-based acoustic micropropulsors: active surfaces and mixers. Lab Chip 17(8), 1515–1528 (2017)

    Article  Google Scholar 

  7. Orbay, S.: Mixing high-viscosity fluids via acoustically driven bubbles. J. Micromech. Microeng. 27(1), 015008 (2017)

    Article  Google Scholar 

  8. Conde, A.J.: Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples. Lab Chip 20(4), 741–748 (2020)

    Article  Google Scholar 

  9. Tovar, A.R.: Lateral cavity acoustic transducer. Lab Chip 9(1), 41–43 (2009)

    Article  Google Scholar 

  10. Patel, M.V.: Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab Chip 14(19), 3860–3872 (2014)

    Article  Google Scholar 

  11. Gao, Y., Wu, M., Lin, Y., Zhao, W., Xu, J.: Acoustic bubble-based bidirectional micropump. Microfluid. Nanofluid. 24(4), 1 (2020). https://doi.org/10.1007/s10404-020-02334-6

    Article  Google Scholar 

  12. Ahmed, D.: Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13(3), 328–331 (2013)

    Article  Google Scholar 

  13. Ahmed, D.: Acoustofluidic chemical waveform generator and switch. Anal. Chem. 86(23), 11803–11810 (2014)

    Article  Google Scholar 

  14. Liu, B.: A concentration gradients tunable generator with adjustable position of the acoustically oscillating bubbles. Micromachines 11(9), 827 (2020)

    Article  Google Scholar 

  15. Meng, L.: Sonoporation of cells by a parallel stable cavitation microbubble array. Adv. Sci. (Weinh.) 6(17), 1900557 (2019)

    Google Scholar 

  16. Liu, X.: Cell lysis based on an oscillating microbubble array. Micromach. (Basel) 11(3), 288 (2020)

    Article  Google Scholar 

  17. Liu, X.: Rapid cell pairing and fusion based on oscillating bubbles within an acoustofluidic device. Lab Chip 22(5), 921–927 (2022)

    Article  Google Scholar 

  18. Liu, X.: Non-cavitation targeted microbubble-mediated single-cell sonoporation. Micromach. (Basel) 13(1), 113 (2022)

    Article  Google Scholar 

  19. Ozcelik, A.: acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures. Small 12(37), 5120–5125 (2016)

    Article  Google Scholar 

  20. Ahmed, D.: Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016)

    Article  Google Scholar 

  21. Läubli, N.F.: 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 3(3), 1800527 (2019)

    Article  Google Scholar 

  22. Tang, Q., Liang, F., Huang, L., Zhao, P., Wang, W.: On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed. Microdevice 22(1), 1–11 (2020). https://doi.org/10.1007/s10544-020-0470-1

    Article  Google Scholar 

  23. Peng, T.: Trapping stable bubbles in hydrophobic microchannel for continuous ultrasonic microparticle manipulation. Sens. Actuators A Phys. 331, 113045 (2021)

    Article  Google Scholar 

  24. Gao, Y.: Study of ultrasound thrombolysis using acoustic bubbles in a microfluidic device. Lab Chip 21(19), 3707–3714 (2021)

    Article  Google Scholar 

  25. Gao, Y.: Acoustic bubble for spheroid trapping, rotation, and culture: a tumor-on-a-chip platform (ABSTRACT platform). Lab Chip 22(4), 805–813 (2022)

    Article  Google Scholar 

  26. Zhang, W.: Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution. Lab Chip 21(24), 4760–4771 (2021)

    Article  Google Scholar 

  27. Rogers, P.: Selective particle trapping using an oscillating microbubble. Lab Chip 11(21), 3710–3715 (2011)

    Article  Google Scholar 

  28. Meng, L.: Microbubble enhanced acoustic tweezers for size-independent cell sorting. Appl. Phys. Lett. 116(7), 073701 (2020)

    Article  Google Scholar 

  29. Xie, Y.L.: Acoustofluidic relay sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles. JALA 19(2), 137–143 (2014)

    Google Scholar 

  30. Ohta, A.T.: Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate. Appl. Phys. Lett. 91, nihpa130823 (2007)

    Google Scholar 

  31. Zhao, C.: Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab Chip 14(2), 384–391 (2014)

    Article  Google Scholar 

  32. Higuera, F.J.: Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys. Fluids 12(9), 2186–2197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dijkink, R.: Laser-induced cavitation based micropump. Lab Chip 8(10), 1676–1681 (2008)

    Article  Google Scholar 

  34. Zhang, K.: Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11(7), 1389–1395 (2011)

    Article  Google Scholar 

  35. Jian, A.Q.: Microfluidic flow direction control using continuous-wave laser. Sens. Actuators A Phys. 188, 329–334 (2012)

    Article  Google Scholar 

  36. Kim, H.-T.: Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater. Biomicrofluidics 8(5), 054126 (2014)

    Article  Google Scholar 

  37. Rau, K.R.: Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91(1), 317–329 (2006)

    Article  Google Scholar 

  38. Li, Z.G.: Single cell membrane poration by bubble-induced microjets in a microfluidic chip. Lab Chip 13(6), 1144–1150 (2013)

    Article  Google Scholar 

  39. Hu, W.: An opto-thermocapillary cell micromanipulator. Lab Chip 13(12), 2285–2291 (2013)

    Article  Google Scholar 

  40. Fan, Q.: Laser-induced microbubble poration of localized single cells. Lab Chip 14(9), 1572–1578 (2014)

    Article  Google Scholar 

  41. Fan, Q.: Efficient single-cell poration by microsecond laser pulses. Lab Chip 15(2), 581–588 (2015)

    Article  Google Scholar 

  42. Fan, Q.: Localized single-cell lysis and manipulation using optothermally-induced bubbles. Micromach. (Basel) 8(4), 121 (2017)

    Article  Google Scholar 

  43. Wu, T.H.: Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip 12(7), 1378–1383 (2012)

    Article  Google Scholar 

  44. Rahman, M.A.: Cooperative micromanipulation using the independent actuation of fifty microrobots in parallel. Sci. Rep. 7(1), 3278 (2017)

    Article  Google Scholar 

  45. Zheng, Z.: 3D construction of shape-controllable tissues through self-bonding of multicellular microcapsules. ACS Appl. Mater. Interfaces 11(26), 22950–22961 (2019)

    Article  Google Scholar 

  46. Wang, H.: Assembly of RGD-modified hydrogel micromodules into permeable three-dimensional hollow microtissues mimicking in vivo tissue structures. ACS Appl Mater Interfaces 9(48), 41669–41679 (2017)

    Article  Google Scholar 

  47. Dai, L.: 2D to 3D manipulation and assembly of microstructures using optothermally generated surface bubble microrobots. Small 15(45), e1902815 (2019)

    Article  Google Scholar 

  48. Ge, Z.: Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication 14(2), 025023 (2022)

    Article  Google Scholar 

  49. Dai, L.: Integrated assembly and flexible movement of microparts using multifunctional bubble microrobots. ACS Appl. Mater. Interfaces 12(51), 57587–57597 (2020)

    Article  Google Scholar 

  50. Zhou, Y.: Soft-contact acoustic microgripper based on a controllable gas-liquid interface for biomicromanipulations. Small 17(49), e2104579 (2021)

    Article  Google Scholar 

  51. Giltinan, J.: Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab Chip 16(22), 4445–4457 (2016)

    Article  Google Scholar 

  52. Xie, Y.: Probing cell deformability via acoustically actuated bubbles. Small 12(7), 902–910 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant Nos. 91748212, U1613220, 91848201), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niandong Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Dai, L., Jiao, N., Liu, L. (2022). Bubble Based Micromanipulators in Microfluidics Systems: A Mini-review. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics