Skip to main content

Glioblastoma Subtyping by Immuogenomics

  • Conference paper
  • First Online:
  • 1465 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Abstract

Objective: To analyze and establish immunophenotyping of glioblastoma (GBM) by genomics study and further explore its clinical application value. Methods: RNA-seq and clinical data from TCGA (from onset to May 4, 2021) were retrieved. All patients were grouped into three subsets by ssGSEA, and ESTIMATE algorithm was used to estimate stromal and immune cells and CIBERSORT was used to evaluate tumor microenvironment composition and immune cells subtypes. Results: RNA-seq and related clinical data of 174 GBM patients were retrieved. Patients were divided into high, medium and low-immunity groups by ssGSEA. The expression of PD-L1, CTAL4, TIGIT, and VEGF in the high and medium immunity group was higher than in the low-immunity group, while EGFR and HER2 in the medium-immunity group were lower than high/low-immunity group. GO enrichment found terms around vascular endothelial cell proliferation, immunoglobulin, G protein-coupled opioid receptor, glucocorticoid metabolic and etc. KEGG enrichment found items around diabetes, arthritis and viral protein interaction with cytokine and cytokine receptor etc. Conclusion: It is demonstrated that GBM patients in the high/medium immune group showed higher immunogenicity and anti-tumor immune activity, which provides a reference for GBM immunotherapy research.

Y. Li and C. Gopalakrishnan—Contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Preusser, M., Lim, M., Hafler, D.A., Reardon, D.A., Sampson, J.H.: Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 11, 504–514 (2015)

    Article  Google Scholar 

  2. Lim, M., Xia, Y., Bettegowda, C., Weller, M.: Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442 (2018)

    Article  Google Scholar 

  3. Sharma, P., Allison, J.P.: The future of immune checkpoint therapy. Science 348, 56–61 (2015)

    Article  Google Scholar 

  4. Kelly, P.N.: The cancer immunotherapy revolution. Science 359(6382), 1344–1345 (2018)

    Google Scholar 

  5. Ribas, A., Wolchok, J.D.: Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018)

    Article  Google Scholar 

  6. Doroshow, D.B., et al.: Immunotherapy in non–small cell lung cancer: facts and hopes. Clin. Cancer Res. 25, 4592–4602 (2019)

    Article  Google Scholar 

  7. Tumeh, P.C., et al.: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014)

    Article  Google Scholar 

  8. Louveau, A., et al.: Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015)

    Article  Google Scholar 

  9. Sharma, P., Allison, J.P.: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015)

    Article  Google Scholar 

  10. Alterman, R.L., Stanley, E.R.: Colony stimulating factor-1 expression in human glioma. Mol. Chem. Neuropathol. 21(2–3), 177–188 (1994). https://doi.org/10.1007/BF02815350

    Article  Google Scholar 

  11. Miller, J., et al.: Soluble CD70: a novel immunotherapeutic agent for experimental glioblastoma. J. Neurosurg. 113, 280–285 (2010)

    Article  Google Scholar 

  12. Mao, D., Zhou, Z., Song, S., Li, D., Zhang, C.: Identification of stemness characteristics associated with the immune microenvironment and prognosis in gastric cancer. Front. Oncol. 11, 626961 (2021)

    Article  Google Scholar 

  13. Hnzelmann, S., Castelo, R., Guinney, J.: GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 14, 7 (2013)

    Article  Google Scholar 

  14. Liu, T., et al.: Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro-Oncol. 24(7), 1113–1125 (2022)

    Google Scholar 

  15. Damato, A.R., et al.: A randomized feasibility study evaluating temozolomide circadian medicine in patients with glioma. Neuro-Oncol. Pract. 9(3), 193–200 (2022)

    Google Scholar 

  16. Schwechheimer, K., Läufle, R.M., Schmahl, W., Knödlseder, M., Fischer, H., Höfler, H.: Expression of neu/c-erbB-2 in human brain tumors. Hum. Pathol. 25, 772–780 (1994)

    Article  Google Scholar 

  17. Hwang, S.-L., Hong, Y.-R., Chai, C.-Y., Lin, H.-J., Howng, S.-L.: Prognostic evaluation in supratentorial astrocytic tumors using p53, epidermal growth factor receptor, c-erbB-2 immunostaining. Kaohsiung J. Med. Sci. 14, 607–615 (1998)

    Google Scholar 

  18. Arjona, D., et al.: Molecular analysis of the erbB gene family calmodulin-binding and calmodulin-like domains in astrocytic gliomas. Int. J. Oncol. 25, 1489–1494 (2004)

    Google Scholar 

  19. Haapasalo, H., Hyytinen, E., Sallinen, P., Helin, H., Kallioniemi, O., Isola, J.: C-erbB-2 in astrocytomas: infrequent overexpression by immunohistochemistry and absence of gene amplification by fluorescence in situ hybridization. Br. J. Cancer 73, 620–623 (1996)

    Article  Google Scholar 

  20. Gressot, L.V., et al.: Signal transducer and activator of transcription 5b drives malignant progression in a PDGFB-dependent proneural glioma model by suppressing apoptosis. Int. J. Cancer 136, 2047–2054 (2015)

    Article  Google Scholar 

  21. Nduom, E.K., et al.: PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 18, 195–205 (2015)

    Article  Google Scholar 

  22. Liu, F., Huang, J., Liu, X., Cheng, Q., Luo, C., Liu, Z.: CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 20, 1–10 (2020)

    Google Scholar 

  23. Reardon, D.A., et al.: Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016)

    Article  Google Scholar 

  24. Fecci, P.E., et al.: Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ t cell compartment without affecting regulatory t-cell function. Clin. Cancer Res. 13, 2158–2167 (2007)

    Article  Google Scholar 

  25. Xu, J, Liu, F., Li, Y., Shen, L.: A 1p/19q codeletion-associated immune signature for predicting lower grade glioma prognosis. Cell. Mol. Neurobiol. 42(3), 709–722 (2022)

    Google Scholar 

  26. Andre, F., et al.: HER2 expression and efficacy of preoperative paclitaxel/FAC chemotherapy in breast cancer. Breast Cancer Res. Treat. 108, 183–190 (2008)

    Article  Google Scholar 

  27. Wichmann, H., et al.: Targeting of EGFR and HER2 with therapeutic antibodies and siRNA. Strahlenther. Onkol. 191(2), 180–191 (2014). https://doi.org/10.1007/s00066-014-0743-9

    Article  Google Scholar 

  28. Liu, Y., et al.: Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J. Nanobiotechnol. 20, 48–(2022)

    Google Scholar 

  29. Xu, G., Luo, Y., Wang, H., Wang, Y., Liu, B., Wei, J.: Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett. 538, 215699 (2022)

    Google Scholar 

  30. Cui, M., Huang, J, Zhang, S., Liu, Q., Qiu, X.: Immunoglobulin expression in cancer cells and its critical roles in tumorigenesis. Front. Immunol. 12, 613530 (2021)

    Google Scholar 

  31. Wasserman, A.J., Gardner, C.R., Laskin, D.L.: Phagocytosis of tumor cells by activated liver macrophages (1987)

    Google Scholar 

  32. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., Van der Most, R., Ahmed, R.: Viral persistence alters CD8 t-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003)

    Google Scholar 

  33. Woroniecka, K., Chongsathidkiet, P., Rhodin, K.E., Kemeny, H.R., Fecci, P.E.: T cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 1846 (2018)

    Google Scholar 

  34. Wainwright, D.A., Balyasnikova, I.V., Chang, A.L., Ahmed, A.U., Lesniak, M.S.: IDO expression in brain tumors increases the recruitment of regulatory t cells and negatively impacts survival. Clin. Cancer Res. 18 (2012)

    Google Scholar 

  35. Wainwright, D.A., et al.: Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20, 5290–5301 (2014)

    Article  Google Scholar 

  36. Schneider, J.R., Kevin, K., Boockvar, J.A.: Use of HER2-specific chimeric antigen receptor-modified virus-specific t cells as a potential therapeutic for progressive HER2-positive glioblastoma. Neurosurgery N42

    Google Scholar 

  37. Hung, A.L., et al.: TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology e1466769 (2018)

    Google Scholar 

  38. Wang, F., et al.: TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur. J. Immunol. 45, 2886–2897 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by Provincial Science and Technology Grant of Shanxi Province (20210302124588), Science and technology innovation project of Shanxi province universities (2019L0683).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caixia Xu or Pengyong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Gopalakrishnan, C., Wang, J., Ramalingam, R., Xu, C., Han, P. (2022). Glioblastoma Subtyping by Immuogenomics. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics