Skip to main content

ACNN: Drug-Drug Interaction Prediction Through CNN and Attention Mechanism

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1526 Accesses

Abstract

Drug-drug interactions (DDIs) occur when two or more drugs are taken simultaneously or successively. Early discovery of drug-drug interactions can effectively prevent medical accidents and reduce medical costs. Although several computational models have been proposed for DDI prediction, there are still limitations. These methods rely on a large amount of drug biological information and only model the interactions between drug molecules, ignoring the complex interactions between atoms. In this paper, we propose an end-to-end model based on convolutional neural network (CNN) and attention mechanism, named ACNN, to predict DDI using only drug sequence information. We use a deep CNN to learn the feature matrix for drugs. To simulate the complex interactions between atoms, we exploit the attention mechanism on the feature matrix and assign each atom an attention vector. ACNN achieves substantial performance improvement over several state-of-the-art methods for drug-drug interaction prediction. In the case study of psychiatric drugs, 7 of the 10 DDIs predicted by ACNN with the highest confidence are validated in the latest version DrugBank, further demonstrating the effectiveness of ACNN in extracting and learning drug features to predict DDI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foucquier, J., Guedj, M.: Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspe 3 (2015)

    Google Scholar 

  2. Edwards, I.R., Aronson, J.K.: Adverse drug reactions: definitions, diagnosis, and management. The lancet 356, 1255–1259 (2000)

    Article  Google Scholar 

  3. Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. Indian J. Med. Res. 77, 895–901 (1998)

    Google Scholar 

  4. Percha, B., Garten, Y., Altman, R.B.: Discovery and explanation of drug-drug interactions via text mining. Biocomput-Pac Sym 410–421 (2012)

    Google Scholar 

  5. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. P Natl Acad Sci USA 115, E4304–E4311 (2018)

    Article  Google Scholar 

  6. Huang, K., Xiao, C., Hoang, T., Glass, L., Sun, J.: CASTER: predicting drug interactions with chemical substructure representation. Proceedings of the AAAI Conference on Artificial Intelligence 34, 702–709 (2020)

    Article  Google Scholar 

  7. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34, 457–466 (2018)

    Article  Google Scholar 

  8. Vilar, S., Harpaz, R., Uriarte, E., Santana, L., Rabadan, R., Friedman, C.: Drug-drug interaction through molecular structure similarity analysis. J Am Med Inform Assn 19, 1066–1074 (2012)

    Article  Google Scholar 

  9. Gottlieb, A., Stein, G.Y., Oron, Y., Ruppin, E., Sharan, R.: INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol 8 (2012)

    Google Scholar 

  10. Cheng, F.X., Zhao, Z.M.: Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assn 21, E278–E286 (2014)

    Article  Google Scholar 

  11. Deng, Y.F., Xu, X.R., Qiu, Y., Xia, J.B., Zhang, W., Liu, S.C.: A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics 36, 4316–4322 (2020)

    Article  Google Scholar 

  12. Xin, C., Xien, L., Ji, W.: Research progress on drug representation learning. Journal of Tsinghua University (Science and Technology) 60, 171–180 (2020)

    Google Scholar 

  13. Law, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42, D1091-D1097 (2014)

    Google Scholar 

  14. Weininger, D.: SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chemi. Info. Comp. Sci. 28, 31–36 (1988)

    Google Scholar 

  15. Cao, D.S., et al.: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Anal. Chim. Acta 752, 1–10 (2012)

    Article  Google Scholar 

  16. Glen, R.C., Bender, A., Arnby, C.H., Carlsson, L., Boyer, S., Smith, J.: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9, 199–204 (2006)

    Google Scholar 

  17. Zhao, Z., Yang, Z., Luo, L., Lin, H., Wang, J.: Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics btw486

    Google Scholar 

  18. Huang, K., Xiao, C., Glass, L., Sun, J.: MolTrans: Molecular Interaction Transformer for Drug Target Interaction Prediction (2020)

    Google Scholar 

  19. Abbasi, K., Razzaghi, P., Poso, A., Amanlou, M., Ghasemi, J.B., Masoudi-Nejad, A.: DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 36, 4633–4642 (2020)

    Article  Google Scholar 

  20. Zhao, Q., Zhao, H., Zheng, K., Wang, J.: HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics 38, 655–662 (2021)

    Article  Google Scholar 

  21. Wan, E.A.: Neural network classification: A Bayesian interpretation. IEEE Trans. Neural Networks 1, 303–305 (1990)

    Article  Google Scholar 

  22. Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., Liu, S.: A multimodal deep learning framework for predicting drug–drug interaction events. Bioinformatics 36, 4316–4322 (2020)

    Article  Google Scholar 

  23. Zeng, M., Zhang, F., Wu, F.-X., Li, Y., Wang, J., Li, M.: Protein–protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36, 1114–1120 (2019)

    Google Scholar 

  24. Xie, J., Ouyang, J., Zhao, C., He, H., Dong, X.: A deep learning approach based on feature reconstruction and multi-dimensional attention mechanism for drug-drug interaction prediction. In: International Symposium on Bioinformatics Research and Applications, pp. 400–410. Springer (2021)

    Google Scholar 

  25. Zhang, C., Lu, Y., Zang, T.: CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks. BMC Bioinformatics 23, 1–12 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Liu, H. (2022). ACNN: Drug-Drug Interaction Prediction Through CNN and Attention Mechanism. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics