Skip to main content

3D Printed Soft Robotic Hand Combining Post-Stroke Rehabilitation and Stiffness Evaluation

  • Conference paper
  • First Online:
  • 2756 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Abstract

Soft rehabilitation devices have been invented and applied for hand function recovery. In this paper, we propose a new Ring-reinforced 3D printed soft robotic hand, which combines hand rehabilitation and joint stiffness evaluation. The elastomer body of Ring-reinforced Soft-Elastic Composite Actuator (R-SECA) is 3D printed directly for fitting different sizes of fingers and the Iterative learning model predictive control (ILMPC) algorithm is used for controlling. Torque compensating layer inside R-SECA enables finger flexion and extension despite finger spasticity. Plastic rings are used to refrain radial expansion and reinforce the actuator. Bending angle and output tip force at different air pressure inputs are explored with four different R-SECA (120 mm, 112 mm, 96 mm, 72 mm length). Four-stroke survivors are recruited to evaluate the effectiveness of the soft robotic hand, and hand function improvement can be observed from the clinical evaluation data and stiffness evaluation outcomes.

Supported by the Guangdong Science and Technology Research Council (Grant No. 2020B1515120064) and the Hong Kong Innovation and Technology Fund (ITS/065/18FP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benjamin, E.J., et al.: Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation 135(10), e146–e603 (2017)

    Article  Google Scholar 

  2. Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C.: Robot-based hand motor therapy after stroke. Brain 131(2), 425–437 (2008)

    Article  Google Scholar 

  3. Gerloff, C., Corwell, B., Chen, R., Hallett, M., Cohen, L.G.: The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain J. Neurol. 121(9), 1695–1709 (1998)

    Article  Google Scholar 

  4. Bütefisch, C., Hummelsheim, H., Denzler, P., Mauritz, K.-H.: Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 130(1), 59–68 (1995)

    Article  Google Scholar 

  5. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Autonom. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  6. Ho, N.S.K., et al.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference On Rehabilitation Robotics, pp. 1–5. IEEE (2011)

    Google Scholar 

  7. Dovat, L., et al.: Handcare: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 582–591 (2008)

    Article  Google Scholar 

  8. Feng, N., Shi, Q., Wang, H., Gong, J., Liu, C., Zhiguo, L.: A soft robotic hand: design, analysis, sEMG control, and experiment. Int. J. Adv. Manuf. Technol. 97(1), 319–333 (2018)

    Article  Google Scholar 

  9. Zhou, J., et al.: A soft-robotic approach to anthropomorphic robotic hand dexterity. IEEE Access 7, 101483–101495 (2019)

    Article  Google Scholar 

  10. Yap, H.K., Lim, J.H., Nasrallah, F., Goh, J.C.H., Yeow, C.-H.: Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J. Med. Eng. Technol. 40(4), 199–209 (2016)

    Article  Google Scholar 

  11. Heung, K.H.L., Tong, R.K.Y., Lau, A.T.H., Li, Z.: Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 6(2), 289–304 (2019)

    Article  Google Scholar 

  12. Shi, X.Q., Heung, H.L., Tang, Z.Q., Tong, K.Y., Li, Z.: Verification of finger joint stiffness estimation method with soft robotic actuator. Front. Bioeng. Biotechnol. 8, 1479 (2020)

    Google Scholar 

  13. Heung, H.L., Tang, Z.Q., Shi, X.Q., Tong, K.Y., Li, Z.: Soft rehabilitation actuator with integrated post-stroke finger spasticity evaluation. Front. Bioeng. Biotechnol. 8, 111 (2020)

    Article  Google Scholar 

  14. Peters, M., Mackenzie, K., Bryden, P.: Finger length and distal finger extent patterns in humans. Am. J. Phys. Anthropol. Official Publ. Am. Assoc. Phys. Anthropol. 117(3), 209–217 (2002)

    Google Scholar 

  15. Polygerinos, P., et al.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)

    Article  Google Scholar 

  16. Yap, H.K., Sebastian, F., Wiedeman, C., Yeow, C.-H.: Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1465–1470. IEEE (2017)

    Google Scholar 

  17. Heung, K.H.L., Tang, Z.Q., Ho, L., Tung, M., Li, Z., Tong, R.K.Y.: Design of a 3d printed soft robotic hand for stroke rehabilitation and daily activities assistance. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 65–70. IEEE (2019)

    Google Scholar 

  18. Esteki, A., Mansour, J.M.: An experimentally based nonlinear viscoelastic model of joint passive moment. J. Biomech. 29(4), 443–450 (1996)

    Article  Google Scholar 

  19. Kuo, P.-H., Deshpande, A.D.: Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint. J. Biomech. 45(15), 2531–2538 (2012)

    Article  Google Scholar 

  20. Tang, Z.Q., Heung, H.L., Shi, X.Q., Tong, R.K., Li, Z.: Probabilistic model-based learning control of a soft pneumatic glove for hand rehabilitation. IEEE Trans. Biomed. Eng. 69, 1016–1028 (2021)

    Article  Google Scholar 

  21. Tang, Z.Q., Heung, H.L., Tong, K.Y., Li, Z.: A novel iterative learning model predictive control method for soft bending actuators. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4004–4010. IEEE (2019)

    Google Scholar 

  22. Bullock, I.M., Zheng, J.Z., De La Rosa, S., Guertler, C., Dollar, A.M.: Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics. 6(3), 296–308 (2013)

    Article  Google Scholar 

  23. Camilla Biering Lundquist and Thomas Maribo: The Fugl-Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version. Disabil. Rehabil. 39(9), 934–939 (2017)

    Article  Google Scholar 

  24. Hoonhorst, M.H., et al.: How do Fugl-Meyer arm motor scores relate to dexterity according to the action research arm test at 6 months poststroke? Arch. Phys. Med. Rehabil. 96(10), 1845–1849 (2015)

    Article  Google Scholar 

  25. Hsiao, C.-P., Zhao, C., Do, E.Y.-L.: The digital box and block test automating traditional post-stroke rehabilitation assessment. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM workshops), pp. 360–363. IEEE (2013)

    Google Scholar 

  26. Carr, J.H., Shepherd, R.B., Nordholm, L., Lynne, D.: Investigation of a new motor assessment scale for stroke patients. Phys. Ther. 65(2), 175–180 (1985)

    Article  Google Scholar 

  27. Shi, X.Q., Heung, H.L., Tang, Z.Q., Li, Z., Tong, K.Y.: Effects of a soft robotic hand for hand rehabilitation in chronic stroke survivors. J. Stroke Cerebrovasc. Dis. 30(7), 105812 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yu Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, C.Q., Shi, X.Q., Li, Z., Tong, K.Y. (2022). 3D Printed Soft Robotic Hand Combining Post-Stroke Rehabilitation and Stiffness Evaluation. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics