Skip to main content

Hand Rehabilitation Modes Combining Exoskeleton-Assisted Training with Tactile Feedback for Hemiplegia Patients: A Preliminary Study

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2664 Accesses

Abstract

Within the field of rehabilitation for people with hemiplegia, this paper presents a novel training system for hand function rehabilitation. This training system mainly includes a hand rehabilitation exoskeleton, tactile feedback devices and a virtual reality scene. Tactile feedback devices are designed as electric stimulation slip feedback actuator and pneumatic contact force feedback actuator respectively. The virtual reality scene is a human-computer interaction interface built by Unity 3D. Three rehabilitation training modes including a contact force enhanced rehabilitation mode, a mirror therapy mode and an active rehabilitation mode are proposed to provide different feedback stimulation for patients at different rehabilitation stages to obtain better rehabilitation training effect. Verification experiments were conducted to preliminarily show the feasibility of those modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia, J.: Hand Function rehabilitation. Publishing House of Electronics Industry, Bei Jing (2019)

    Google Scholar 

  2. Li, M., Guanghua, X., Xie, J., et al.: Motor rehabilitation with control based on human intent for stroke survivors. ROBOT 39(5), 759–768 (2017)

    Google Scholar 

  3. Gandhi, D.B., Sterba, A., Khatter, H., et al.: Mirror therapy in stroke rehabilitation: current perspectives. Ther. Clin. Risk Manag. 16, 75–85 (2020)

    Article  Google Scholar 

  4. Hesse, S., Schmidt, H., Werner, C.: Machines to support motor rehabilitation after stroke: 10 Years of experience in Berlin. J. Rehab. Res. Develop. 43(5), 671–678 (2006)

    Google Scholar 

  5. Hesse, S., Schulte-Tigges, G., Konrad, M., et al.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehab. 84(6), 915–920 (2003)

    Google Scholar 

  6. Yah-Ting, W., Chen, K.-H., Ban, S.-L., et al.: Evaluation of leap motion control for hand rehabilitation in burn patients: an experience in the dust explosion disaster in Formosa Fun Coast. Burns 45(1), 157–164 (2019)

    Article  Google Scholar 

  7. Shin, J.-H., Kim, M.Y., Lee, J.Y., et al.: Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J. NeuroEng. Rehab. 13(1), 1:10 (2016)

    Google Scholar 

  8. Cartagena, P.D., Naranjo, J.E., Saltos, L.F., et al.: Multifunctional exoskeletal orthosis for hand rehabilitation based on virtual reality. Inf. Commun. Technol. Ecuador 884, 209–221 (2019)

    Google Scholar 

  9. Tsoupikova, D., et al.: Virtual immersion for post-stroke hand rehabilitation therapy. Ann. Biomed. Eng. 43(2), 467–477 (2014). https://doi.org/10.1007/s10439-014-1218-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (51975451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, B., Li, M., He, G. (2022). Hand Rehabilitation Modes Combining Exoskeleton-Assisted Training with Tactile Feedback for Hemiplegia Patients: A Preliminary Study. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics