Skip to main content

Behavior Tree Based Dynamic Task Planning Method for Robotic Live-Line Maintenance

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2637 Accesses

Abstract

The biggest challenge for robotic automation in the field is unexpected events caused by uncertainties in an unstructured environment. In classical task planning, the planning and execution of tasks are separated, which makes it difficult to deal with unexpected events in the execution process. However, robots must be able to handle unexpected events to ensure the smooth execution of tasks in complex dynamic environments. This paper introduces a method for dynamic task planning using behavior trees, which is used for robots to perform live-line maintenance operations on overhead lines in distribution networks. This method realizes the dynamic planning of tasks and the handling of unexpected events by structuring the task behavior tree. Experiments and field operations show that the method can realize complex field operations and have unexpected handling capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colledanchise, M., Ögren, P.: How BTs modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees. IEEE Trans. Rob. 33(2), 372–389 (2017)

    Article  Google Scholar 

  2. Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE Intell. Syst. 17(4), 39–47 (2002)

    Article  Google Scholar 

  3. Nicolau, M., Perez-Liebana, D., O’Neill, M., Brabazon, A.: Evolutionary BT approaches for navigating platform games. IEEE Trans. Comput. Intell. AI Games 9(3), 227–238 (2016)

    Article  Google Scholar 

  4. Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing behavior trees. In: Allbeck, J.M., Faloutsos, P. (eds.) Motion in Games. MIG 2011. LNCS, vol. 7060, pp. 144–155. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25090-3_13

  5. Bojic, I., Lipic, T., Kusek, M., Jezic, G.: Extending the jade agent behaviour model with jbehaviourtrees framework. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 159–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22000-5_18

    Chapter  Google Scholar 

  6. Ögren, P.: Increasing modularity of UAV control systems using computer game BTs. In: AIAA Guidance, Navigation, and Control Conference, p. 4458. Minneapolis (2012)

    Google Scholar 

  7. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unied BTs framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–-5427. IEEE (2014)

    Google Scholar 

  8. Bagnell, J., Cavalcanti, F., Cui, L., et al.: An integrated system for autonomous robotics manipulation, In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2955–-2962. IEEE (2012)

    Google Scholar 

  9. Gubisch, G., Steinbauer, G., Weiglhofer, M., Wotawa, F.: A Teleo-reactive architecture for fast, reactive and robust control of mobile robots. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 541–550. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69052-8_57

    Chapter  Google Scholar 

  10. Stuede, M., et al.: Behavior-tree-based person search for symbiotic autonomous mobile robot tasks. In: 2021 IEEE International Conference on Robotics and Automation, pp. 2414–-2420. IEEE (2021)

    Google Scholar 

  11. Wang, T., Shi, D., Yi, W.: Extending behavior trees with market-based task allocation in dynamic environments. In: 2020 4th International Symposium on Computer Science and Intelligent Control. pp. 1–-8 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Weijun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiabo, F., Lirong, S., Lei, L., Weijun, Z. (2022). Behavior Tree Based Dynamic Task Planning Method for Robotic Live-Line Maintenance. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics