Skip to main content

Gait Time Parameter Analysis-Based Rehabilitation Evaluation System of Lower Limb Motion Function

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Aiming at the problems of low accuracy and high time cost of existing motion function rehabilitation evaluation methods, this paper proposes a rehabilitation evaluation method and system of lower limb motion function based on gait parameter analysis. Firstly, according to the calculation method of gait information related parameters, compare the differences of age and gender in healthy people and the differences of gait information between healthy and disabled group, and preliminarily determine the characteristic parameters of lower limb motion function evaluation. Then, the evaluation indexes are determined through multicollinearity and significance analysis, and the multiple linear regression model of Fugl-Meyer assessment (FMA) score is established. The goodness-of-fit test method is used to prove that the proposed evaluation method can replace the lower limb score of FMA as the evaluation method of lower limb motor function in stroke patients. Finally, the lower limb motor function evaluation system is built in the upper computer, so that the model can be used concretely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makihara, T., et al.: Shoulder motion assistance using a single-joint Hybrid Assistive limb® robot: evaluation of its safety and validity in healthy adults. J. Orthop. Surg. 25(3), 1–6 (2017)

    Article  Google Scholar 

  2. Pérez-nombela, S., et al.: Physiological Evaluation of Different Control Modes of Lower Limb Robotic Exoskeleton H2 in Patients with Incomplete Spinal Cord Injury, vol. 15, pp. 343–348 (2017)

    Google Scholar 

  3. Rodgers, H., et al.: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet 394(10192), 51–62 (2019)

    Article  Google Scholar 

  4. Nam, H.S., Hong, N., Cho, M., Lee, C., Seo, H.G., Kim, S.: Vision-assisted interactive human-in-the-loop distal upper limb rehabilitation robot and its clinical usability test. Appl. Sci. 9(15), 1–12 (2019)

    Article  Google Scholar 

  5. Wu, C.H., Mao, H.F., Hu, J.S., Wang, T.Y., Tsai, Y.J., Hsu, W.L.: The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J. Neuroeng. Rehabil. 15(1), 1–10 (2018)

    Article  Google Scholar 

  6. Blackwood, J.: Reliability, validity and minimal detectable change in the Timed Up and Go and five times sit to stand tests in older adults with early cognitive loss. J. Physiother. Rehabil 5, 58–65 (2017)

    Google Scholar 

  7. Olafsdottir, S.A., et al.: Developing ActivABLES for community-dwelling stroke survivors using the Medical Research Council framework for complex interventions. BMC Health Serv. Res. 20(1), 1–14 (2020)

    Article  Google Scholar 

  8. Huang, C.Y., et al.: Improving the utility of the Brunnstrom recovery stages in patients with stroke: validation and quantification. Med. (United States) 95(31), 1–8 (2016)

    Google Scholar 

  9. Lim, J.Y., An, S.H., Park, D.S.: Walking velocity and modified rivermead mobility index as discriminatory measures for functional ambulation classification of chronic stroke patients. Hong Kong Physiother. J. 39(2), 125–132 (2019)

    Article  Google Scholar 

  10. Freire, B., Bochehin do Valle, M., Lanferdini, F.J., Foschi, C.V.S., Abou, L., Pietta-Dias, C.: Cut-off score of the modified Ashworth scale corresponding to walking ability and functional mobility in individuals with chronic stroke. Disabil. Rehabil. 1–5 (2022)

    Google Scholar 

  11. Rech, K.D., Salazar, A.P., Marchese, R.R., Schifino, G., Cimolin, V., Pagnussat, A.S.: Fugl-Meyer assessment scores are related with kinematic measures in people with chronic hemiparesis after stroke. J. Stroke Cerebrovasc. Dis. 29(1), 1–8 (2020)

    Article  Google Scholar 

  12. Liao, W.L., Chang, C.W., Sung, P.Y., Hsu, W.N., Lai, M.W., Tsai, S.W.: The berg balance scale at admission can predict community ambulation at discharge in patients with stroke. Med. 57(6), 1–8 (2021)

    Google Scholar 

  13. Liu, X., et al.: Wearable devices for gait analysis in intelligent healthcare. Front. Comput. Sci. 3(May), 1–8 (2021)

    Google Scholar 

  14. Wu, J., et al.: An intelligent in-shoe system for gait monitoring and analysis with optimized sampling and real-time visualization capabilities. Sensors 21(8), 1–19 (2021)

    Article  Google Scholar 

  15. Serrao, M., et al.: Prediction of responsiveness of gait variables to rehabilitation training in Parkinson’s disease. Front. Neurol. 10(JUL), 1–12 (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant NSFC U1813212, in part by the Science and Technology Planning Project of Guangdong Province, China under Grant 2020B121201012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, YP. et al. (2022). Gait Time Parameter Analysis-Based Rehabilitation Evaluation System of Lower Limb Motion Function. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics