Skip to main content

Jacobian Estimation with Adaptive Kalman Filter for Uncalibrated Visual Servoing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Abstract

An uncalibrated visual servo method based on Jacobian estimation with adaptive Kalman filter (AKF) is proposed in this paper. With less or no priori knowledge of the parameters of robotic manipulator and camera, the presented method introduces the projective Jacobian matrix estimated by an adaptive Kalman filter for noise covariance recursive estimation. By doing this, the Jacobian estimation adaptability can be greatly improved to achieve better tracking performance in UVS system. Finally, the simulation experiments are performed to evaluate the performance of the proposed method, indicating better performance compared with state-of-the-art UVS methods using standard Kalman filter (SKF).

Supported by China Postdoctoral Project (No. 2021M692960).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heshmati-Alamdari, S., Karras, G.C., Eqtami, A., et al.: A robust self triggered image based visual servo model predictive control scheme for small autonomous robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5492–5497 (2015)

    Google Scholar 

  2. Pari, L., Angel, L., Traslosheros, A.: Uncalibrated visual servo using the fundamental matrix. Robot. Auton. Syst. 57(1), 1–10 (2009)

    Article  Google Scholar 

  3. Li, B., Fang, Y., Zhang, X.: Projection homography based uncalibrated visual servo of wheeled mobile robots. In: Proceedings of the IEEE Conference on Decision and Control, pp. 2167–2172 (2014)

    Google Scholar 

  4. Gong, Z., Tao, B., Yang, H.: An uncalibrated visual servo method based on projective homography. IEEE Trans. Autom. Sci. Eng. 15(2), 806–817 (2018)

    Article  Google Scholar 

  5. Qian, J., Su, J.: Online estimation of image Jacobian matrix by Kalman-Bucy filter for uncalibrated stereo vision feedback. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 562–567 (2002)

    Google Scholar 

  6. Huang, Y., Zhang, Y., Wu, Z., et al.: A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control 63(2), 594–601 (2017)

    Article  MathSciNet  Google Scholar 

  7. Sun, J., Xu, X., Liu, Y., et al.: FOG random drift signal denoising based on the improved AR model and modified Sage-Husa adaptive Kalman filter. Sensors 16(7), 1073–1091 (2016)

    Article  Google Scholar 

  8. Feng, B., Fu, M., Ma, H., et al.: Kalman filter with recursive covariance estimation-sequentially estimating process noise covariance. IEEE Trans. Ind. Electron. 61(11), 6253–6263 (2014)

    Article  Google Scholar 

  9. Fu, Q., Zhang, Z., Shi, J., et al.: Uncalibrated visual servo with obstacle avoidance using SQP method. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2031–2036 (2009)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the China Postdoctoral Project (Grant No. 2021M692960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Liu .

Editor information

Editors and Affiliations

Appendix

Appendix

According to the definition of mean value, when \(E(\mathbf {\tau \tau }^{T})<\infty \), we have:

$$\begin{aligned} \mathbf {E}_{k}(\mathbf {\tau \tau }^{T})=\underset{k\rightarrow \infty }{lim}\frac{1}{k}\underset{i=0}{\overset{k}{\sum }}\mathbf {\tau }_{i}\mathbf {\tau }^{T}_{i} \end{aligned}$$
(26)

Equation (26) can be transformed into

$$\begin{aligned} E_{k}(\mathbf {\tau \tau }^{T})&= \frac{1}{k}(\underset{i=0}{\overset{k-1}{\sum }}\mathbf {\tau }_{i}\mathbf {\tau }_{i}^{T}+\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T})\nonumber \\&= 1/k((k-1)E_{k-1}(\mathbf {\tau \tau }^{T})+\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T}) \end{aligned}$$
(27)

According to (21), we have:

$$\begin{aligned} E_{k-1}[\mathbf {\tau \tau }^{T}]=\mathbf {C}_{k-1}\mathbf {P}_{k-1}^{p}\mathbf {C}_{k-1}^{T}+\mathbf {V}_{k-1} \end{aligned}$$
(28)

Substituting (28) into (27), \(E_{k}(\mathbf {\tau \tau }^{T})\) will be

$$\begin{aligned} (k+1)/k(\mathbf {C}_{k-1}\mathbf {P}_{k-1}^{p}\mathbf {C}_{k-1}^{T}+\mathbf {V}_{k-1})+1/k\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T} \end{aligned}$$
(29)

Define \(\mathbf {L}_{k} = \mathbf {C}_{k}\mathbf {P}_{k}^{p}\mathbf {C}_{k}^{T}\), then we will have:

$$\begin{aligned} \mathbf {L}_{k}+\mathbf {V}_{k}=\mathbf {L}_{k-1}-1/k\mathbf {L}_{k-1}+(k-1)/k\mathbf {V}_{k-1}+1/k\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T} \end{aligned}$$
(30)

Finally, (30) can be written as:

$$\begin{aligned} \mathbf {V}_{k}=(k+1)/k\mathbf {V}_{k-1}+1/k\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T}-\varDelta \mathbf {L}_{k}-1/k\mathbf {L}_{k-1} \end{aligned}$$
(31)

With the increase of time, \(\mathbf {V}_{k}\) depends on \(\mathbf {V}_{k-1}\) much more than \(\mathbf {L}_{k-1}\), the estimator of \(\mathbf {V}_{k}\) can be rewritten as:

$$\begin{aligned} \mathbf {V}_{k}=(k-1)/k\mathbf {V}_{k-1}+1/k\mathbf {\tau }_{k}\mathbf {\tau }_{k}^{T}-\varDelta \mathbf {L}_{k} \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, Z., Liu, S., Song, W. (2022). Jacobian Estimation with Adaptive Kalman Filter for Uncalibrated Visual Servoing. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics