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Abstract. Grasp detection in a cluttered environment is still a great challenge 

for robots. Currently, the Transformer mechanism has been successfully applied 

to visual tasks, and its excellent ability of global context information extraction 

provides a feasible way to improve the performance of robotic grasp detection 

in cluttered scenes. However, the insufficient inductive bias ability of the origi-

nal Transformer model requires large-scale dataset training, which is difficult to 

obtain for grasp detection. In this paper, we propose a grasp detection model 

based on encoder-decoder structure. The encoder uses a Transformer network to 

extract global context information. The decoder uses a fully convolutional neu-

ral network to improve the inductive bias capability of the model and combine 

features extracted by the encoder to predict the final grasp configuration. Exper-

iments on VMRD datasets demonstrate that our model performs much better in 

overlapping object scenes. Meanwhile, on the Cornell Grasp Datasets, our ap-

proach achieves an accuracy of 98.1%, which is comparable with state-of-the-

art algorithms. 
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1 Introduction 

The purpose of the deep learning-based grasp detection model is to identify a set of 

suitable grasp configurations from an input image. Currently, predicting grasp config-

urations of objects in cluttered or stacked scenarios remains a challenging task. First-

ly, for grasp detection, it is not only to accurately predict the position of the object but 

also to model the pose and contour information of the object to predict the angle and 

opening distance of the gripper when the robot is grasping. Secondly, it is challenging 

to extract and map the complex and changing robot working environment features, 

which requires a large-scale dataset for model training. However, grasp detection 

datasets are very expensive to make. Therefore, we need to find an algorithm that can 

perfectly map the features of the input image to the grasp configuration through the 

training on the limited scale datasets. 

In recent works [1]-[5], researchers have mainly focused on applying deep learning 

networks based on convolutional neural networks (CNNs) to grasping detection. They 

have achieved satisfactory results in the single object grasping detection task. In ob-

jects overlapping and cluttered scenes, however, grasp detection performance still has 

a lot of room to improve because of the complexity of its features. [6] proposed a 

robotic grasp detection approach based on the region of interest (ROI) in the cluttered 

multi-object scene. The method divides the regions of interest according to the in-

stance information of the object and then predicts the grasp configuration of each 
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region. [7] proposed a two-stage multi-task model, which can simultaneously realize 

grasp detection, object detection, and object manipulation relationship reasoning. In 

order to improve the reasoning efficiency of the multi-task model, [8] proposed a one-

stage full convolutional neural network to predict the position, grasp configuration, 

and manipulation relations of different objects and achieved acceptable results. Most 

of the above methods use deeper networks and down-sampling mechanisms to in-

crease the receptive field and improve the global feature extraction ability of the mod-

el so as to better predict the object grasp configuration and other attributes. However, 

with the increase of model depth, some valuable features will disappear, which limits 

the improvement of model performance. 

Recently, Transformer [9] has been widely used in the field of natural language 

processing and computer vision due to its excellent ability to extract global context 

features. Transformer, with parallel sequences as input, can better convey the fusion 

of information across global sequences at the beginning of the model, reducing fea-

ture loss and improving feature representation ability. In computer vision, Transform-

er models represented by DETR [10], Deformable DETR [11] VIT [12], MVIT [13] 

and Swin [14] have achieved excellent performance in multiple visual tasks. In par-

ticular, the Swin-Transformer [14] model outperforms CNNs in image classification 

tasks and achieves start-of-the-art results. This further demonstrates the Transformer 

architecture's excellent feature extraction and feature mapping capabilities for specific 

tasks. However, Transformer has insufficient inductive bias capability compared to 

CNNs and requires large datasets for training [12]. 

In this paper, we propose a grasp detection model based on a Transformer and fully 

convolutional neural network. The model uses attentional mechanisms and sequence 

input to obtain adequate global feature representation and uses a fully convolutional 

neural network to enhance the inductive bias of the model so that it can be trained on 

limited-scale datasets with promising results. The transformer is used as the encoder 

of the model to extract the features of the input image, and a fully convolutional neu-

ral network is used as the decoder to construct the final grasping configuration. In 

addition, to evaluate our algorithm, we validated the performance of our model in the 

VMRD dataset [6] [15] and the Cornell grasp dataset [16]. Experimental results 

demonstrate that the Transformer mechanism can improve the robot's grasp detection 

performance in cluttering or stacking scenarios. 

In summary, the main contributions of this paper are concluded as follows: 

1) We propose a grasping detection model combining a Transformer and a fully 

convolutional neural network, which can be trained on a limited scale of grasp detec-

tion datasets and acquire satisfactory results. 

2) We proved that our model achieved state-of-the-art results in cluttered or 

stacked scenarios on the VMRD dataset and achieved comparable results with state-

of-the-art algorithms on the single-objective Cornell grasp datasets. 
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2 Related work 

Robotic grasping has always been a desirable research topic in the field of robotics. 

Significantly, the application of deep learning technology in the field of robotic grasp-

ing makes the process of grasp detection free from manual features. And the deep 

learning model can predict all possible grasping configurations directly from RGB or 

RGB-D images. [1] was one of the earliest works that applied deep learning to grasp 

detection. They used the local constraint prediction mechanism to directly regression 

the grasp position in each image grid, thus realizing single-stage Multi-Grasp detec-

tion. However, this direct regression method is difficult to train and has inadequate 

robustness to the environment. Inspired by the Faster-RCNN [17] object detection 

algorithm, [3], [6] proposed a two-stage grasp detection method. This method trans-

forms the grasp detection problem into the object detection problem and improves the 

efficiency and accuracy of grasping detection. However, the efficiency of a two-stage 

network is lower than that of a one-stage network. Therefore, [3] proposed a one-

stage fully convolution model to improve the real-time performance of model predic-

tion. In addition, in order to realize the robot grasping specified objects in a multi-

objective environment, [6], [7], [8], [18], [19], and [20], et al. proposed to add object 

detection or instance segmentation branches into the grasp detection model to guide 

the model to recognize the categories of objects in the scene while detecting the grasp 

configuration. These multi-task models enhance the intelligence level of the robot's 

perception of the working environment. 

From the optimization and improvement process of the grasp detection model, we 

can find that the development of grasp detection technology heavily follows the pro-

gress of computer vision technology. However, compared with object detection, the 

task of grasp detection is more complex. There are not only countless feasible grasp-

ing configurations but also strong angle restrictions on grasping positions. Therefore, 

it is necessary to find a better feature extraction method and a relational mapping 

model so that the robot can better model the global and local features of the object so 

as to generate a more reasonable grasp configuration. 

Recently, Transformer [9], with its self-attention mechanism at its core, has 

achieved satisfactory results in natural language processing tasks. Moreover, because 

of its satisfactory global feature extraction ability and long sequence modeling ability, 

it gradually replaces CNNs and RNNs [21] in NLP and computer vision. 

In the application of computer vision, researchers use convolution or patch embed-

ding to encode visual information into sequence data to meet the input requirements 

of the Transformer. For example, DETR [10] and Deformable DETR [11] proposed 

the use of convolution operations to encode input images as sequential information; 

VIT [12], MVIT [13], and Swin-Transformer [14] proposed to split the image into 

patches as the input of the Transformer model. These Transformer based vision pre-

diction models outperform traditional CNNs models in image classification, object 

detection, and image segmentation. However, the Transformer mechanism lacks the 

inductive bias capability inherent in CNNs [12], so the model needs pre-training on 

large-scale datasets to generalize well and achieve start-of-the-art performance. For 

grasping detection tasks, dataset making is a very expensive job; so far, there is no 
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grasp dataset as large as ImageNet. Therefore, when the original Transformer is di-

rectly applied to the grasp detection model, the model cannot fully fit the relationship 

between the input image features and the grasp configurations, especially in cluttered 

or stacking scenes. 

Different from previous work, in this paper, we propose a network structure with 

Swin-Transformer as the encoder and a fully convolutional neural network as the 

decoder for grasp detection. With this structure, the model has the ability of global 

feature modeling and the special ability of inductive bias of convolutional neural net-

work, which enables the model to converge rapidly on smaller datasets. Compared 

with previous works, our model performs better in cluttered multi-object scenes while 

maintaining comparable results with start-of-the-art in single-object scenes on the 

basis of guaranteeing real-time performance. 

3 Method 

3.1 Grasp representation 

Given an RGB image, the grasp detection model should detect not only the grasp 

position but also the grasp posture of an object. Therefore, [16] has proposed a five-

dimensional grasp representation, which can simultaneously represent the position of 

the center point, rotation angle, and opening size of the parallel plate gripper and has 

been widely used in other grasp works [1]-[7]. In our work, we also use this represen-

tation. At the same time, in order to increase the representation ability in the multi-

object environment and enable the robot to grasp the specified category object, we 

add a dimension representing the object category on this basis. Therefore, the grasp 

representation of our model's final output can be expressed as: 

 { , , , , , }g x y w h c=  (1) 

where ( , )x y  is the pixel coordinates of the center point of grasp position, w  is the 

opening size of the parallel plate gripper, h  is the width, and   is the angle between 

the closing direction of the parallel plate gripper and the horizontal direction, and c  is 

the corresponding object category of the grasp representation. 

3.2 Overview 

In this paper, the grasp detection model based on the Transformer architecture pro-

posed by us consists of two parts, the encoder with Shifted Windows (Swin) Trans-

former as the component and the decoder with the convolutional neural network as 

the component. The overview structure is shown in Fig. 1 (A). Input an RGB image 

through the patch partition layer and split it into non-overlapping image regions. Each 

region serves as a token for Transformer input. More detailed, an image with an input 

size of 
3W HI  =  is split into fixed-size patches 

( 3)N P Px   =  in its spatial dimension, 

where 
2( ) /N W H P=  represents the number of patches generated by the image split,  
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Fig. 1. (A). Overview architecture of our proposed model. The input RGB image is transformed 

into sequence data by Linear Patch embedding and added with position information, and then 

input into the encoder with Shifted Windows (Swin) Transformer as the component. The en-

coder output three different dimension features, which are input into the decoder for further 

feature extraction. Finally, the head of the grasp detector outputs the grasp configuration. 

and P P  is the size of each image patch. Then position embedding is added into 

each image patch and fed into the encoder. In the encoder, behind several rounds of 

attention calculated, the input image patches are mapped to three sets of feature maps 

with different dimensions. The decoder uses convolution operation, further extracts 

and fuses the features of the feature map according to the task requirements, and final-

ly, the grasp configuration of the input image is predicted by the grasp detector. The 

details of the Swin-Transformer-based encoder and convolution-based decoder are 

described as follows. 

3.3 Encoder 

Inspired by Swin-Transformer 14, the encoder for our model consists of four stages, 

as shown in Fig. 1 (B), each composed of identical Swin-Transformer blocks. The 

attention mechanism in each block establishes long-distance interactions across dis-

tant pixels at the beginning of the model and establishes global relevance descriptions 

without feature loss. 

The input image token's feature X  is linearly transformed to derive the Q , K , and 

V vectors. The learnable linear transformation process can be defined as follows: 
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 , ,Q K VQ XW K XW V XW= = =  (2) 

Where QW , KW , and VW  are learnable linear transformation matrices. On this basis, 

the attention calculation method between different image tokens is as follows: 

 Attention( , , )=SoftMax( + )
TQK

Q K V B V
d

 (3) 

Where d  is the dimension of Q  and B  is the relative position encoding of each to-

ken. 

Because the Swin-Transformer uses a window-based attention calculation method, 

it has less computation than VIT. In addition, Swin-Transformer assumes the shifted 

windows attention mechanism to change the scope of attention and enhance the global 

and local feature representation capability of the model. Furthermore, the original 

Swin-Transformer has a hierarchical architecture that allows modeling flexibility at 

various scales. Therefore, to improve the ability to perceive objects of different sizes 

in grasp detection, we adopt a bottleneck structure and utilize three group features of 

different dimensions for decoding operation. 

3.4 Decoder 

The decoder uses convolution as its fundamental component to generate grasp config-

urations that the end-effector can operate. The purpose of using convolution as a de-

coder is that convolution can enhance the inductive bias of the model, thus reducing 

the dependence of the model training on large-scale datasets and improving the effi-

ciency of training. 

In our approach, the decoder performs feature extraction and multi-scale feature 

fusion for three groups of input features with different dimensions, as shown in Fig. 1 

(C). The output features of each encoder are fully fused with the features of the other 

two dimensions after convolution, up-sampling, and down-sampling operations. The 

fused features are then fed into the grasp detector to predict the final grasp configura-

tion.  

In the grasp detector, we transform the grasp detection problem into pixel-level 

prediction, which predicts the grasp configuration, confidence, and object category of 

each pixel in the feature map. Finally, the optimal candidate is retained by filtering 

the grasp configuration through confidence score and IoU. The advantage of this ap-

proach is that only a single forward propagation can obtain the optimal grasp configu-

ration in a global scenario. 

3.5 Loss function 

In this paper, the final prediction output of the model includes three parts: the position 

parameter, angle, and object category corresponding to the grasping rectangle. In 

addition, the angle of the grasping rectangle is predicted by the classification method. 

Therefore, the loss function of our algorithm consists of three parts, regression loss of 
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grasping position, classification loss of grasping angle, and classification loss of ob-

ject category. 

In this paper, we employ CIoU loss function to supervise the training process of 

grasp position parameters. This loss function can evaluate the training process and 

guide the model to converge quickly by evaluating several indexes between the pre-

dicted grasp rectangle and the ground truth, such as IoU , the distance of the center 

point, and the aspect ratio. The realization process of CIoU loss function is as follows. 
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Where (b,b )gt  is the distance between the central points of the predicted grasp rec-

tangle and the ground truth, c  is the diagonal length of the smallest enclosing box 

covering two rectangles and   represents the similarity of the aspect ratio between 

the predicted grasping rectangle and ground-truth, and  is the weight function. 

We use the cross-entropy loss as the loss function of angle and object category 

prediction. We define the loss function of grasp angle and object category as follows: 

 
1

_

0

log( )
N

gt

angle obj class i i

i

L L p p
−

=

= = −  (7) 

Where N  is the number of categories for angles or objects, 0 1 1[ , ,..., ]gt gt gt gt

Np p p p −=  

is the one-hot encoding of the sample's ground-truth; 0 1 1[ , ,..., ]Np p p p −=  is the pre-

diction result of the model and represents the probability distribution of the category 

to which the sample belongs. 

In general, the loss function of our algorithm in the training process can be defined 

as: 

 _ _ _total loss grasp box angle obj classL L L L  = + +  (8) 

In the training process of the model, we set   as 0.05,   as 0.25, and   as 0.5. 

4 Experiment set 

4.1 Dataset  

This paper utilizes the Cornell and the VMRD datasets to evaluate our proposed grasp 

recognition algorithm. The single-object Cornell Grasp dataset consists of 885 images 
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of 244 different objects, and each image is labeled with multiple grasping positions of 

corresponding objects. We employ this dataset to evaluate the performance between 

our proposed algorithm and other start-of-the-art algorithms. In the VMRD dataset, 

each image contains multiple objects, and the dataset simultaneously labels each ob-

ject with its category, grasping position, and grasping order. The VMRD dataset con-

tains 4233 training images and 450 testing images, with 32 object categories. We use 

this dataset to demonstrate the performance of our model in multi-object and cluttered 

scenarios. 

To accommodate the input of the Swin-Transformer structure and its data pro-

cessing process, we preprocess the data of the input model. We first scaled the image 

to (224 224)  and then rotated with the center of the image as the origin 18 times for 

each rotation of 20°. This data enhancement method effectively expanded the diversi-

ty of the dataset at different locations and angles and reduced the risk of overfitting in 

the model's training process. 

4.2 Metric 

In the single-objective scenario, we adopt a rectangular metric similar to 1-4 to evalu-

ate the performance of our model. In the multi-objective scenario, we also consider 

adding the category information of the target to the assessment process. We consider 

that the correct grasp satisfying the rectangle metric is when a grasp prediction meets 

the following conditions. 

1. The difference between the angle of the predicted grasping rectangle and the 

ground truth is smaller than 30°. 

2. The Jacquard coefficient between the predicted grasping rectangle and the 

ground truth is more significant than 0.25. 

The Jacquard index is defined as follow: 

 ( , )
gt

gt

gt

G G
J G G

G G


=


 (9) 

Where G  is the grasping configuration predicted by the model, and 
gtG  is the corre-

sponding ground truth. 

4.3 Implementation details 

Our algorithms are trained end-to-end on GTX 2080Ti with 11GB memory, using 

Pytorch as the deep learning framework. We set the batch size to 64 and the learning 

rate to 0.001, divided by 10 for every ten iterations. Finally, we use SGD as the opti-

mizer for the model, with momentum set to 0.99. 



9 

5 Results and analysis 

5.1 Results for single-object grasp 

In this part, we use the Cornell grasp dataset to verify the performance of our pro-

posed model in a single-objective scenario. Verification results on Cornell Grasp 

Dataset are demonstrated in Table 1, and Fig. 2.  

Table 1. Accuracy of different methods on Cornell Grasp dataset. 

Author Backbone Input Accuracy (%) Speed (frame/s) 

Lenz [16] SAE RGB 75.6 0.07 

Redmon [1] AlexNet RG-D 88.0 3.31 

Guo [2] ZFNet RGB 93.2 - 

Zhou [3] ResNet-101 RGB 97.7 9.89 

Fu-Jen[4] ResNet-50 RG-D 96.0 8.33 

Zhang [6] ResNet-101 RGB 93.6 25.16 

Liu D [5] ResNet-50 RGB-D 95.2 21 

Ours Swin-Transformer RGB 98.1 47.6 

 

Fig. 2. Detection results on Cornell Grasp dataset. The color of the grasp rectangle represents 

the category information of the grasping angle, and the printed annotation information includes 

the value and confidence of the angle. 

The grasp detection network based on the Swin-Transformer structure proposed by us 

achieves an accuracy of 98.1% with a speed of 47.6 FPS. Compared with the state-of-

the-art model [3], our algorithm improves accuracy by 0.4% and improves reasoning 

speed five times. In more detail, we can see that compared with the two-stage model 

of Fu-Jen [4], Zhang [6], and Liu D [5], the one-stage model proposed by us has a 

better speed advantage. In addition, compared with the traditional backbone network 
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such as AlexNet [1] and ResNet [3]-[6], our proposed network with Swin-

Transformer is more comfortable in obtaining a higher detection accuracy. 

5.2 Results for Multi-object Grasp 

In order to demonstrate the grasp detection performance of our model in a complex 

multi-objective environment, we used the VMRD multi-objective dataset to verify our 

model, and the verified results are shown in Table 2 and Fig. 3. We can see that our 

model can accurately identify the grasp configuration of each object and its corre-

sponding object category in the multi-object scene. Besides, our model achieves an 

accuracy of 80.9% on the VMRD dataset when considering categories and grasping 

configurations simultaneously. Compared with Zhang [6], our proposed algorithm 

gains 12.7% accuracy. This also proves that Transformer mechanisms can improve 

the model's grasp detection performance in cluttered scenarios. Compared with other 

models with object spatial position reasoning, such as Zhang [22] and Park [8], our 

model achieves higher detection accuracy, but this comparison is not rigorous. We 

will further improve the function of our model in future work, thus verifying the per-

formance of the model more comprehensively. 

Table 2. Performance summary on VMRD dataset  

Method mAPg (%) Speed (frame/s) 

Zhang [6], OD, GD 68.2 9.1 

Zhang [22], OD, GD, reasoning 70.5 6.5 

Park [8], OD, GD, reasoning 74.6 33.3 

Ours,  80.9 28.6 

 

Fig. 3. Experimental results on VMRD dataset. The detection results of the model include the 

position attribute and the angle information of the grasping rectangle and the object category 

corresponding to the grasping configuration. 

Furthermore, in order to determine the areas of our proposed model's attention, we 

visualized the heatmap of the graspable score, as shown in Fig. 4. From the heatmap, 

we can see most of the model's attention focused on the graspable parts of the object, 
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such as the edges and center of the object. This proves that our model has accurately 

modeled the feature mapping from the input image features to the grasp configuration. 

 

Fig. 4. Grasp detection results in VMRD grasp dataset. The first line is the input image of the 

model, the second line is the graspable score heatmap of the model, and the last line is the grasp 

detection result. 

6 Conclusion and future work 

In this paper, we propose a novel one-stage grasp detection algorithm based on the 

Transformer mechanism. Compared with other CNN-based methods and their vari-

ants, the model based on Transformer shows more flexibility for global and local 

feature representation and feature modeling. This attribute is particularly important 

for robotic grasp detection, especially in multi-object complex scenes. In addition, in 

order to enhance the inductive bias capability of the model and reduce the dependence 

of Transformer-based model training on large-scale datasets, we apply a CNN-based 

decoder to find reasonable feature mapping relations more quickly according to the 

requirements of the model. Experimental results in single-object and multi-object 

scenarios demonstrate that our proposed method outperforms the CNN-based models 

in the grasp detection performance and inference speed. In the future work, we will 

devote ourselves to applying the model based on the Transformer mechanism to grasp 

detection tasks more widely, especially in improving the accuracy of grasp detection 

in cluttered scenes and predicting the spatial position relationship of objects. Exploit 

fully the advantages of the Transformer mechanism to improve the adaptability of 

robots to complex features.  



12 

References 

1. Redmon J, Angelova A. Real-time grasp detection using convolutional neural net-

works[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 

2015: 1316-1322. 

2. Guo D, Sun F, Liu H, et al. A hybrid deep architecture for robotic grasp detection[C]//2017 

IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 1609-

1614. 

3. Zhou X, Lan X, Zhang H, et al. Fully convolutional grasp detection network with oriented 

anchor box[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE, 2018: 7223-7230. 

4. Chu F J, Xu R, Vela P A. Real-world multiobject, multigrasp detection[J]. IEEE Robotics 

and Automation Letters, 2018, 3(4): 3355-3362. 

5. Liu D, Tao X, Yuan L, et al. Robotic Objects Detection and Grasping in Clutter based on 

Cascaded Deep Convolutional Neural Network[J]. IEEE Transactions on Instrumentation 

and Measurement, 2021. 

6. Zhang H, Lan X, Bai S, et al. Roi-based robotic grasp detection for object overlapping 

scenes[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS). IEEE, 2019: 4768-4775. 

7. Zhang H, Lan X, Bai S, et al. A multi-task convolutional neural network for autonomous 

robotic grasping in object stacking scenes[C]//2019 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS). IEEE, 2019: 6435-6442. 

8. Park D, Seo Y, Shin D, et al. A single multi-task deep neural network with post-processing 

for object detection with reasoning and robotic grasp detection[C]//2020 IEEE Internation-

al Conference on Robotics and Automation (ICRA). IEEE, 2020: 7300-7306. 

9. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural 

information processing systems, 2017, 30. 

10. Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transform-

ers[C]//European conference on computer vision. Springer, Cham, 2020: 213-229. 

11. Zhu X, Su W, Lu L, et al. Deformable detr: Deformable transformers for end-to-end object 

detection[J]. arXiv preprint arXiv:2010.04159, 2020. 

12. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transform-

ers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020. 

13. Fan H, Xiong B, Mangalam K, et al. Multiscale vision transformers[C]//Proceedings of the 

IEEE/CVF International Conference on Computer Vision. 2021: 6824-6835. 

14. Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted 

windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 

2021: 10012-10022. 

15. Zhang H, Lan X, Zhou X, et al. Visual manipulation relationship network for autonomous 

robotics[C]//2018 IEEE-RAS 18th International Conference on Humanoid Robots (Hu-

manoids). IEEE, 2018: 118-125. 

16. Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps[J]. The International 

Journal of Robotics Research, 2015, 34(4-5): 705-724. 

17. Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with re-

gion proposal networks[J]. Advances in neural information processing systems, 2015, 28. 

18. Dong M, Wei S, Yu X, et al. Mask-gd segmentation based robotic grasp detection[J]. 

Computer Communications, 2021, 178: 124-130. 



13 

19. Jia Q, Cao Z, Zhao X, et al. Object Recognition, Localization and Grasp Detection Using a 

Unified Deep Convolutional Neural Network with Multi-task Loss[C]//2018 IEEE Interna-

tional Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 1557-1562. 

20. Yu Y, Cao Z, Liu Z, et al. A Two-Stream CNN With Simultaneous Detection and Segmen-

tation for Robotic Grasping[J]. IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 2020. 

21. Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[J]. arXiv 

preprint arXiv:1409.2329, 2014. 

22. Zhang H, Lan X, Wan L, et al. Rprg: Toward real-time robotic perception, reasoning and 

grasping with one multi-task convolutional neural network[J]. arXiv preprint 

arXiv:1809.07081, 2018: 1-7. 


