Skip to main content

Context Dual-Branch Attention Network for Depth Completion of Transparent Object

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Abstract

With the rise in popularity of RGB-D cameras, vision-based robot approaches that rely on the depth information given by RGB-D cameras are gaining favor. However, because of their reflection and refraction features, transparent objects, which are a prevalent part of our daily lives, are difficult to distinguish and locate with an RGB-D camera. To overcome this issue, we present DCTNet, a novel technique for depth completion of transparent objects, in this study. DCTNet is a dual-branch approach that uses a single RGB-D picture to complete the depth of a transparent end-to-end. We apply MSSA, a multi-scale spatial attention technique, to fuse distinct branch feature maps to improve the depth completion results even more. Experiments show that when compared to ClearGrasp, our approach produces much better performance and improves inference speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lysenkov, I., Eruhimov, V., Bradski, G.: Recognition and pose estimation of rigid transparent objects with a kinect sensor. Robotics 273(273–280), 2 (2013)

    Google Scholar 

  2. Phillips, C.J., Lecce, M., Daniilidis, K.: Seeing glassware: from edge detection to pose estimation and shape recovery. In: Robotics: Science and Systems, vol. 3, p. 3 (2016)

    Google Scholar 

  3. Han, K., Wong, K.-Y.K., Liu, M.: A fixed viewpoint approach for dense reconstruction of transparent objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4001–4008 (2015)

    Google Scholar 

  4. Qian, Y., Gong, M., Yang, Y.H.: 3d reconstruction of transparent objects with position-normal consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4369–4377 (2016)

    Google Scholar 

  5. Sajjan, S.: Clear grasp: 3d shape estimation of transparent objects for manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3634–3642. IEEE (2020)

    Google Scholar 

  6. Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)

    Google Scholar 

  7. Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13656–13662. IEEE (2021)

    Google Scholar 

  8. Qiu, J., et al.: DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3313–3322 (2019)

    Google Scholar 

  9. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  10. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)

    Google Scholar 

  11. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  12. Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  13. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  14. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)

    Google Scholar 

  15. Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2d–3d representations for depth completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10023–10032 (2019)

    Google Scholar 

  16. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse lidar data with depth-normal constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2811–2820 (2019)

    Google Scholar 

  17. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 175–185 (2018)

    Google Scholar 

  18. Zhu, L.: RGB-D local implicit function for depth completion of transparent objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4649–4658 (2021)

    Google Scholar 

  19. Xu, H., Wang, Y.R., Eppel, S., Aspuru-Guzik, A., Shkurti, F., Garg, A.: Seeing glass: joint point cloud and depth completion for transparent objects. arXiv preprint arXiv:2110.00087 (2021)

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  21. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  22. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: exploiting feature context in convolutional neural networks. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  23. Gao, Z., Xie, J., Wang, Q., Li, P.: Global second-order pooling convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3024–3033 (2019)

    Google Scholar 

  24. Dai, J.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  25. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Lin, X., Ma, L., Liu, W., Chang, S.-F.: Context-gated convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 701–718. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_41

    Chapter  Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 61873240) and the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology (Grant No. DMETKF2022024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Wang, Z., Chen, J., Wang, W. (2022). Context Dual-Branch Attention Network for Depth Completion of Transparent Object. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics