Skip to main content

Event-Triggered Adaptive Control for Practically Finite-Time Position-Constrained Tracking of Space Robot Manipulators

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13455))

Included in the following conference series:

Abstract

This paper investigates the problem of event-triggered adaptive tracking control for space manipulator systems under pre-determined position constraints. This control scheme aims to overcome external perturbations, reduce the burden of data-transmission, and achieve constrained tracking. Focusing on the constraints of system performance, quadratic Lyapunov functions (QLF) are stitched with a set of asymmetric time-receding horizons (TRH) with fixed settling time, serving as a sufficient condition for the practically prescribed finite-time stability (PPFS) of target plants. By introducing event-triggered conditions, the control signals are transformed into non-periodically updated variables, promoting signaling efficiency while preserving the desired system performance. Complex nonlinearities are integrated and compensated adaptively, providing an ingenious design process and simplifying the construction of the controller. Finally, simulations demonstrate the effectiveness of the proposed scheme.

This work was supported in part by the Innovation Capability Support Program of Shaanxi (No. 2019TD-008); and in part by the China Scholarship Council (No. 202106290148).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, X., Ge, S.S., He, W.: Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int. J. Control 91(4), 969–988 (2018)

    Article  MathSciNet  Google Scholar 

  2. Hao, Z., Yue, X., Wen, H., Liu, C.: Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault. IEEE/CAA J. Automatica Sinica 9(3), 482–495 (2022)

    Article  Google Scholar 

  3. Lu, Y., Huang, P., Meng, Z.: Adaptive anti-windup control of post-capture combination via tethered space robot. Adv. Space Res. 64(4), 847–860 (2019)

    Article  Google Scholar 

  4. Huang, P., Zhang, F., Cai, J., Wang, D., Meng, Z., Guo, J.: Dexterous tethered space robot: design, measurement, control, and experiment. IEEE Trans. Aerospce Electron. Syst. 53(3), 1452–1468 (2017)

    Article  Google Scholar 

  5. Ma, Z., Huang, P., Kuang, Z.: Fuzzy approximate learning-based sliding mode control for deploying tethered space robot. IEEE Trans. Fuzzy Syst. 29(9), 2739–2749 (2021)

    Article  Google Scholar 

  6. Yan, W., Liu, Y., Lan, Q., Zhang, T., Tu, H.: Trajectory planning and low-chattering fixed-time nonsingular terminal sliding mode control for a dual-arm free-floating space robot. Robotica 40(3), 625–645 (2022)

    Article  Google Scholar 

  7. Uyama, N., Hirano, D., Nakanishi, H., Nagaoka, K., Yoshida, K.: Impedance-based contact control of a free-flying space robot with respect to coefficient of restitution. In: 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 1196–1201. Kyoto (2011)

    Google Scholar 

  8. Jia, Y.-H., Hu, Q., Xu, S.-J.: Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta. Mech. Sin. 30(1), 112–124 (2014). https://doi.org/10.1007/s10409-014-0005-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Mali, P., Harikumar, K., Singh, A.K., Krishna, K.M., Sujit, P.B.: Incorporating prediction in control barrier function based distributive multi-robot collision avoidance. In: 2021 European Control Conference (ECC), pp. 2394–2399. IEEE, ELECTR NETWORK (2021)

    Google Scholar 

  10. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov Functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  11. Kong, L., He, W., Yang, W., Li, Q., Kaynak, O.: Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space. IEEE Trans. Cybern. 51(10), 4873–4884 (2021)

    Article  Google Scholar 

  12. Tee, K.P., Ge, S.S.: Control of state-constrained nonlinear systems using Integral Barrier Lyapunov Functionals. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3239–3244. IEEE, Hawaii (2012)

    Google Scholar 

  13. Lu, S., Li, D., Liu, Y.: Adaptive neural network control for uncertain time-varying state constrained robotics systems. IEEE Tran. Syst. Man Cybern. Syst. 49(12), 2511–2518 (2019)

    Article  Google Scholar 

  14. Liu, Y., Liu, X.P., Jing, Y.W., Chen, X.Y., Qiu, J.L.: Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network. IEEE Trans. Neural Networks Learn. Syst. 31(4), 1222–1231 (2020)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Li, H.: Adaptive asymptotic tracking using barrier functions. Automatica 98, 239–246 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mishra, P.K., Dhar, N.K., Verma, N.K.: Adaptive neural-network control of mimo nonaffine nonlinear systems with asymmetric time-varying state constraints. IEEE Trans. Cybern. 51(4), 2042–2054 (2021)

    Article  Google Scholar 

  17. Wu, Y., Huang, R., Wang, Y., Wang, J.: Adaptive tracking control of robot manipulators with input saturation and time-varying output constraints. Asian J. Control 23(3), 1476–1489 (2020)

    Article  MathSciNet  Google Scholar 

  18. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012)

    Article  MathSciNet  Google Scholar 

  19. Astrom, K.J., Bernhardsson, B.: Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In: 41st IEEE Conference on Decision and Control, pp. 2011–2016. IEEE, Las Vegas (2002)

    Google Scholar 

  20. Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 27(8), 1648–1658 (2019)

    Article  Google Scholar 

  21. Wang, Z., Lam, H.K., Chen, Z., Liang, B., Zhang, T.: Event-triggered interval type-2 fuzzy control for uncertain space teleoperation systems with state constraints. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE, (2020)

    Google Scholar 

  22. Lindgren, G., Rootzen, H.: Extreme values - theory and technical applications. Scand. J. Stat. 14(4), 241–279 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Z., Yue, X., Liu, L., Ge, S.S. (2022). Event-Triggered Adaptive Control for Practically Finite-Time Position-Constrained Tracking of Space Robot Manipulators. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics