Skip to main content

Two-Channel VAE-GAN Based Image-To-Video Translation

  • Conference paper
  • First Online:
  • 1552 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13393))

Abstract

We propose a VAE-GAN network with a two-channel decoder for addressing multiple image-to-video translation tasks, i.e., generating multiple videos of different categories by a single model. We consider this image-to-video translation as a video generation task rather than a video prediction that needs multiple frames as input. After training, the model only requires the first frame of the video and its corresponding attribute to generate the required video. The advantage of combining the Variational Autoencoder (VAE) and Generative Adversarial Network (GAN) is to avoid the shortcomings of both: VAE components can give rise to blur, and unstable gradients caused by the GAN. Extensive qualitative and quantitative experiments are conducted on the MUG [1] dataset. We draw the following conclusions from this empirical study: compared with state-of-the-art approaches, our approach (VAE-GAN) exhibits significant improvements in generative capability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aifanti, N., Papachristou, C., Delopoulos, A.: The mug facial expression database. In: 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, pp. 1–4 (2010)

    Google Scholar 

  2. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 5th International Conference on Learning Representations, ICLR, Toulon, France, 24–26 April 2017 (2017)

    Google Scholar 

  3. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. In: 6th International Conference on Learning Representations, ICLR 2018 (2018)

    Google Scholar 

  4. Baltrusaitis, T., Robinson, P., Morency, L.: Openface: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Compute Vision, WACV, Lake Placid, NY, USA, 7–10 March 2016, pp. 1–10 (2016)

    Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017, pp. 4724–4733 (2017)

    Google Scholar 

  6. Fan, L., Huang, W., Gan, C., Huang, J., Gong, B.: Controllable image-to-video translation: a case study on facial expression generation. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 3510–3517 (2019)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014)

    Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6626–6637 (2017)

    Google Scholar 

  9. Johson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. Computer Vision – ECCV 2016, pp. 694–711 (2016). https://doi.org/10.1007/978-3-319-46475-6_43

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015 (2015)

    Google Scholar 

  11. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction. CoRR (2018)

    Google Scholar 

  12. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.: Flow-grounded spatial-temporal video prediction from still images. In: Computer Vision - ECCV 2018 - 15th European Conference, pp. 609–625 (2018). https://doi.org/10.1007/978-3-030-01240-3_37

  13. Li, Y., Min, M.R., Shen, D., Carlson, D.E., Carin, L.: Video generation from text. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), pp. 7065–7072 (2018)

    Google Scholar 

  14. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: IEEE International Conference on Computer Vision, ICCV 2017, pp. 2813–2821 (2017)

    Google Scholar 

  15. Nam, S., Ma, C., Chai, M., Brendel, W., Xu, N., Kim, S.J.: End-to-end time-lapse video synthesis from a single outdoor image. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, June 16–20, 2019, pp. 1409–1418 (2019)

    Google Scholar 

  16. Pan, J., et al.: Video generation from single semantic label map. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 3733–3742 (2019)

    Google Scholar 

  17. Ronneberger, O., P.Fischer, Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241 (2015)

    Google Scholar 

  18. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: IEEE International Conference on Computer Vision ICCV Venice, Italy, 22–29 October 2017, pp. 2849–2858 (2017)

    Google Scholar 

  19. Salimans, T., et al.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29, pp. 2234–2242 (2016)

    Google Scholar 

  20. Shen, G., et al.: Facial image-to-video translation by a hidden affine transformation. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2505–2513 (2019)

    Google Scholar 

  21. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., WOO, W.C.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28, pp. 802–810 (2015)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, pp. 1–14. Computational and Biological Learning Society (2015)

    Google Scholar 

  23. Tulyakov, S., Liu, M., Yang, X., Kautz, J.: Mocogan: decomposing motion and content for video generation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1526–1535 (2018)

    Google Scholar 

  24. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, vol. 29, pp. 613–621. Curran Associates, Inc. (2016)

    Google Scholar 

  25. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: Forecasting from static images using variational autoencoders. In: Computer Vision – ECCV 2016 - 14th European Conference, pp. 835–851 (2016).https://doi.org/10.1007/978-3-319-46478-7_51

  26. Wang, T.C., et al.: Video- to-video synthesis. In: Advances in Neural Information Processing Systems, vol. 31, pp. 1144–1156. Curran Associates, Inc. (2018)

    Google Scholar 

  27. Wang, T., Cheng, Y., Lin, C.H., Chen, H., Sun, M.: Point-to-point video generation. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 27 October–2 November 2019, pp. 10490–10499 (2019)

    Google Scholar 

  28. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017, pp. 5987–5995 (2017)

    Google Scholar 

  29. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29, pp. 91–99. Curran Associates, Inc. (2016)

    Google Scholar 

  30. Zhang, C., Peng, Y.: Stacking VAE and GAN for context-aware text-to-image generation. In: Fourth IEEE International Conference on Multimedia Big Data, BigMM, Xi’an, China, 13–16 September 2018, pp. 1–5 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingyuan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2022). Two-Channel VAE-GAN Based Image-To-Video Translation. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13393. Springer, Cham. https://doi.org/10.1007/978-3-031-13870-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13870-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13869-0

  • Online ISBN: 978-3-031-13870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics