Is NLP-based Test Automation Cheaper than
Programmable and Capture&Replay?

Maurizio Leotta’ [0000-0001-5267-0602] Ejlippo Riccal[0000-0002-3928-5408] Gimone
Stoppa!, and Alessandro Marchetto?[0000—0002—6833—896.X]

! Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS)
Universita di Genova, Genova, Italy
maurizio.leotta@unige.it, filippo.riccalunige.it,
4251721@studenti.unige.it
2 University of Trento, Trento, Italy
alessandro.marchetto@unitn.it

Abstract. Nowadays, there is a growing interest in the use of Natural-Language
Processing (NLP) for supporting software test automation. This paper investigates
the adoption of NLP in web testing. To this aim, a case study has been conducted to
compare the cost of the adoption of a NLP testing approach, with respect to more
consolidated approaches, i.e., programmable testing and capture and replay testing,
in two testing tasks: test cases development and test case evolution/maintenance.
Even if preliminary, results show that NLP testing is quite competitive with respect
to the more consolidated approaches since the cumulative testing effort of a NLP
testing approach, computed considering both development and evolution efforts, is
almost always lower than the one of programmable testing and capture&replay
testing.

Keywords: Test Automation - Web Testing - NLP - Artificial Intelligence.

1 Introduction

End-to-End testing frameworks for web applications, such as e.g., Selenium WebDriver
and Selenium IDE are nowadays consolidated solutions because they have proven their
value in practice by reducing the cost of manual testing and improving the quality of
released applications [6]. For this reason, they are used in combination with continuous
integration to carry out continuous testing in DevOps processes [4].

However, the cost of test cases development, the cost of maintaining test cases, and
the need for experienced developers to develop test suites are limiting their adoption and
thus the benefits to the applications under test [9].

Recently, new tools and frameworks called code-less and based on Artificial intelli-
gence (Al) [17] — and more specifically on Natural Language Processing (NLP) — have
appeared on the market with the aim of reducing development and maintenance costs. The
novelty of NLP-based test automation tools/frameworks is that the test cases are written in
natural language and therefore even software testers with limited programming skills can
produce executable test cases.

2 M. Leotta et al.

Many vendors have understood the enormous potential of Al in the context of testing
and thus have proposed several different NLP-based test automation frameworks/tools
(e.g., TestSigma?®, TestRigor* and TestProject’) capable of interpreting and executing
test cases written in natural language. However, the benefits of this new category of
approaches, in terms of costs reduction, have not yet been demonstrated in the field and
thus, these are currently only promises.

The goal of our research is precisely to test NLP-based test automation tools/frame-
works by means of a case study and comparing them on different aspects — e.g., test suite
development and maintenance time — with more mature and consolidated solutions: i.e.,
with tools/frameworks belonging to programmable and capture&replay approaches.

Even if, at the moment, we are still a long way off, the contribution of this work is to
start laying the foundations towards an empirical knowledge base that is able to guide
project managers in choosing the most suitable category of testing frameworks/tools for
their purposes. At the moment, thanks to this case study, we have found that this new
generation of testing frameworks is very promising.

This paper is organized as follows: Section 2 sketches related works while Section 3
describes the three compared testing approaches used to implement E2E test suites (i.e.,
programmable, capture&replay, and NLP). Section 4 describes the main aspects of the
empirical study we carried out to compare the approaches, while Section 5 reports the
results of the study. Finally, Section 6 concludes the paper.

2 Related Work

In the literature, there is a growing interest in the adoption of techniques based on Natural
Language Processing (NLP) for supporting the software testing automation.

Garousi et al. [7] survey the state-of-the-art. Most existing works investigate ap-
proaches to conduct and automate NLP-based analysis (i.e., morphologic, syntactic, and
semantic NLP approaches) for assisting software testing in: (i) clustering related test
cases, e.g., [18], [12]; (ii) generating test cases and defining input values from requirement
specifications, written in natural language (NL), e.g., [19], [16]; and (iii) identifying test
oracles aiming at verifying exceptional software behaviors, e.g., [14]. Some approaches
adopt an intermediate representation, e.g., behavioral models represented as state ma-
chines, between the natural language specifications and the generated test cases and
test artifacts (e.g., [1], [5]). Gupta et al. [8] pointed-out relevant issues related to the
adoption of NLP in software testing: (i) requirement specifications are often constrained
to a specific structure that limits their expressiveness; (ii) intermediate behavioral models
are often large and complex since they need to be precise and comprehensive; (iii) manual
rectification of models is often required; and (iv) additional intervention is often needed to
obtain executable test cases.

The development of executable test cases is, in fact, a complex task when NLP
techniques are adopted. For instance, in the programmable testing approach, executable
test cases are developed according to the API/interfaces of the application under test.
In model-based testing, (quasi-executable) test cases are developed from an abstract
representation of the application under test (e.g., a UML model), thus transformation

3 https://testsigma.com/ ¢ https://testrigor.com/ ° https://testproject.io/

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 3

approaches are required to obtain executable test cases. Similarly, when NLP-based
approaches are used to support testing, adequate transformation approaches are required
to transform abstract test cases into executable test cases.

Requirement specifications are often written in natural language. Gherkin® is a
structured quasi-natural language that lets testers specify test cases by using a natural
language structured around a set of predefined keywords. Colombo et al. [3] convert
Gherkin specifications into models used within a web testing tool. In the work of Cauchi
et al. [2], Gherkin is adopted for improving the communication gap, about safety-critical
system properties, between developers and non-technical experts. Fitnesse is another
structured quasi-natural language adopted for specifying NL-based acceptance test cases.
Both Marchetto et al. [15] and Longo et al. [13] evaluate the adoption of Fitnesse. While
Marchetto et al. [15] compare Fitnesse with programmable acceptance test cases, Longo et
al. [13] compares the adoption of Fitnesse and Gherkin for writing acceptance test cases.

Differently from the literature, this work conducts a preliminary evaluation about the
adoption of NLP for test case development and evolution. To the best of our knowledge,
in fact, there is a lack in the literature of objective and comparative evaluations of the
proposed NLP methods with respect to more traditional approaches, e.g., programming
and capture&replay procedures, and others, in test case development and evolution [9-11].
We start filling the gap by reporting a cases study conducted in the Web testing domain.

3 Background

Gherkin is a test specification language that aims at providing a unique language for
specifying test cases. The Gherkin language is a structured language composed of a set of
keywords including the following ones:

Feature: provide a high-level description of the test
Example/Scenario: show an example of the test
Given: represent the initial context of the test

— When: describe an action occurred

And: another action occurred

Then: describe the result

The code in Listing 1.1 shows a small example in which Gherkin is used to specify a
test case for an online e-commerce application. The test aims at verifying the correct price
of a product when it is added to the shopping cart.

Several testing approaches can be adopted for the functional testing of web applications.
The choice among them could depend on different aspects including, e.g., the technology
used in the implementation of the application, the available tools (e.g., Selenium WebDriver
and Selenium IDE7), and the expertise of the involved testers [9]. In this work, we consider
three testing approaches: programmable testing (PT), capture&replay testing (CRT), and
NLP-based testing (NLT).

Programmable web testing (PT) is based on the manual implementation of test scripts
(test cases) using ad-hoc programming languages, e.g., Java, PHP. A test case is a script
composed of a set of instructions and programming commands written by developers and

S https://cucumber.io/docs/gherkin 7 https://www.selenium.dev

4 M. Leotta et al.

executed to exercise the application functionality. Often, testers can use libraries that
expose APIs for interacting with web applications and providing the use of commands,
e.g., click a button, fill fields and submit a form. Then, the test script is completed by
developers with input values and assertions to check the obtained execution results.

Listing 1.1. Example of test case specified with Gherkin

// Gherkin TC 1: TestVerifyPriceOfaSingleProduct
Feature: Add a product to cart and verify the price
Scenario: A Customer wants to add a product to the cart
Given the user views the homepage

When the user adds an item to the cart

And clicks to cart

Then the page shows the cost for the product on the cart

o U Ww N

Figure 1 shows a fragment of a programmable test script written adopting the design
pattern Page Object® that implements the Gherkin code 1.1 in Listing 1.1. @BeforeEach
and @AfterEach are constructs defining commands to be executed before and after the
execution of the test case body. In the body, methods provided by the Page Objects, such
as addFirstProductToCart that contribute to the logic of the test cases, i.e., add a
product to the shopping cart in our example, are provided. Assertions (assertEquals
condition) are used to verify the price of the product added to the cart. Selenium
WebDiriver is an example of tool supporting programmable web testing. The advantage
of programmable testing is its flexibility and the reusability of the test cases. In fact,
working with programming languages allows developers to directly handle in the scripts
conditional statements, loops, logging, exceptions, as well as to create parametric (i.e.,
data-driven) test cases. The drawbacks, however, are that: (i) developers need to be skilled;
(ii) to be effective, test development has to be subject to the programming guidelines and
best practices typically used for software development; and (iii) a remarkable initial effort
is required to develop test cases.

Command Target Value
ge test; 1 open http://localhost: 1111/
import static org.junit.Assert.assertEquals; 2 set window size 1792x1008
import static org.junit.Assert.assertTrue;
import org.junit.jupiter.api.AfterEach; 3 click linkText=Add to cart
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test; 4 click linkText=Cart 1
import org.openqa.selenium.¥ebD:
import org.openga.selenium.chrome.ChromeDriver; 5 click css=.card-body
import pageobject.CustomerInfoPO;
import pageobject.HomepagePo; 6 verify text oss=.my-auto €20.00
import pageobject.PaymentPO;
import pageobject.ProductP0; - click id=empty-cart
import pageobject.ShippingPO;
L ublic class UserTest { 8 click oss=.pushy-link
WebDriver driver; ? close
eseroresacn Fig. 2. Example of CRT test script
void setUp() throws Exception {
Systlem.setProperty (" Uy D
driver = new ChromeDriver(); Edit custom steps test case
driver.get (")i
) vttt
@AfterEach | testVerifySinglePriceProduct
void tearDown() throws Exception {
driver.close(); Steps
) - "
open url "http://simonetesting.ddns.net:1111"
@Test click "Add to cart"
public void testVerifyPriceSingleProduct() { click "Cart"
HomepagePO home=new HomepagePO (driver) ; check that page contains “20.00" on the right of "delete” button
home.addFirstProductToCart() ;
assertEquals (" “,home .getFirstProductPrice()) ;
) ¥ Single line should contain a custom step in format action “value”
1 1 Update and Restart
Fig. 1. Example of PT test script

8 https://martinfowler.com/bliki/PageObject.html Fig. 3. Example of NLP test script

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 5

Capture&replay web testing (CRT) is usually used for regression testing. This testing
approach is based on a first manual execution in which the tester manually exercises a
web application by using a tool that records the whole execution session, thus all user
events and interactions with the application elements, as well as all key pressed, mouse
movements, link clicks, scripts’ execution, are recorded. Test cases are scripts that are
automatically composed by the tool and that can be used to replay the recorded testing
sessions. Test cases are hence executed by re-executing the whole recorded sessions that
can be also enriched with assertions for checking the result of the re-execution. Testers
can also customize each re-execution by slightly changing input values and assertions,
that can also be parametric to make the test scripts more flexible. Figure 2 shows a
fragment of a test script recorded with a capture&replay tool that implements the Gherkin
code in Listing 1.1, as example. We see that the starting web page to test is defined
at the beginning of the test, then a set of c1ick operations have been performed by
the tester to add a product to the shopping cart, then the text content of a page element
is checked with an assertion (verify text). Selenium IDE is an example of tool
supporting capture&replay web testing. The advantage of capture&replay tools is that
they are relatively simple to use. Hence, even testers without programming skills are able
to build complex and complete test suites. The drawbacks, however, are that the resulting
test scripts (1) have a lot of duplicated code, (2) are difficult to read in case of complex
scenarios, and (3) contain hard-coded values (e.g., data inputs and page references and
objects) that make the test scripts strongly coupled with the web application under test
and as a consequence difficult to modify, e.g., for test maintenance and evolution purpose.

NLP-based testing uses NLP techniques to let testers write test scripts by using the
natural language. NLP, in fact, is the part of artificial intelligence that allows machines
to interpret natural language. The use of NLP techniques for testing purposes is still at
the infancy and its effectiveness has to be empirically investigated. Figure 3 shows a
fragment of a test script that implements the Gherkin code in Listing 1.1, as example. We
can see that the test script is written as a sequence of simple natural language sentences in
which verbs such as open, click, check, and their synonyms, are used to describe the
actions to be executed on the application under test. TestSigma, TestRigor, and TestProject
are three examples of commercial tools supporting natural language web testing. The
advantage of NLP testing is that it can help in reducing the effort required to human testers
for producing test cases. Furthermore, specific programming skills are not required as for
the programmable approach. NLP can be used to write test cases in natural language, to
transform such descriptions in executable test cases and to run them. The drawbacks,
however, are that an adequate transformation approach based on NLP techniques is
required to transform test cases written in natural language into executable test cases able
to exercise the application under test.

4 Case Study Design

This section details planning and design of the case study we conducted to compare three
web testing approaches: programmable testing (PT), capture&replay testing (CRT), and
NLP-based testing (NLT). In terms of tools supporting these three testing approaches, we
selected Selenium WebDriver (PT) and Selenium IDE (CRT) because they are well known

6 M. Leotta et al.

and used. As representative of the NLT available tools, we selected a commercial tool,
according to a preliminary analysis we conducted °. The rest of this section presents the
design of the case study.

4.1 Study Design

The goal of this study is to compare three web testing approaches, PT, CRT and NLT
with the purpose of assessing both short-term and long-term (i.e., across multiple releases)
effort required in two main testing scenarios: (1) test case development and (2) test
case evolution. In fact, we are mainly interested in comparing the effort required for
the implementation of the initial test suites from scratch, and the effort required for the
evolution of the test suites across subsequent releases of the applications. The results
of the study can be useful for (i) practitioners (developers and managers), interested in
understanding the usual costs and the possible returns of their investment associated with
the adoption of the different web testing approaches; and (ii) researchers, interested in
collecting empirical evidence about the usage of the different testing approaches.

The context of the study is defined as follows. The involved human subjects are: one
of the authors, who defined the test specifications, and a junior professional web developer,
who developed the test cases with the three approaches. The objects of the study are three
open-source web applications.

4.2 Software Objects

To perform our experiment, we took into account three web applications (experimental
objects) named: ExpressCart, Shopizer and OIM. These applications have been selected
since they are: (1) medium-size applications; (2) quite representative of usual web applica-
tions in terms of functionality they provide and technology they use, i.e., programming
languages, databases, libraries and frameworks; and (3) there are at least two major
releases available (minor releases have not been considered since small changes between
the applications releases lead to a large reuse of test cases, thus limiting the amount of
empirical data for our study). This last point is relevant for the estimation of the test case
evolution effort, i.e., the effort required to evolve and reuse the test cases for more than
one software release. For each application, hence, we consider two subsequent major
releases extracted from the application code repository that expose both logical and
structural changes. While a logical change is a change in a system functionality that
foresees the modification of the process underlying the specific functionality, a structural
change is instead a change on the application structure that implies only some changes to
the elements, e.g., of the application GUI layout/structure.

ExpressCart'? is an e-commerce application that implements functionalities such as:
shopping carts, payment methods, and administrative functions. The application is very
rich and dynamic: it is mainly written in Javascript, by using frameworks such as Node.js
and Express.js. Shopizer!! is another e-commerce application, mainly written in Java,

® Being a commercial tool, we think it is better not to disclose its identity. In
all cases, the other NLP tools considered were also very similar to the one
chosen. 'O https://expresscart.markmoffat.com/documentation.html (last access: February 2022)
' https://shopizer-ecommerce .github.io/documentation/#/starting (last access: February 2022)

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 7

that implements functionalities such as: catalog management, shopping carts, marketing
components, smart pricing management, ordering, payment and shipping management.
OIM'? is an inventory management that implements transactions management, raw
material management, batch, supplier, items, categories, and storage management. The
application has been mainly developed in PHP by using AppGini'?, a web-database
framework for applications building.

4.3 Research Questions and Metrics
The research questions of our study are the following ones:

— RQ1: Developing Time. What is the initial development effort required for creating
test suites by adopting NLT with respect to more traditional approaches such as PT
and CRT?

— RQ2: Reuse. How much of the test suites generated by adopting NLT can be reused
"as-is” with respect to more traditional approaches such as PT and CRT, when a new
release of the application needs to be tested?

— RQ3: Evolution Time. What is the effort required for the evolution of test suites
generated by adopting NLT with respect to the effort required to evolve test suites
developed with traditional approaches such as PT and CRT, when a new release of the
application needs to be tested?

— RQ4: Trend in Releases. How the cumulative effort (i.e., combining development
and evolution effort) required by NLT varies in the time, with respect to the one
required for applying traditional approaches such as PT and CRT, by considering
several different application releases?

The first research question deals with the development cost in terms of time required
to develop test suites from test specifications. We aim at verifying whether the adoption
of NLT is costly in terms of required time, with respect to the time required to apply
the more traditional approaches, PT and CRT. This could give practitioners an idea of
the initial investment to be made to adopt the testing approaches. To answer RQ1, we
measured the test suite development effort in terms of time (minutes) needed by a tester to
develop the executable test cases. We compared the different efforts and estimated the
ratio between NLT and the more traditional approaches.

The second research question deals with the resilience to changes of the developed
test suites. We aim at verifying the capability of the testing approaches in developing test
suites that can be reused to test new major releases of the application under test. This
could give practitioners an idea of the capability of the testing approach to implement
reusable test suites, i.e., suites that can be reused (as-is) to test a new software release. To
answer RQ2, we considered the next major release of each web application under test (,2)
and counted the number of test cases reusable (as-is) for testing this new release, i.e., for
which the execution does not fail in the new application release.

The third research question deals with the evolution cost required to evolve test suites
by making them working for testing the new major release of the application under test.

12 https://bigprof.com/appgini/applications/online-inventory-manager (last access: February 2022)
13 https://appgini.en.softonic.com/

8 M. Leotta et al.

We aim at verifying whether a testing approach requires additional evolution costs, with
respect to others, and we aim at estimating the ratio between the different costs. This
could give practitioners an idea of the effort to be provided to make test suites usable for
more than one software release. To answer RQ3, we considered the next major release of
each web application under test and we evolved the initially developed test suites so as to
make them usable also for testing this new release. We, hence, measured the test suite
evolution effort, in terms of time (minutes) needed by a tester to fix the test cases that
cannot be executed directly with the new application release (,2).

The last research question is about the return on investment conducted for the adoption
of the testing approaches. We aim at verifying how the cumulative testing effort (computed
combining development and evolution effort) required to apply the NLT approach varies
over the time and the application releases, with respect to the one required to apply the
more traditional approaches PT and CRT. This could give practitioners an idea of the
overall effort needed. To answer RQ4, we computed the cumulative testing effort for each
approach as proposed in [9] and estimated the number of application releases after which
the cumulative effort trend changes. For instance, let Cy and Ny the effort required for the
initial development of CRT and NLT test cases, respectively, and let Cq, Ca,... and N1, Ny
the test case evolution effort associated with the successive application releases. We are
seeking the lowest value n such that: Y _ C; > > _ N,. That value corresponds to
the release number after which NLT test cases start to be cumulatively more convenient
than CRT ones. Under the assumption that C; = C V¢ > 0 and that N; =N Vi > O i.e.,
the same evolution effort is required for the software releases, we can find the following
solution to the equation above: % Hence, after n releases, the cumulative effort of
the initial development and evolution of NLT test cases is lower than the one of CRT test
cases. It is worth to notice that a negative value obtained for n means that the cumulative
cost of the NLT is always lower than the one of CRT. Similarly we can estimate the value
of n for NLT vs PT and CRT vs PT. By estimating n, we could give practitioners an idea
about when the investment in the adoption of a given testing approach could become of
interest with respect to the other testing approaches, considering both development and
evolution effort.

4.4 Procedure

In the study, programmable testing, capture&replay testing, and NLP-based testing have
been adopted in two different testing tasks: (i) test case development and (ii) test case
evolution. Two sub-sequent application releases of the objects of the study have been
considered: ExpressCart,; / ExpressCart,o, Shopizer, / Shopizer,s, and OIM,,; / OIM,,5.
In detail, the following procedure has been applied.

1. A preliminary training phase has been organized by asking the junior developer to
test the PetClinic'* application with the three different testing approaches, by starting
from Gherkin test specifications, thus to practice them and their corresponding tools.

2. Each application and artifact (e.g., code and documentation) has been analyzed by the
junior developer and by one of the authors to acquire knowledge about them, their
functionalities, and the technology used to implement them.

' https://projects.spring.io/spring-petclinic

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 9

3. A test suite specification has been defined by one of the authors by describing a set of
end-to-end functional test cases for each application object of the study: ExpressCart,
Shopizer, and OIM. The main functionalities provided by each applications’ version
»1 considered in the study have been covered at least once (mainly covered only
normal cases, and not many corner cases). The test cases have been specified using
the Gherkin language.

4. Test cases development: PT, CRT and NLT have been used, by the involved developer,
for implementing the previously created test cases specifications for ExpressCart,,
Shopizer,;, and OIM,;. In other terms, three executable test suites have been
developed for testing the first release of the applications under test by using the
three different tools considered in this case study. The three developed test suites
are equivalent from the functional point of view, since they test exactly the same
functionalities and have been developed by trying to adhere to the defined test
specifications.

5. Test case evolution:

— The executable test suites built at the previous point have been executed, by the
developer, on the second application releases (i.e., ExpressCart, 2, Shopizer,s,
and OIM,,») and identified the failing test cases, i.e., those test cases that, due to
application changes between the first and the second application release, report a
failure or an error.

— Both structural and logical changes implemented in ExpressCart,o, Shopizer, s,
and OIM, -, with respect to the previous release of the same application, have
been identified and considered.

— The failed test cases have been repaired, by the junior developer, so that the full
test suites can be executed without problems also in the second release (,2) of the
applications under test.

During the whole process, the development effort required for the development of the
three test suites, as well as the evolution effort required for the evolution of the test suites,
have been measured by the junior developer noting down the times. To balance as much
as possible the learning effects in the experiment, the order of test suite development and
evolution has been alternated. Finally, metrics (i.e., test cases development and evolution
time, number of failed test cases, and cumulative effort trend) needed to answer the four
research questions, have been analyzed.

4.5 Threats to Validity

Internal validity threats concern factors that may affect a dependent variable that are not
considered in the study. The most relevant threat to the internal validity concerns the
subjectivity and variability of the test cases implementation task, e.g., selection of the
application functionalities to test, definition of test steps and input data. We tried to limit
this threat by involving two persons, one for the definition of the test specifications and
another one (the junior developer) for the test development, and by applying well-known
testing criteria. Another (possible) impacting threat is related to the learning effect during
the test case development and evolution tasks. As explained, we tried to consider it in the
experiment design by altering the order of test suite development and evolution. Construct

10 M. Leotta et al.

validity threats concern the relationship between theory and observation. The most relevant
threat to the construct validity concerns the use of time (development and evolution time)
as measure of the testing effort. Even if we are conscious that it is questionable since
several different aspects could impact the testing effort, we consider time as a reasonably
proxy for estimating the testing effort since it is a widely adopted practice in the empirical
software engineering. Another threat concern the fact that test cases have been specified in
Gherkin: such specifications can be considered quite similar to the one used for NLT. On
the one side, however, Gherkin test cases are abstract while NLT test cases are concrete
test scripts characterized by executable steps, specific input values and assertions to check
the output. Moreover, on the other side, this mimics what normally happens in the industry
where E2E test cases are often specified in natural language.

Conclusion validity concerns the relationship between the treatment and the outcome.
To analyze the data and answer the research questions of interest we chose to use non-
parametric tests (i.e., Wilcoxon paired test), due to the size of the sample and because
we could not safely assume normal distributions. Moreover, we applied corrections
(specifically, Holm correction) to the statistical tests due to multiple re-executions.

External validity threats are related to the generalization of the results. The most
relevant threat to external validity concerns the involvement of only one junior developer.
Concerning this point, the involved developer has some industrial experience in the Web
domain and testing with Selenium WebDriver and thus is a good representative of junior
web developers, in general. Moreover, it is important to underline that the case study
is challenging and time-consuming and therefore finding candidates to re-execute it is
not easy. Another threat could be related to the applications adopted in the study. The
applications are medium-size, realistic and representative of their domain, and based on
modern technologies and languages. Other potentially impacting threats are related to
the developed test suites and the used tools. Test suites have been developed as much as
possible by following a systematic approach and by constructing, at least, one test case
for each functionality provided by the applications. In terms of adopted tools, we used
third-party frameworks/tools, well-known and available on the Internet, thus avoiding any
bias of the authors.

5 Analysis of Results

5.1 RQI1: Developing Time

Table 1 reports general information about the developed test suites in terms of number
and characteristics (e.g., lines of code) of test cases developed. To compare the CRT and
PT code, we exported the native Selenese code (column “Sel”’) — the language used by
Selenium IDE — in Java using the export feature provided by Selenium IDE. In two
cases, as expected, the Java test code (excluded the page objects - POs) is shorten than the
CRT one, while in the case of Shopizer, this does not happen since several manual waits
has been added by the junior developer in the PT code (on the contrary, CRT manages
automatically such cases). Moreover, it is interesting to note that the number of NLT
test case lines are always less than the number of Selenese lines: this is reasonable since
Selenium records every interaction with the web application (e.g., click on a “name” field
+ type “John’: i.e., 2 lines) while NLT provides a higher level view (e.g., write “John” in

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 11

the “name” field: i.e., 1 line). The last column of the table shows the average number of
steps for the NLT test cases.

#Test Code
Application | cases PT CRT NLT
test LOCs | PO LOCs | Total LOCs | #PO | Sel lines | Java LOCs | Lines | AVG Lines
ExpressCart | 40 842 932 1774 18 635 934 361 9.0
Shopizer 28 506 483 989 7 273 417 150 5.3
OIM 32 462 1065 1527 18 552 765 351 10.9

Table 1. Test suites code details

Table 2 reports the total test suite and average test case development effort (expressed
in minutes) and the statistical difference observed (if any) between the distributions of the
test development effort, to compare PT and CRT with NLT, computed using the Wilcoxon
paired test with Holm correction. The last two columns report the effort ratio measured
between PT and CRT with NLT. For instance, a value higher than 1 in the ratio between
PT and NLT means that the PT test suite required more development effort (time) than the
corresponding NLT test suite.

Total Average p-value Ratio
Application Time (min) Time (min) PT- CRT- PT/ | CRT/
PT CRT | NLT | PT | CRT | NLT | NLT NLT | NLT | NLT
ExpressCart | 315.7 | 45.8 | 156.6 | 9.6 14 4.7 <0.01 | <0.01 | 2.02 | 0.29
Shopizer 225.1 | 47.7 754 8.0 1.7 2.7 <0.01 | <0.01 | 298 0.63
OIM 3104 | 86.4 932 | 10.0 2.8 3.0 <0.01 0.07 3.33 0.93

Table 2. Test suite development time (minutes)

That Table shows that the development effort for PT is always higher than for NLT
(p-value < 0.01), while there is also a trend, statistically relevant for two out of three
applications, for which the development effort for NLT is higher than the one of CRT.
This is confirmed by the ratio (last columns of Table 2), indeed PT required more effort
than NLT (PT/NLT ratio value is higher than 1) and CRT required less effort than NLT
(CRF/NLT ratio is lower than 1). The observed result shows that PT requires more
development time than NLT, since the former requires to develop the testing code (e.g., in
Java) and the latter requires only to describe the test scenarios using a step-by-step natural
language description (e.g., derived from the Gherkin descriptions). At the same time, the
result of our case study shows also that CRT allows to produce test cases faster than NLT.
In fact, the NLT approach requires, unlike CRT, the analysis of the description of test
scenarios (written in Gherkin), their conversion in step-by-step actions/steps that exercise
the application under test, and the definition of the needed input values. By analyzing the
developed NLT test cases, we noticed that the junior developer tried to describe the test
actions/steps by using a simple natural language, avoiding complex linguistic constructs;
this was done to simplify the task and to avoid problems of understanding by the NLT
tool.

RQ1. Summarizing, with respect to the research question RQ1, we can observe that: (i)
the programmable test suites (PT) required the largest initial development effort; and (ii)
there is a trend for which natural language test suites (NLT) require more effort compared
to that required for capture&replay (CRT) suites.

12 M. Leotta et al.

5.2 RQ2: Reuse

Table 3 reports some information about the fixed/repaired test cases, i.e., those test cases
developed for testing the application release ,,; and that failed in exercising the application
release .2, thus requiring some effort to be fixed. In particular, Table 3 reports, for each
testing approach, the number of fixed test cases (column “Fixed”) and also the statistical
difference (if any) between PT and CRT with NLT distributions, computed by using the
Wilcoxon paired test with the Holm correction.

PT CRT NLT p-value

Application # Test #Test #Test PT- CRT-

Fixed Fixed Fixed NLT NLT
ExpressCart 19 23 19 0.33 1
Shopizer 17 16 17 1 1
OIM 26 28 15 0.01 0.03
total 62 67 51 - -
average 20.7 227 17

Table 3. Test suites evolution: changes

About the fixed test cases, we mainly observe trends that are not statistically relevant
in most of the cases, apart for OIM. While for OIM, we observed that tests to be repaired
differ significantly between PT/CRT and NL, for the other two applications no relevant
difference has been observed. In general, we can observe that a large amount of test cases
needs to be fixed (in the range between 48% and 90%). CRT has the largest number of
test cases to be fixed, on average 73%, and variability for application under test 17% with
respect to PT (respectively 67% and 14%) and NLT (respectively 56% and 6%).

As we have already said, the changes between the two selected versions of the web
applications ,; and .2 considered in the experimentation were of two types: structural and
logical. The number of structural changes were the following: ExpressCart 14, Shopizer 9
and OIM 9. While the logical changes were: ExpressCart 6, Shopizer 8 and OIM 14. It is
possible to note that the number of changes is well distributed both between applications
and types.

As expected, PT and CRT show overall a similar levels of reusability (see Table 3)
since they are based on the same DOM-based interaction paradigm. More interesting is
the result of NLT that appears to be able, on average more often than the other approaches,
to compensate for the change and thus finding a working solution in the novel version
of the app. This is due to the fact that the NLT actions are more abstract (e.g., Enter
“John” into “name” field) than the one required in the PT and CRT approaches (e.g.,
driver.findElement(By.xpath("//*[@id="user-name’]")).sendKeys("John"); where the web
element is localized using a XPath expression) that suffer more from changes to the DOM.
RQ2. Summarizing, with respect to the research question RQ2, we can observe that:
(i) the capture&replay suites (CRT) show the lowest reusability, while (ii) the natural
language suites (NLT) show the highest test case reusability.

5.3 RQ3: Evolution Time

Table 4 reports (i) general information about the evolution test suites effort in terms of
time (expressed in minutes) required to fix the failed test cases and (ii) the statistical
difference observed between the distributions of the test evolution time to compare PT

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 13

and CRT with NLT, which is computed using the Wilcoxon paired test with the Holm
correction. The Table also reports the evolution effort ratio measured between PT and CRT
with NLT. For instance, a value higher than 1 in the ratio between PT and NLT means that
the PT test suite required more evolution time than the corresponding NLT test suite.

Total Average p-value Ratio
Application Time (min) Time (min) PT- CRT- PT/ CRT/
PT | CRT | NLT | PT | CRT | NLT | NLT | NLT | NLT | NLT
ExpressCart | 88.1 | 95.6 | 447 | 2.7 2.9 1.3 0.01 0.04 1.97 2.14
Shopizer 62.0 | 30.1 425 | 22 1.1 1.5 0.03 0.66 1.46 0.71
OIM 62.6 | 609 | 385 | 2.1 2.0 1.2 0.08 0.06 1.63 1.58

Table 4. Test suite evolution time (expressed in minutes)

From Table 4 it is apparent that: (i) PT required a higher evolution effort of NLT in all

the applications; and (ii) CRT required a higher evolution effort than NLT in two out of
three applications. Indeed, the penultimate column of Table 4 shows that PT has a ratio
greater than 1 with respect to NLT. While CRT shows, with respect to NLT (last column),
a ratio greater than 1 in two out of three applications. The fact that NLT requires less time
to evolve the failed test cases with respect to PT is reasonable since in such a case no
programming activities are required and to complete the maintenance task it is enough
to edit the test description text. On the other hand, NLT is also faster than CRT for two
applications out of three: also in this case edit the test description text seems to be simpler
than directly editing the Selenese code, or re-recording the entire scenario. In the case of
Shopizer, we can observe that the evolution time of NLT is higher of about 12 min with
respect to CRT. This is explainable why the novel version of the application introduced a
banner for the user-management of the cookies not straightforward to be managed using
the NLT tool. The banner requested, in NLT, a few attempts before finding the correct
interaction solution while in the case of CRT a simple recording of the interaction with
the approve button was sufficient to solve the problem.
RQ3. Summarizing, concerning the research question RQ3, we can observe that: (i) the
programmable test suites (PT) required a higher evolution effort compared to NLT; and (ii)
the evolution effort required by the capture&replay suites (CRT) shows a high variability
(but in two cases out of three is higher than the one required for NLT).

5.4 RQ4: Cumulative Effort

Table 5 reports the estimated application release n in which we foresee a significant
change of the cumulative testing effort trend. Concerning the adoption of NLT, Table 5
shows that the cumulative testing effort of NLT is almost always lower than the one of PT
and CRT, apart the case of Shopizer for CRT. The three negative values for n in column
PT-NLT confirm what reported in the previous tables: NLT cost less during the initial
development and also the cost of each evolution step is lower. Thus, the straight lines
representing the cumulative costs never intersect for any positive value of n. Moreover,
the two positive values of n in column CRT-NLT means that NLT have an initial higher
cost w.r.t. CRT but just after a few releases the cumulative costs of NLT are lower since it
requires lower maintenance costs. The only exception is the case of Shopizer, where both
the development and evolution costs are lower for CRT, meaning that CRT show a lower
cumulative cost for any positive value of n. Also in this case the explanation could be
attributable to the introduction of the banner (see the answer to RQ3).

14 M. Leotta et al.

Application releases: n

Application PT-NLT CRT-NLT

ExpressCart NLT costs less for n >-3.6 NLT costs less for n > +2.2
Shopizer NLT costs less for n >-7.7 CRT costs less for n >-2.2
OIM NLT costs less for n > -9.0 NLT costs less for n > +0.3

Table 5. Evolution cost: an approach that costs less starting from a release n<0 means that it costs
less for both the initial development and the evolution costs.

RQ4. Summarizing, with respect to the research question RQ4, we can observe that
overall the natural language suites (NLT) required the lowest cumulative testing effort
with respect to the other approaches (i.e., PT and CRT) with only one exception (Shopizer
that costs less when adopting CRT).

6 Conclusions

This paper reports a study conducted to compare NL-based web testing (NLT) and two
more traditional testing approaches, i.e., programmable testing (PT) and capture&replay
testing (CRT). The comparison is based on: the effort required for developing test suites;
the resilience to changes and the effort required to evolve test suites; and the overall effort
needed to apply each testing approach over multiple application releases.

Results show that: (i) NLT requires less development effort than PT but more effort
than CRT; (ii) NLT shows the highest test case reusability, as well as (iii) the lowest
evolution effort in most of the cases, with respect to traditional approaches; and (iv) NLT
tends to require the lowest cumulative testing effort over the time, with respect to other
approaches (we observed only an exception in one of the considered web application
using CRT).

For the future, we are planning to: (i) conduct a larger study by extending the set
of the considered web applications and involving others developers, currently we have
involved only one participant, aiming at consolidating the obtained results; (ii) consider
different tools than Selenium IDE/WebDriver and the one for NLT to support the obtained
results, and (iii) conduct a study to estimate the expressiveness of the natural language
used to develop test cases with the NLT approach and to exploit the potentiality of the
engine underlying the NLT approach (i.e., the engine used to transform natural language
based test cases into executable test cases).

References

1. Carvalho, G., Falcdo, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burnc, M.: Nat2testscr: Test case generation from natural language requirements
based on scr specifications. Science of Computer Programming 95, 275-297 (2014).
https://doi.org/10.1016/j.scico.2014.06.007

2. Cauchi, A., Colombo, C., Francalanza, A., Micallef, M., Pace, G.: Using gherkin to
extract tests and monitors for safer medical device interaction design. In: 8th Sym-
posium on Engineering Interactive Computing Systems (SIGCHI). ACM (jun 2016).
https://doi.org/10.1145/2933242.2935868

3. Colombo, C., Micallef, M., Scerri, M.: Verifying web applications: From business level specifi-
cations to automated model-based testing. Electronic Proceedings in Theoretical Computer
Science 141, 14-28 (mar 2014). https://doi.org/10.4204/eptcs.141.2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Is NLP-based Test Automation Cheaper than Programmable and Capture&Replay? 15

. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Software 33(3), 94-100

(May 2016). https://doi.org/10.1109/ms.2016.68

. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.: SPEC-

MATE: Automated creation of test cases from acceptance criteria. In: 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE (oct 2020).
https://doi.org/10.1109/icst46399.2020.00040

. Garcia, B., Gallego, M., Gortézar, F., Organero, M.: A survey of the selenium ecosystem.

Electronics 9, 1067 (06 2020). https://doi.org/10.3390/electronics9071067

. Garousi, V., Bauer, S., Felderer, M.: NLP-assisted software testing: A systematic map-

ping of the literature. Information and Software Technology 126, 106321 (oct 2020).
https://doi.org/10.1016/j.infsof.2020.106321

. Gupta, A., Mahapatra, R.P.: A circumstantial methodological analysis of recent studies on NLP-

driven test automation approaches. In: Intelligent Systems, pp. 155-167. Springer Singapore
(2021). https://doi.org/10.1007/978-981-33-6081-5_14

. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-Replay vs. Programmable Web

Testing: An Empirical Assessment during Test Case Evolution. In: Proceedings of 20th
Working Conference on Reverse Engineering (WCRE 2013). pp. 272-281. IEEE (2013).
https://doi.org/10.1109/WCRE.2013.6671302

Leotta, M., Clerissi, D., Ricca, F,, Tonella, P.: Visual vs. dom-based web locators: An empirical
study. In: Sven Casteleyn, Gustavo Rossi, M.W. (ed.) Proceedings of 14th International
Conference on Web Engineering (ICWE 2014), LNCS, vol. 8541, pp. 322-340. Springer
(2014). https://doi.org/10.1007/978-3-319-08245-5_19

Leotta, M., Clerissi, D., Ricca, F., Tonella, P.. Approaches and tools for au-
tomated end-to-end web testing. Advances in Computers 101, 193-237 (2016).
https://doi.org/10.1016/bs.adcom.2015.11.007

Li, L., Li, Z., Zhang, W., Zhou, J., Wang, P., Wu, J., He, G., Zeng, X., Deng, Y., Xie, T.:
Clustering test steps in natural language toward automating test automation. In: 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM (nov 2020). https://doi.org/10.1145/3368089.3417067

Longo, D.H., Vilain, P., da Silva, L.P.: Measuring test data uniformity in acceptance tests for
the FitNesse and gherkin notations. Journal of Computer Science 17(2), 135-155 (feb 2021).
https://doi.org/10.3844/jcssp.2021.135.155

Malik, M., Sindhu, M., Abbasi, R.: Test oracle using semantic analysis from natural lan-
guage requirements. In: 22nd International Conference on Enterprise Information Systems.
SCITEPRESS (2020). https://doi.org/10.5220/0009471903450352

Marchetto, A., Ricca, F., Torchiano, M.: Comparing "traditional" and web specific fit tables in
maintenance tasks: A preliminary empirical study. In: 12th European Conference on Software
Maintenance and Reengineering. IEEE (apr 2008). https://doi.org/10.1109/csmr.2008.4493327
Pribisalic, M.: Automatic generation of test cases from use-case specification using natural
language processing. In: 33rd Bled eConference - Enabling Technology for a Sustainable
Society. pp. 725-734 (2020). https://doi.org/doi.org/10.18690/978-961-286-362-3.52

Ricca, F,, Marchetto, A., Stocco, A.: Ai-based test automation: A grey literature analysis. In:
IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). pp. 263-270 (2021). https://doi.org/10.1109/ICSTW52544.2021.00051

Tahvili, S., Hatvani, L., Ramentol, E., Pimentel, R., Afzal, W., Herrera, F.: A novel
methodology to classify test cases using natural language processing and imbalanced
learning. Engineering Applications of Artificial Intelligence 95, 103878 (oct 2020).
https://doi.org/10.1016/j.engappai.2020.103878

Wang, C., Pastore, F., Goknil, A., Briand, L.C.: Automatic generation of acceptance test
cases from use case specifications: An NLP-based approach. IEEE Transactions on Software
Engineering 48(2), 585-616 (feb 2022). https://doi.org/10.1109/tse.2020.2998503

