
Application of Validation Obligations to Security
Concerns?

Sebastian Stock , Atif Mashkoor , and Alexander Egyed

Johannes Kepler University Linz, Austria
firstname.lastname@jku.at

Abstract. Our lives become increasingly dependent on safety- and security-
critical systems, so formal techniques are advocated for engineering such
systems. One of such techniques is validation obligations that enable for-
malizing requirements early in development to ensure their correctness.
Furthermore, validation obligations help hold requirements consistent in
an evolving model and create assurances about the model’s completeness.
Although initially proposed for safety properties, this paper shows how
the technique of validation obligations enables us to also reason about
security concerns through an example from the medical domain.

Keywords: Validation obligations · Security-critical systems · Model-
driven engineering · Formal methods

1 Introduction

As software systems become more and more responsible for our daily life expe-
riences, it is natural to discuss how to engineer them to ensure their safety and
security. Both safety and security are already mature disciplines, and individual
processes for dealing with the domain-specific problems are available such as
attack trees [14] for security concerns or model checking [7] for safety properties.
However, as pointed out in literature (e.g., see [3,11]), there are a limited amount
of cross-cutting techniques available at our disposal, which are capable of being
used effectively in both domains.

A validation obligation (VO) [10] is a logical formula associated with the cor-
rectness claim of a given validation property. This technique helps formalize and
validate software systems, thus ensuring their overall correctness. While initially
proposed for the safety domain, we believe VOs are equally beneficial for validat-
ing security concerns in software systems. The benefit of applying VOs to assert
the correctness of security concerns lies within the unified approach offered by
VOs for modeling all sorts of proprieties, e.g., safety, security, and functional
? The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N. The work of Sebastian Stock and Atif Mashkoor
has been partly funded by the LIT Secure and Correct Systems Lab sponsored by
the province of Upper Austria.

ar
X

iv
:2

20
7.

03
20

9v
1 

 [
cs

.L
O

] 
 7

 J
ul

 2
02

2

https://orcid.org/0000-0002-2231-8656
https://orcid.org/0000-0003-1210-5953
https://orcid.org/0000-0003-3128-5427 


2 S. Stock et al.

properties. In this fashion, we do not need individual correctness assurance ap-
proaches for each set of requirements, which can cause problems while keeping
the model consistent. VOs, substantiated with multiple formal techniques, offer
a property-agnostic approach for checking completeness and conflict freeness of
models.

This paper aims to investigate the application of VOs for the correctness
assurance of security concerns. The rest of the paper is structured as follows:
Section 2 discusses the Event-B method – the formal method we have used in
our approach. Next, Section 3 introduces the idea of VOs. Then, we exemplify
the application of VOs to security concerns in Section 4 using an example from
the medical domain. Next, Section 5 compares the current approaches with VOs
for formal modeling of security-critical systems. Finally, we conclude the paper
in Section 6 with an outlook on future work.

2 The Event-B method

State-based formal methods [9] enable modeling systems with a strict formal
syntax, thus allowing to establish correctness assurance with techniques like
model checking and theorem proving. This establishes the model’s consistency
and shows that the model does not lead to a faulty state. Furthermore, state-
based formal methods follow the correct-by-construction approach meaning that
the model is incrementally enriched with behavior while the correctness of each
step is ensured.

One of the well-known state-based formal methods is Event-B [1]. In Event-B
states are made up of variables that are constrained by invariants. Events
define transitions between the states. A model can be refined via the refines
keyword. This means the original specification is advanced concerning variables
or events. This refinement relationship, however, needs to be proven to ensure
that existing model constraints are not violated in the process of refinement.
This is done through proofs. contexts define the static elements of a model and
are seen by machines defining the dynamic behavior.

3 Validation obligations

A VO is composed of a model and a validation task (VT) that must be success-
fully executed on the model. Once a VT is successfully executed, it establishes
the presence of the associated requirement. A VT comes in different forms, e.g.,
(LTL) model-checking, proof obligations (POs), or even manual inspection of
the state space. The input parameters of each VT depend upon the associated
requirement. For example, for the LTL model checking, the VT gets an LTL
formula as an input parameter. It is the judgment of the designer which VT is
best suited to the cause and what are its appropriate parameters. Following is
the formal definition of a VO:



Application of Validation Obligations to Security Concerns 3

V Oid = V Tid/V Tcontext/V Ttechnique : V Tparameters

As a VO is assigned to a requirement, an id uniquely identfies it. The assigned
VT has also an id to identify it. In the area of VOs context refers not to the
context of machines as defined earlier but to the context the VO is applied in,
i.e., the model we investigate. Second last is the applied technique, e.g., model
checking, and last are the input parameters, e.g., the LTL formula.

The concept of VOs should be seen as a carrier technology. It is not bound
to a particular formal method. In fact, VOs can be applied to all state-based
formal methods alike. In this paper, however, we use Event-B only to exemplify
the proposed approach. Following that, we argue that we can validate everything
we explicitly model.

The power of VOs comes from three aspects.

1. By connecting requirements to VOs, designers can rely on the associated VTs
for compliance. Once the VO composed of VTs is successfully discharged,
it shows the presence of the associated requirement in the model. If the
designers change the model subsequently, they can execute the VTs again
and assure themselves of the requirement’s presence in the evolved model.

2. Having all requirements written as VOs lets designers quickly spot conflicting
requirements. For example, if requirements are correctly translated into VTs
but contradict each other, one of the VOs will fail. In this case, stakeholders
can reevaluate the associated requirements.

3. VOs open up the ability to view a model from perspectives outside the
classical top-down refinement chain. These views can fall into the following
categories: (1) abstract views with which we can safely drop information not
necessary for reasoning about a VO, and (2) instantiation or scenario views,
which transform the abstract model into a concrete example. The output of
the associated validation task can give insight into how the view behaves, and
the instantiation view can also provide multiple examples of the behavior.
Emerging requirements stemming from this exercise can find their way back
into the model.

4 Application of VOs to security concerns

We now show the application of VOs to establish the correctness of security
concerns through the example of a hemodialysis machine model. As aforemen-
tioned, we believe that security concerns can be treated like other properties
when developing models, which is an advantage as there is no need for their
special treatment, thus making the overall modeling process simpler.

4.1 Illustrative example

Hemodialysis is a medical treatment that uses a device to clean the blood. The
hemodialysis device transports the blood from and to the patient, filters waste



4 S. Stock et al.

and salts from the blood, and regulates the fluid level of the blood. Due to the
involved complexity of the dialysis process, the resulted medical treatment is
monitored by a professional caregiver for treatment compliance and desired out-
put. Traditionally hemodialysis is performed in a standalone mode, i.e., patients
come to a medical facility, get connected to the device, and let dialysis be per-
formed. However, this monitoring is also possible via remote access but demands
additional security precautions. The basic architecture of hemodialysis machines
is depicted in Figure 1. The requirements specification of hemodialysis machines
is discussed in detail in the work of Mashkoor [8].

Fig. 1: Architecture of hemodialysis machines

We first design an abstract model and then refine it to show that VOs can be
used to gain confidence in the soundness and conflict freeness of the requirements.
We then extend the example a second time to show the advantages of creating
views on a model. Creating a view means in our context that we keep the abstract
model in the background but only focus on one detailed aspect of the model at
a time. This helps better understand a model’s behavior or debug it by only
viewing what is necessary to satisfy a particular requirement.

4.2 Formal model

We start the modeling process with a small subset of the hemodialysis machine
requirements specification. We also add some additional security concerns as
follows.

– SAF1: In order to start the treatment, the parameters must be within the
permissible range.

– FUN1: There are three types of staff IDs: maintenance, nurses, and doctors.
– SEC1: The staff has to log in to start the treatment.
– SEC2: Only doctors and nurses are allowed to start the treatment.

Figure 2a shows the base model of the system. It models the SAF1 safety
requirement. In the original specification multiple parameters depending on the
patients condition can be set thus ensuring a personalized treatment. SAF1 is an
abstract reference to that, we enter a treatment value which serves as a token



Application of Validation Obligations to Security Concerns 5

(a) Abstract model (b) First refinement

Fig. 2: The formal model

for more complex parameters requiered in the original specification. We model
SAF1 along with the SEC1 security requirement. There is an Event-B context
ctx modeling the login status. The corresponding machine m1 models two events:
login and startSystem. Guards, namely @grd1 and @grd2, of the startSystem
event prevent the event from being fired prematurely.

Figure 2b shows how the model looks after the refinement. It introduces
FUN1 and SEC2 requirements into the model. We add roles as data type in the
refined context ctx1 and configure the set of roles that are allowed to perform
a treatment in @inv4. The login event ensures that the role logged into the
system is now tracked via id. @grd3 in startSystem checks that only allowed
ids are able to start the treatment. Also note that the startSystem event in m2
extends the event from m1 meaning that @grd1 and @grd2 are still present and
active but are hidden form this view of the model to avoid confusion.

4.3 Ensuring soundness and conflict freeness of requirements

To each requirement, we associate a VT with which we ensure the presence of
this requirement in the model. The VTs can be formulated as:

– SAF1/m1/PO: treatmentParameters ∈ 1..5
– SEC1/m1/LTL:G({loggedIn = yes} ⇒ e(startSystem))1

1 e(startSystem) means that this event is enabled because its guard is true.



6 S. Stock et al.

PO means we have a proof obligation that treatmentParameters ∈ 1..5 is true in
every state of the model, meaning the patients treatment parameters are within
the allowed range. For the LTL formula G(lobally) means the condition in the
brackets is always true. The term inside states that when loggedIn = yes the
event startSystem is enabled. m1 is the model or in our case the machine we
apply the VT to as laid out in Section 3.

The proof of the VT for SAF1 is relatively simple. We can use the Event-B
tool support, i.e., the Rodin platform [2], to show that @inv1 holds in every state
of the model. The proof can be discharged automatically by the tool. The VT
regarding SEC1 was established using the LTL formula with the ProB [7] model
checker, which we employed to do LTL model checking of the model. With
both VOs discharged, we can be confident that the concerning requirements are
correctly modeled.

Now we tackle FUN1 and SEC2. For those requirements we write the following
VTs:

– FUN1/m2/PO/persons = {doctors, nurses, maintenance}
– SEC2/m2/LTL/G(e(startSystem) ⇒ {treatmentAllowed(loggedInID) =

doctors} ∨ {treatmentAllowed(loggedInID) = nurses})

We demand proof that the set of roles consists only of doctors, nurses, and
maintenance for FUN1. For SEC2 we demand that globally the system can only
be started if the logged-in role is registered in the set of roles that are allowed
to perform treatment, i.e., doctors or nurses.

Again with the help of the corresponding tools, we see that both VTs on the
model are executed and satisfied, thus ensuring the soundness of the model m2
regarding the requested requirements, i.e., FUN1 and SEC2. However, if we run
our VTs for SEC1 and SAF1 previously established on m1 on m2 to ensure that
these requirements are also present in the refinement, we spot a problem. The
VT representing SEC1 fails. We can find an instance where we are logged into
the system but not allowed to start the treatment. This is the case with the login
of the maintenance role.

A failing VT helps us discover a flawed requirement/design in the model,
provided that the task was correctly chosen and the parameter was correctly
formulated. In our example the requirement encoded as the VT for SAF1 is
no longer satisfiable as loggedIn = yes is no longer sufficient for starting the
system. We could draw three consequences from this:

1. Requirements SEC1 and SEC2 may be contradicting each other. However, this
is is not the case here.

2. We could adjust the model by removing the event guard that controls the
startSystem event allowing every loggedIn person to start treatment. How-
ever, this will lead SEC2 to fail; hence the formulation of the requirement as
a VO prevented us from introducing new bugs when trying to fix the existing
ones.

3. Requirements SEC1 and SEC2 are ambiguous in how they are formulated and
need to be clarified. In our case, SEC1 is indeed very broad. We can solve the



Application of Validation Obligations to Security Concerns 7

issue by either making SEC1 more explicit by stating that the allowed staff
has to be logged in or merging the requirement entirely with SEC2.

In our example, we settle for option (3) to clarify requirements: we refactor
the corresponding VO, and the fixed VO passes without any new conflict.

4.4 Creating views

Different views help designers spot flaws in the model or help non-technical
stakeholders better understand the model. Views are a unique form of refinement
that aims not to introduce new behavior but to how the model is perceived. VOs
help create views by showing their soundness and conflict freeness. However,
views affect the associated VT, i.e., the model changes, and the output which
decides VT’s success or failure also changes accordingly. While the output of a
VT is more concrete on an instantiation view, and thus, depending on the task, it
can provide a concrete example of why the VT succeeds or fails. The stakeholders
can then easily understand the scenario. The knowledge gained from the view
can be feedback on the requirements of the model and may result in new VOs
to ensure the presence of the emerging requirements.

Creating a scenario-view in Event-B is achieved by replacing deferred con-
structs with concrete ones, thus adapting the model for a specific scenario. Let
us consider our hemodialysis example again. Figure 3 shows a created view. In-
stead of reusing a deferred function where we map arbitrary ids to roles as we
did in INITIALISATION/@act4 of m2 we use concrete mappings as one can see in
@act4 of theINITIALISATION of m2Concrete. We successfully execute the VTs
and establish conflict freeness and soundness of the requirements for this view.

The state-space of the model m2Concrete is visualized in Figure 42. It shows
two states. One can switch between the states via logging in as a different user or
looping back to them by logging in as the same user. From this view, the stake-
holder may discover a flaw in the model, for example, the fact that startSystem
in the upper state is a loop that always ends in the same state. The consequence
of this is that after startSystem was fired by the logged-in role, the logged-in
role can be changed. For further treatment, this might be unwanted as the re-
sponsible role should not be changed mid-session, nor should the maintenance
be able to log in after treatment is started. From this we can formulate a new
requirement, for example:

– FUN2 Once the treatment is started, the logged in ID can not change.

This requirement can then be encoded into a VO and run against the original
model m2. A VT for this requirement could look like this:

– FUN2/m2/LTL:[startSystem]X(G(not(login)))

This formula would check that after the firing of the startSystem event, the
login event cannot occur, of course, until the treatment is over.
2 We omitted parts of the graphic for space reasons.



8 S. Stock et al.

We can go even a step further. Suppose we find a property of a scenario
desirable for all scenarios that are created in the same way, i.e., by using the
concrete mapping of ids to roles we used in the example. In that case, we can
translate this property into a VO that has to hold for all scenarios that are
created, relying on this mapping for initializing the treatmentAllowed variable.
Every time we create a scenario view the same way, it must comply with this
VO.

Fig. 3: Concrete initialisation for stakeholders

Fig. 4: Part of the concrete state-space created with ProB

5 Related work

The Tokeneer case study [12] is a well-known example of the application of formal
methods to the security domain. Tokeener is an extensive system that provides



Application of Validation Obligations to Security Concerns 9

safety for a network of workstations in a protected room, which can only be
entered via verified bio-metric scans and id cards. In addition, the Tokeneer
system has the task of verifying access for persons and checking certificates for
credentials. The case study was modeled in different languages like the modeling
language Z [4]. For this implementation, there exist several approaches to verify
the system, e.g., Cristiá and Rossi [5]. The specification was also translated from
Z to Event-B by Rivera et al. [13]. While these contributions show that formal
methods can be successfully applied to help design and implement security-
critical systems, they only tackle the problem from the verification side. The
question of validation is mainly unaddressed.

VOs aim to complement by showing that the actual requirements specified
by stakeholders are present in the model. Up to now, many techniques in formal
methods have aimed to show the absence of faulty behavior. For example, model
checking traverses the state space to check if a state violates a previously defined
invariant. Another example is proofs that can show if the access to data struc-
tures is well defined. However, verification, i.e., checking whether faulty behavior
is absent in the model, is not enough as a designer has no feedback on what the
model is capable of. For this, we need validation, and while there exist validation
approaches, e.g., proposed by Fitzgerald et al. [6], these are tool and language-
specific. That is where VOs are a valuable addition, as they provide a tool and
language-independent formalism. Requirements are formulated as VOs, which
evolve with the model while remaining traceable. Additionally, different model
views enable other stakeholders to understand the model and reason about the
requirements relevant to them without going into unnecessary details.

6 Conclusion and future work

This paper shows how the VO approach can validate security concerns along-
side safety and functional properties in a formal model. A uniform approach for
validating different system properties is a big plus, thus making the overall de-
velopment process more straightforward. Furthermore, the VO approach helps
spot conflicting requirements and existing bugs and prevents from introducing
the new ones. Additionally, we can create views on a model that facilitate the
model’s understanding by all stakeholders. From views, we can extract knowl-
edge that we can feedback into the model. Finally, we can formulate VOs that
describe the scenario’s desired outcomes, thus ensuring compliance for the whole
development cycle.

In the future, we want to apply the VO approach to large-scale case studies
and show the multitude of VOs in different settings. In such a study, we would
like to investigate the following research questions:

– What are the limitations of the VO approach?
– Is the VO approach equally beneficial to formal methods which are not state-

based?
– How does the approach scale in large-scale case studies?



10 S. Stock et al.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447–466 (2010)

3. Biró, M., Mashkoor, A., Sametinger, J., Seker, R.: Software safety and security risk
mitigation in cyber-physical systems. IEEE Softw. 35(1), 24–29 (2018)

4. Copper, D., Barnes, J.: Tokeneer id station eal5 demonstrator: Summary report.
Altran Praxis Limited, Tech. Rep., Augugst (2008)

5. Cristiá, M., Rossi, G.: An automatically verified prototype of the tokeneer id station
specification. Journal of Automated Reasoning 65(8), 1125–1151 (2021)

6. Fitzgerald, J.S., Tjell, S., Larsen, P.G., Verhoef, M.: Validation support for dis-
tributed real-time embedded systems in vdm++. In: 10th IEEE High Assurance
Systems Engineering Symposium (HASE’07). pp. 331–340. IEEE (2007)

7. Leuschel, M., Butler, M.: Prob: A model checker for b. In: International symposium
of formal methods europe. pp. 855–874. Springer (2003)

8. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M.J., Schewe, K.,
Mashkoor, A., Biró, M. (eds.) Abstract State Machines, Alloy, B, TLA, VDM, and
Z - 5th International Conference, ABZ 2016. Lecture Notes in Computer Science,
vol. 9675, pp. 329–343. Springer (2016)

9. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350–2379
(2018)

10. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach
to check compliance between requirements and their formal specification. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). pp. 1–5. IEEE (2021)

11. Mashkoor, A., Sametinger, J., Biro, M., Egyed, A.: Security- and safety-critical
cyber-physical systems. Journal of Software: Evolution and Process 32(2), e2239
(2020)

12. (NSA), N.S.A.: The tokeneer case study. https://www.adacore.com/tokeneer, ac-
cessed July 8, 2022,

13. Rivera, V., Bhattacharya, S., Cataño, N.: Undertaking the tokeneer challenge in
event-b. In: Proceedings of the 4th FME Workshop on Formal Methods in Software
Engineering. pp. 8–14 (2016)

14. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)

https://www.adacore.com/tokeneer

	Application of Validation Obligations to Security Concerns

