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Abstract. Many devices in various domains operate in different modes.
We have suggested to use mode switching for security purposes to make
systems more resilient when vulnerabilities are known or when attacks
are performed. We will demonstrate the usefulness of mode switching
in the context of industrial edge devices. These devices are used in the
industry to connect industrial machines like cyber-physical systems to
the Internet and/or the vendor’s network to allow condition monitoring
and big data analytics. The connection to the Internet poses security
threats to edge devices and, thus, to the machines they connect to.

In this paper (i) we suggest a multi-modal architecture for edge devices;
(ii) we present an application scenario; and (iii) we show first reflections
on how mode switching can reduce attack surfaces and, thus, increase
resilience.

Keywords: Mode switching - Edge device - Security - Linux - systemd
- Ansible.

1 Introduction

Manufacturers will increasingly become service providers and use condition mon-
itoring, and big data analytics for predictive maintenance [25]. Edge devices con-
nect physical devices like machines, robots, and sensors over various protocols
like MQTT, OPC UA, and others to the virtual world. They are widely used
in Cyber-physical systems (CPS) and Internet of Things (IoT) systems, and
their use will increase in the next decade [24]. Fdge devices provide computing
power for lightweight devices and other facilities on-site and build a bridge be-
tween operational technology (OT) and information technology (IT), typically
in the cloud. They allow machine-to-machine communication, remote monitor-
ing and control across several locations and increase availability and efficiency.
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Edge devices provide load balancing, low latency, and service continuity in case
of connection failures, optimize the network bandwidth to the cloud, and process
the workload close to its occurrence [15]. Devices increasingly get interconnected,
enhancing systems’ complexity and unleashing threats and vulnerabilities. In the
year 2021, vulnerabilities in Log4J, Kaseya and Solar Winds have affected thou-
sands of companies. Cyberattacks like the one against Colonial Pipeline can lead
to loss of productivity, business continuity problems, financial losses, and dam-
age of reputation. According to the Allianz Risk Barometer [1], cyber incidents
are the most important business risk in 2022.

Time is essential when a vulnerability becomes known. It typically takes a
while until an update will be available. During that time, attackers can write
exploits and attack systems. Workarounds are sometimes provided to mitigate
known vulnerabilities. Nevertheless, manual changes are time-consuming and, if
performed hastily, involve the danger of disrupting operations. In the worst case,
services have to be completely stopped or shut down.

We have presented how multi-mode systems can provide resilient security
in Industry 4.0 [18] and a web server case study using a multi-purpose mode
switching solution to overcome vulnerabilities in [19]. Additionally, we have in-
vestigated how modes can secure deliberately insecure web applications [17]. In
this paper, we will investigate the security of edge devices and reflect on how
automatic and manual mode switches can reduce attack surfaces.

In Section 2, we present the idea of mode switching and its use in several
domains. In Section 3, we describe common methods to secure edge devices. We
present our considerations about mode switching in edge devices in Section 4.
Automation of configuration management of modes and deployment are shown in
Section 5. We discuss our results in Section 6 and draw conclusions in Section 8.

2 Mode Switching

We have provided first findings of a systematic literature review about mode
switching from a security perspective in [16]. In general, modes are used to
provide flexible adjustment of behavior, real-time adaptation, and complexity
management. They have already been used in domains like automotive [2], avi-
ation [22] and energy [26]. Modes divide and manage complexity, have specific
configurations, and consist of specific behaviors. For example, nuclear power
plants have multiple modes for power operation, startup, hot standby, hot shut-
down, cold shutdown, and refueling [26]. They automatically change their modes
and may even be completely switched off if parameters exceed or fall below crit-
ical thresholds [21]. Special accident and emergency systems and a degraded
mode of operation [7] provide resilience and a better understanding of the sys-
tem’s state if there is any kind of malfunction. However, mode switching is not
limited to safety precautions. Modes can also be used to control functionality
and to increase security [20]. A web server case study [19] has shown that mode
switching has reduced known risks in that specific scenario in 98.9% of the time
and has shortened the window of exposure from 536 days to 8 days.
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3 Securing Edge Devices

Making edge devices more secure begins with the key concepts of the secu-
rity triad CTA: confidentiality, integrity, and availability. According to ISO/IEC
27000:2009 [11], authenticity, accountability, non-repudiation, and reliability are
also important. Preventive, detective, and corrective security controls will help
to minimize security risks and to recover faster whenever something bad hap-
pens. There should be multi levels of protection (defense in depth) for all sys-
tem parts: cloud, network, device, application, and data. One compromised part
should not affect the entire system. Following a Secure Software Development
Live Cycle (sSDLC) will facilitate delivering effective and efficient systems dur-
ing lifetime [4,10]. Several guidelines and frameworks [5,10,13,14] exist to make
IoT devices more secure. They suggest physical controls like a Trusted Plat-
form Module (TPM), mechanical locks, and minimized external ports. TPM
goes hand in hand with a Trusted Ezecution Environment (TEE), secure boot, a
protected operating system (OS), and secure updates. McCormack et al. provide
an architecture for trusted edge IoT security gateways and recommend periodic
remote attestation with TPM, to control that there are no fraudulent manipu-
lations [12]. It is state-of-the-art to encrypt all communication to the outside of
an [oT device. In addition to regulatory requirements and policies, technical and
logical controls should also be implemented: authentication, access controls, a
firewall, and antivirus software. Each device should have its own client certificate
to communicate with manufacturers’ cloud services. Even if compromised, only
single devices are affected and can be blocked on the server-side, if necessary.
Updates should be signed and verified, risky legacy protocols should be avoided,
and open ports minimized.

Cejka et. al have compared Amazon Web Services (AWS) IoT Greengrass,
Microsoft Azure IoT Edge, and a self-implemented framework for secure edge
devices and distributed control of critical infrastructure [3]. They recommend
filtering and monitoring communication for anomaly detection and reacting to
deviations with countermeasures.

In our sample scenario, we use edge devices to connect industrial machines
at the customers’ site to the Internet and to allow communication with the ma-
chines’ manufacturer. Typically, edge devices will be delivered to the customer’s
factory or machine. However, sometimes devices get stolen and even manipu-
lated. Therefore, the hard disk is encrypted, and the device provides only lim-
ited initial functionality like configuring the network settings to onboard the
device. Onboarding means that the device is registered with the manufacturer
and gets a device certificate that activates the device’s full functionality, which
persists even if later the connection gets lost. Thus, once the device has success-
fully established a connection with the manufacturer’s cloud service, it sends an
onboarding request. Then the customer can authenticate at the manufacturer’s
cloud service to view the request and get a security token to assign the edge
devices to the customer, similar to [27].
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4 Edge Device Modes

In this section, we provide further details about the design and implementation
of edge device modes. Figure 1 gives an impression about a few sample modes and
their services and configurations. A system and its components can be in multiple
modes. Initially, an edge device is in factory mode. After successful onboarding,
it switches to the onboarded mode. In our sample scenario, edge devices are online
most of the time. They check for updates in regular time intervals, typically once
a day. If an update check was not possible for a specific time period, e.g., for z
days, the device is considered to be outdated. A mode switch to outdated mode
leads to limited functionality for security reasons. Thus, the onboarded mode
has two sub-modes: updated mode and outdated mode. Modes can extend other
modes similar inheritance in object-oriented programming (OOP).

We use modes to protect the system and its services from vulnerabilities
found in the meantime. We consider it bearable that a system that has not
been online for a predefined time period makes updates first. The system itself
periodically checks if there is an update. After the successful update or when the
last successful update check is younger than = days, the updated mode becomes
active, which provides all services, like condition monitoring, big data analytics
for predictive maintenance, remote support, and others. Additionally, we plan
to analyze log files to react to specific events like denial-of-service (DoS) attacks.

network settings service

onboarding service
limited services
[ factory mode ]
outdated mode ]
onboarding factory reset |
recent update check
[ onboarded mode update check too long ago

network settings service
onboarding service
device certificate

updated mode

all services

(] Modes <} Inheritance
[ Services and Configuration <— Manual/Automatic Mode Switch

Fig. 1. Edge Device Modes
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4.1 Implementation

For implementing the concept of modes on common edge devices, we have ex-
tended the system and service manager systemd!, which is used in most Linux
operating systems. We use systemd targets [8] to specify modes. They are sim-
ilar to SystemVinit run levels [23], which were used in previous systems. A
target is specified with a unit-file and combines several services. It is possi-
ble to define a default target as well as hard and soft dependencies to other
modes, which should be started before. Usually the multi-user.target (on
non-graphical systems) or the graphical.target are the default targets. We can
switch to the mentioned mode by running systemctl isolate mode.target.
Nevertheless, it only works if the mode meets the conditions. Services, like to
define the network settings, for onboarding or for specific software containers,
have their own unit-file and can be attached to one or multiple modes in their
[Install] section with the command WantedBy=mode.target. Since release
v250, the factory-reset.target has become available. Obviously, the devel-
opers think in a similar way. Listing 1.1 shows the updated-mode.target. It is
started after the onboarded-mode.target only when a specified file exists. Sys-
temd only supports some basic condition and assertion checks, before a target
or service becomes active. For example, we can only check whether a file exists
(ConditionPathExists), but we cannot check whether a certificate is valid, or
whether the device is online. Therefore, we consider these parts in our Mod-
eSwitcher shell script. As of now, all mode switches are executed by this shell
script. A cron job runs periodically and checks if there are any changes. If an
edge device is not onboarded, it tries to resolve that. If the device certificate
becomes invalid, a mode switch to the factory mode is triggered. The cron job
performs the updates for the device, software repositories, and the device certifi-
cate. If the last successful update check was as long ago as predefined, a mode
switch is triggered from updated mode to outdated mode, and several containers
are stopped in order to reduce the attack surface. If the update was successful,
the system switches back to updated mode. Every mode switch will be notified
to the manufacturer’s cloud service.

Listing 1.1. Systemd updated-mode.target

#/etc/systemd/system/updated -mode. target

[Unit]

Description=Updated Mode

Requires=onboarded -mode.target

Conflicts=

After=onboarded -mode.target

AllowIsolate=yes

#Start target only when file does exists
ConditionPathExists=/var/lib/edgedevice/up-to-date

! nttps://systemd.io
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4.2 Fail2ban Sample Scenario

We are monitoring log files in our sample scenario with fail2ban?, a Python-based
Intrusion Prevention Software (IPS) that is mainly used to defend systems from
brute-force attacks, e.g., by blocking IP addresses of attackers after several failed
login attempts within a specific time frame. We can also specify multiple and
less intrusive actions like sending an email to the administrator. It follows the
rules of event condition action (ECA). New log entries get checked by a filter
of regular expressions to extract interesting data. Jail configurations become
relevant, if there is a match. These configurations specify services or attack sce-
narios to be monitored. They consist of the log file, the port or service, the filter,
the time span and the maximum number of wrong attempts, the actions to be
executed, and the ban time. For example, we can specify that after three failed
SSH login attempts, the IP address of the possible attacker gets blocked, and the
administrator will be informed by email. Then, after a ban time of 10 minutes,
a new login attempt from that IP address will be allowed again. The fail2ban
manual [6] and Hess [9] provide more details about these mechanisms. The stan-
dard configuration provides filters for Apache, sshd, vsftpd, Postfiz and others.
We have implemented additional filters, e.g., to detect (unsuccessful) terminal
logins, (unsuccessful) SSH logins, port scans, HTTP errors, plugged-in LAN ca-
bles, attached USB devices, and lost connections. We imagine using fail2ban to
send a notification to manufacturers’ cloud services in case of abnormal behav-
ior. In addition to that, we will use some of the fail2ban events as a source to
trigger mode switches. For example, we envision switching from a normal to a
denial-of-service (DoS) mode. The typical use case of Fail2ban is to block single
IP addresses. However, if there is a DoS attack, it is not appropriate to block
thousands of IP addresses. In this case, switching to a more secure mode is
more practical, where this form of attack is blocked in general. Additionally, IP
address ranges or countries could be blocked. Switching to another or degraded
mode can reduce the attack surface and protect the system from further attacks.
Another scenario is multiple wrong login attempts on the console. If that hap-
pens and the device is offline, we switch to the factory mode to prevent further
attacks. We can react in the same way, if we detect anomalies regarding hard-
ware attacks like sniffing, or port scans. In order to prevent the abusive use of
insiders, administrative capabilities have to be limited, and all actions have to
be logged and monitored. Procedural or administrative controls are needed to
handle incidents and increase security awareness [13].

5 Automation

We have used our own package repository to provide modes for multiple de-
vices and distribute changes. Software packages can be checked, adapted, and
activated individually. Thereby, we can install modes as if they belonged to
systemd. We have also examined system configuration management tools like

2 https://wuw.fail2ban.org
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Ansible, Progress Chef and Puppet. They are also used for provisioning, applica-
tion deployment, and infrastructure as a code. We had a closer look at Ansible
and have developed a module for mode switching, i.e., switching systemd targets.
With that implementation, we were able to use mode switching in Ansible tasks
and playbooks. This feature is helpful to manage multiple edge devices and to
switch the mode of either one or many devices depending on requirements. For
example, Listing 1.2 shows how to switch all edge devices from group devgroup1
to the oudated-mode.target.

Listing 1.2. Call developed Ansible module to change systemd target

ansible devgroupl -m systemd_target -a "name=outdated-mode.
target state=isolated"

6 Discussion

From a security perspective, it is an advantage to switch to a restricted mode
as soon as possible, if attacks or abnormal behavior happen. From a customer
perspective, it is highly unsatisfactorily if an edge device switches the mode auto-
matically and seemingly unexpectedly denies services and interrupts operational
processes. Therefore, full automation of mode switching is not desirable under
all circumstances. We propose to inform a manufacturer’s cloud service and put
a human in the loop. Thus, online devices can be controlled semi-automatically
or manually by experts. In addition, the devices can learn over time about false
positives of possible attacks, e.g., with machine learning techniques. If edge de-
vices were offline for a long time, they have to act autonomously and should be
stricter about switching modes. However, even then, a specific threshold needs
to be considered. Shutting down the device must be the last resort.

Safety is an issue for a CPS as well. Connected machines and robots can
potentially harm people and damage property. In this context, the concepts
of fail-secure and fail-safe contradict each other to some extent. Completely
stopping an edge device in case of any issue is highly secure. Nevertheless, if
a person is stuck in a machine, some basic functionality is needed to get her
free. A differentiated approach is needed in such a scenario. From the outside,
the system has to be in a fail-secure mode and may prohibit external access. A
fail-safe mode can provide at least some basic on-site functionality.

We have also experimented with multiple modes with different arranged soft-
ware containers on top of the updated mode. Further research is needed to define
how many modes are necessary and are still manageable. However, we think it
is more beneficial to stop single vulnerable services. Ansible and other config-
uration management tools are well usable to achieve that goal. They allow us
to specify single, groups, or all hosts to make changes. We can go one step fur-
ther and integrate predefined modes more deeply if a service supports different
configurations or some kind of limited operation.
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7 Limitations

Mode switching and our proposed edge device modes are not intended to replace
other traditional hardware and software protection techniques. Secure system
architecture and security by design are still necessary. Developers must not be-
come less concerned about security and rely on the fact that they can later install
an update or patch. However, modes can contribute to more secure and flexible
system architectures. Our research has no empirical results yet. Experiments
and more detailed comparisons against other protection techniques will have to
underline the effectiveness of the approach.

8 Conclusion

We have given a first impression of how mode switching can increase the security
of edge devices and enhance resilience. We have shown an example of how modes
can be implemented in the Linux operating system and how system configuration
management tools can help to manage modes of multiple edge devices.

Future work includes monitoring modes of multiple edge devices on the man-
ufacturer’s cloud service and considering the edge device modes of a customer
and across different customers in a security information and event management
(SIEM) system. Being able to change edge device modes manually is highly ben-
eficial in case of known vulnerabilities or when stopping malware from spreading
further. In addition, we plan to simulate attacks to demonstrate the effectiveness
of our approach.
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