
Crane: a local deployment tool for containerized 
applications 

Jose Arcidiacono1 [0000-0003-0300-5213], Patricia Bazán2 [0000-0001-6720-345X], Nicolás del Río3 

[0000-0002-0889-0752] and Alejandra B. Lliteras4, 5[0000-0002-4148-1299] 

1 Universidad Nacional de La Plata, Facultad de Informática, LINTI, Calle 50 esquina 120S/N 
2° piso, La Plata. Argentina 

jarcidiacono@linti.unlp.edu.ar 
2 Universidad Nacional de La Plata, Facultad de Informática, LINTI, Calle 50 esquina 120S/N 

2° piso, La Plata. Argentina 
pbaz@info.unlp.edu.ar 

3 Universidad Nacional de La Plata, Facultad de Informática, Calle 50 esquina 120S/N, La 
Plata. Argentina 

ndelrio@info.unlp.edu.ar 
4 Universidad Nacional de La Plata, Facultad de Informática, LIFIA, Calle 50 esquina 120S/N, 

1º piso, La Plata. Argentina 
5 CICPBA, Calle 526 e/ 10 y 11, La Plata, Argentina 

alejandra.lliteras@lifia.info.unlp.edu.ar 

Abstract. Application deployment as one of the software development stages 
has become more complex in the presence of distributed architectures that in-
volve a variety of tools, and, with them, configuration differences, versioning 
and communication protocols. Even when cloud services have contributed a so-
lution in this sense, it is still difficult to deploy distributed applications in on-
premise environments.   

The container concept as packages that include the application code, its de-
pendencies, libraries and services required for its correct execution, turns out to 
be an alternative for streamlining application deployment and it allows taking 
the virtualization concept to the operative system. However, it adds a software 
layer that requires monitoring and management. 

There are robust solutions for administering and monitoring containers but 
they also require computing resources that sometimes exceed the capacity of the 
average computer used for development, and they make local deployment diffi-
cult. 

In this work, Crane, a tool for local deployment of containerized applications 
is presented. This tool has the characteristic of being lightweight, of general 
purpose and with automatic scaling capacities, which differentiates it from the 
Minikube tool, which allows some local Kubernetes API testing and is used 
mainly for the development of new features for the latter. 

Keywords: Middleware Framework, Container Deployment, Distributed Ser-
vices. 

mailto:pbaz@info.unlp.edu.ar


2 

1 Introduction 

The responsibility to deploy and monitor applications traditionally fell on an ad-
ministrator that knew about infrastructure and networking, and was dedicated specifi-
cally to this task. With the advent of cloud services (PaaS, Platform as a Service) [1] 
monitoring and metrics became available to developers. In addition, with the ad-
vancement of continuous integration (CI) [2] and continuous delivery (CD) [3], a 
trend that proposes to test and deploy code as it is written, the deployment became 
closer to developers [4]. 

One aspect to be considered when deploying is the difference that exists between 
the developing, testing and production environments. This can lead to version prob-
lems –tool or library related-, configuration differences –e.g. connection timeouts-, 
and others. 

One way to unify the environments is to use Docker1, a container virtualization 
platform that allows creating “images” that include dependencies and configuration 
for an application. From a Docker image identical containers can be created, always 
with the same dependencies and initial configuration. Additionally, these containers 
can be parametrized. This means that each container can receive configurations as 
URLs to connect to, ports to open, and others. This configuration is in container crea-
tion time and it allows adapting (in a static way) the environment using console ar-
guments or a simple text file. There are cloud platforms that support container use in 
production environments, both as unitary applications and as interconnected services. 

When adding multiple containers the need to monitor and orchestrate them, that is, 
to define their start order and the dependencies between them, appears. One option to 
carry out these tasks automatically is Kubernetes2, a container orchestration, monitor-
ing and scaling platform. Kubernetes has the disadvantage of needing at least three 
virtual machines in order to work, and more machines can be added in order to in-
crease the cluster count [5]. 

These specifications exceed the resources available in an average development ma-
chine, and because of that, are not suited for local deployment. There is a lightweight 
version, Minikube3, that allows some local testing of the Kubernetes API and it is 
used mainly for development of new features for the main project. 

In this context we present Crane, a local deployment tool for Docker-containerized 
applications that, unlike Minikube, is a general-purpose tool and it has an automatic 
scaling feature. The presented work is organized as follows: 1- In Section “Container 
management architecture precedents” some container management solutions with 
scaling are describer. 2- In Section “Design evolution of Crane”, our container man-
agement tool, Crane, is presented. 3 –Section “Conclusions and future work” closes 
this work and extension points are enumerated. 

 
1  https://www.docker.com/ 
2  https://kubernetes.io/ 
3  https://minikube.sigs.k8s.io/docs/ 



3 

2 Container management architecture precedents 

Even when container management and scaling is a new area and one in constant evo-
lution, the investigation leading to this work reported an existing vacancy in terms of 
using this technology in one computer, through a management tool with capacity to 
scale for the administrator. 

The state of art studied in this matter was exhaustive and went through several top-
ics, but in order to address the Crane proposal, several solutions that allow container 
management and their scaling were surveyed and two of them were chosen for de-
scription and analysis: 1- SWITCH system [6] and 2- COCOS architecture [7], which 
is a Kubernetes extension. This selection is due both of them being complete architec-
ture definitions addressing the problem. 
 

2.1 SWITCH 

SWITCH is an automatic scaling system for container based adaptable applica-
tions. In the article [6] presenting it, different metric types are studied for both vertical 
scaling (that is, resources increase) and horizontal scaling (instance count increase) 
[8] and an algorithm that adapts to different applications and resource usage patterns 
is proposed. 

The SWITCH architecture consists of a load balancer to distribute the requests be-
tween the application instances, two monitoring mechanisms (container-level moni-
toring agent and application-level monitoring agent), a time series database, an alert-
ing mechanism, and an adapting component that responds to such alerts. Additionally, 
a graphic user interface to configure thresholds and analyzing events is included. 

Based on the metrics collected by the monitoring agents, both horizontal scaling 
(more containers) and vertical scaling (more resources in the same node) is per-
formed. 

As for the technologies mentioned in the article, the load balancer is HAProxy4, the 
database is Apache Cassandra5, and the monitoring, alerting and adapting component 
are developed in Java6. 

2.2 COCOS 

Meanwhile, the COCOS architecture assumes that the monitoring part is already 
solved and it focuses on the control of containers. It has three control levels: container 
level [8], virtual machine level and cluster level [9]. 

 In order to scale the containers, application metrics (response times, workload) 
that come from the containers themselves are used. The latter can also have Adapta-

 
4  http://www.haproxy.org/ 
5  https://cassandra.apache.org/_/index.htm 
6  https://www.java.com 



4 

tion Hooks, code portions that allow the application to respond to scaling taking ad-
vantage of the new resources (for instance, increasing the thread count). 

At the virtual machine level, there is a Supervisor for every one of the machines 
that handles the resource requests from containers (vertical scaling) and communi-
cates with the next level in order to coordinate container scaling. 

Lastly, at the cluster level there is an Orchestrator that manages the horizontal scal-
ing of the containers (that is, the creation of new instances of containers and virtual 
machines). 

3 Design evolution of Crane 

DEHIA is a workflow manager for human-intervened data collection [10]. Its ar-
chitecture is based on microservices. In a first delivery attempt at a local server, it 
proved to be complex and hard to replicate because of its various components and 
technologies. 

A possible solution to this problem is containerization [8]. The simplest compo-
nent, a gateway, was chosen to start. This component has no functional dependencies 
to the other components and it has no internal state. 

The gateway component only needs one open port (in order to receive the requests 
it has to redirect) and it expects a small set of parameters. Because of that, it was via-
ble to deploy it automatically. For this purpose it was decided to develop an automatic 
Docker deployment tool (named “Crane”), with the addition of scaling the application 
on-demand creating new instances. 

3.1 Instances load balancing 

Crane must be capable of interacting directly with the container platform, so that a 
first version was developed as a console script (bash, specifically) that uses Docker 
commands. 

As a consequence of the new instance creation feature, it was necessary to add a 
load balancer that would make transparent the use of the component. For this purpose, 
a HTTP proxy (NGINX7) with load balancing capabilities, was used. 

For portability and ease of use reasons, it was decided to use and configure the 
containerized version of the proxy. That way, this version of the tool is capable of 
creating not only instances, but also the proxy itself, configured for each component. 
NGINX was used because it communicates via HTTP. However, this restricts the tool 
to applications that share this feature. In addition to that, the application must be load-
balancing-compatible (by having separate persistence means, by synchronizing them 
or not having them). 

Inside the same script, an internal network is created for the containers to com-
municate with each other, leaving outbound access to the load balancer entrance. Fig. 

 
7  https://nginx.org/en/ 



5 

1 shows this version of the tool, in which a console script (bash) interacts directly 
with Docker through console commands.  

 
Fig. 1. First version of the tool, in Bash scripting 

In Fig. 1, the Docker actions (black filled arrow), as a result of the commands sent 
by the script (simple arrow), create each of the containers inside the Docker environ-
ment, that is, the Load Balancer and the Instances. 

Crate also interacts directly with the load balancer in order to notify it about the 
new instances created (also with a simple arrow) and that way directs correctly the 
requests that come from the outside (white filled arrow). 

Inside the Docker environment, the load balancer allows access to both instances in 
a transparent way (dashed-line arrow). 

Lastly, all the application containers belong to the same network (in a dashed-line 
square). This means that it could be multiple applications, each running in its own 
network and isolated from the others. 

In order to modify the configuration of the load balancer each time an instance is 
created, a small script written in Python that waits for configuration updates was add-
ed. This updates are sent by the script itself via HTTP (specifically with the curl8 
command, a library and application for this purpose) and they affect the proxy con-
figuration when it reloads as part of the script. 

In short, to this point there is a console script that starts with three parameters: the 
name of the Docker image to be instantiated, the port where it must listen, and the 
container start parameters. When it starts, the container creates the following ele-
ments: 

 
8  https://curl.se/ 



6 

• An inter-container network [11] where only the containers related to the applica-
tion (instances and load balancer) will be connected. 

• The first instance of the application, connected to the aforementioned network, but 
with no external access. 

• The load balancer, configured to direct all the requests to the first instance. The 
Docker image of the load balancer was modified in order to receive the network 
location of the first instance as a parameter, and it also includes the Python script 
previously mentioned. It has two external access points: the application port that 
was received as a parameter by the console script, and the configuration port that 
waits for scaling instructions. 

 
Table 1 shows each startup option for the script. 

Table 1. Startup options for the Bash version of Crane 

Option Description 
start (image, port, parameters) 
 

It creates a inter-container network, the 
first instance of the application and the 
preconfigured load balancer 

scale (identifier) It creates a new instance of the applica-
tion and configures the load balancer via 
HTTP 

descale (identifier, instance) It deletes the indicated instance and re-
configures the load balancer via HTTP 
 

 

3.2 Container automatic scaling 

Scaling this way is not practical because of two reasons: firstly, the administrator 
must decide when to scale in a manual way. Secondly, there are no metrics for the 
administrator to make such a decision. 

Because of that, it was decided to make a second version of Crane that would scale 
automatically with an approximated rule (which is not in scope of this work) and that 
would also employ application use metrics in order to make the decision. 

At this point it’s interesting to notice that there are two types of use metrics [6]: 1- 
application metrics, including request count and response times, and others, and 2- 
infrastructure metrics, including CPU, memory, storage and network usage levels, and 
others. 

For the first case, it can be measured by taking information in the application itself 
or at the load balancer, and it can be improved by scaling the application. For the 
second case, it can be measured by asking Docker or the operative system for infor-
mation, and it can be improved by scaling resources (thinking of a virtual machine 
with elastic provisioning of CPU and memory). 



7 

As Crane is designed for local deployment in a personal computer, and there is no 
way of automatically increasing the resources, infrastructure metrics will not be con-
sidered. 

To the moment, there wasn’t a mechanism to collect application metrics, and be-
cause of that after researching the features of NGINX a module9 was found. This 
module allows to keep track of the metrics that could be of interest for the tool (con-
nection count, response times). Then, a new Docker image for the load balancer was 
designed. This image compiles NGINX with the nginx-module-vts module and in-
cludes the Python remote configuration script. In addition to that, the module was 
configured to listen in a third port (being the first one the access to the application and 
the second one the remote configuration) from where it returns the aforementioned 
metrics. 

For the second part, that is, to have an approximated rule based in metrics from the 
load balancer in order to know when to scale, the following condition was set up: 
“when the sum of the average per second (rate) of the request count received in the 
last five minutes exceeds the value 0.1”. This threshold set on 0.1, and also the five-
minute window, are empirical values that allow for a high but manually achievable 
request rate to trigger the scaling (so it can be noticed). 

This condition is useful when the right tool is available. This tool would, on one 
hand, keep track of the historical requests and, on the other hand, detect when the 
mentioned condition is met. 

Prometheus and Alertmanager. In order to implement this automatic scaling, Pro-
metheus10, a time series database was used. This means that its specific functionality 
is to keep track of historical data in order to calculate statistics. On the other hand, it 
allows to set up alerts that are triggered when a particular condition is met. This “trig-
gered” state implies that the alert is on the alert list in the “firing” state (active). 

Prometheus has an external module called Alertmanager11 whose purpose is to de-
tect the alerts emitted by Prometheus and then trigger notifications through several 
mechanisms, of which the “webhooks” one is of interest. 

A webhook is a URL, provided by the side interested in the alert, where it waits for 
an Alertmanager notification. This mechanism implies that the URL, that in this case 
would belong to the console deployment script, must be accessible by Alertmanager.  
In order to take advantage of using Alertmanager it was noticed that the script would 
need server capacities in order to receive the alerts, which makes the tool more com-
plex. Fig. 2 shows the message sequence between the components that lead to the 
scaling of a container. 

 

 
9  https://github.com/vozlt/nginx-module-vts 
10  https://prometheus.io/ 
11  https://prometheus.io/docs/alerting/latest/alertmanager/ 



8 

 
Fig. 2. – Automatic instance creation process 

 

3.3 Detected implementation problems 

When adding Prometheus and Alertmanager, a set of problems were detected, and 
that led to rethink the design of Crane from scratch. 

Portability between installations. The difficulty level of reinstalling the full tool 
was considered.  

Install the tool in another installation of the same operative system (Debian 11) or a 
Linux system with bash installed used to take just copying the scripts and installing 
Docker.  

However, adding Prometheus and Alertmanager implies installing and configuring 
them, which is not trivial. One way to automate the configuration is to use the con-
tainerized versions of both tools, preconfigured to be instantiated by the script auto-
matically. This led to an apparent conflict with the use of webhooks: if the tool is 
installed in the host system and Alertmanager is installed inside a container, the latter 
cannot send the notification because Docker containers have no access to the host 
system ports. 

After more detailed research, it was found that from Docker version 20.10 (end of 
2020) this is possible using a special DNS name and the –add-host parameter [12], so 
that the idea of containerize the module could continue. 

For most of the components the containerized version was used, except the console 
script, which has to interact with Docker in the host system. Three alternatives were 
considered [13]: 



9 

• Docker-outside-of-Docker: it involves sharing the Docker socket with a container 
that has permissions on it. In this way Docker can be manipulated directly from a 
container. As the socket requires administrator rights on the host, it is a risky alter-
native. 

• Docker-in-Docker [14]: it involves running Docker inside a container that gener-
ates another container inside itself. For this to work, the main container has to be in 
“privileged mode” (with administrator rights), which could also lead to one of the 
containerized applications to take control of the local host. Minikube uses this ap-
proach. 

• Simply install the tool in the host, using the Docker HTTP interface to communi-
cate with it.  

Given the complexity and risks that the first two alternatives involve, the third one 
was chosen. 

Prometheus must be configured so it can read the metrics of each load balancer 
(assuming multiple different applications) and store the alert condition. 

In addition, Alertmanager must be configured to detect the alerts and to send the 
notification in the matching webhook. All this is done through configuration files 
internal to the filesystem of each container. 

A first approach to the modification of these files from the tool was the use of 
Docker volumes12, that allow synchronizing a file from the host system with another 
from the filesystem of the container. 

These two modifications (the containerization of Prometheus and Alertmanager, 
and making use of volumes) allowed installing the tool from Debian 11 to Ubuntu 
18.04 without reconfiguring it. 

Figure 3 shows the evolution of the tool adding Prometheus and Alertmanager with 
their respective volumes. 

 
12  https://docs.docker.com/storage/volumes/ 



10 

 
Fig. 3. Second version of Crane using Docker volumes 

It can be noticed how the volumes require the files to be outside of the Docker en-
vironment and, because of that, they have access to the host filesystem. 

Portability between different operating systems. It is of interest to increase the 
portability of the tool, taking advantage of Docker’s multiplatform feature. 

Two problems were considered: 1- bash console scripts are not instantly compati-
ble with other systems like Windows (although there is a Linux subsystem, the intent 
was not to depend on the console) and 2- Docker volumes depend on the filesystem. 
Even when all major operating systems supporting Docker also support volumes, they 
are not necessarily compatible. 13 

The first problem was solved in two steps: first, the tool was migrated to use the 
Docker HTTP interface14 through curl in the console. This decoupled the commands 
given to Docker from console commands. In a second step, the Python Docker SDK 
was used. This involved rewriting the tool in Python, which is multiplatform. At the 
moment the tool requires installing a Python interpreter, which although portable 
requires configuration and installing libraries. By using Cython15, a Python extension 
for C language, a small self-contained executable can be generated.  

This new version of the tool makes use of Flask16, a minimalistic framework form 
web application development. The console format was abandoned for a REST service 

 
13  Since 2019 Kubernetes address this problem by adopting the CSI standard, which presents 

an unified API for the volume storage 
14  https://docs.docker.com/engine/api/ 
15  https://cython.org/ 
16  https://flask.palletsprojects.com/en/2.0.x/ 



11 

that allows (via HTTP) both creating “components” (each one a containerized appli-
cation) from the same parameters that the previous version (image, port and parame-
ters), and receiving Alertmanager alerts. In order to do that, an object model that con-
siders container images, instances and other managed containers (Prometheus and 
Alertmanager) was adopted. A self-contained SQLite17 database was also added. The 
SQLalchemy18 ORM was used to map classes to tables. Fig. 4 shows the object model 
of the tool. 

 
Fig. 4. Object model of the tool (Python version) 

Even when using files generally brings compatibility problems, sharing the file be-
tween installations is not planned. 

Fig. 4 shows the classes for the components, their instances and the class for the 
managed containers, that is used to clean all the containers (instances, load balancer, 
Prometheus, Alertmanager) when closing or restarting the application. 

The second problem, related to volumes, was solved by deleting them and opening 
an HTTP interface that receives configuration messages. This interface consists of a 
Python script which also uses Flask. That way, the file modifying mechanism be-

 
17  https://www.sqlite.org/index.html 
18  https://www.sqlalchemy.org/ 



12 

comes encapsulated in the container, and the communication is carried out through a 
standard mechanism such as HTTP.  

Course of action in case of an alert. In case of an alert, the course of action is fixed: 
add a container. It was considered that it would be desirable to be able to describe, in 
a policy form, which is the action to take in case of an alert. Multiple alerts can also 
be considered, some for scaling and other for down-scaling. 

For instance, it could be defined that if the condition mentioned in the previous 
sections (“when the sum of the average per second (rate) of the request count received 
in the last five minutes exceeds the value 0.1”) a container will be added, but if the 
threshold is reached in less than two minutes two containers could be added. It also 
could be defined that if the value is below a certain threshold (0.1, for instance) for a 
certain time (five minutes, for instance), a container will be removed (if there is more 
than one). An interesting point is which the selection criteria are when a container has 
to be deleted. In this case, for simplicity’s sake, the oldest container is deleted. 

In order to achieve this, a policy management tool called Open Policy Agent19 was 
added. It consists of a server capable of making decisions based on an input, a policy 
and stored data related to a topic. In this case the topic is “actions to perform when an 
alert fires” and the data is pairs of “alert – action”. The actions have the format [direc-
tion] [count]. For instance, if it is desired to scale up in three containers, the action 
would take the form upscale 3. If the desired behavior is to reduce in one container 
the total count when other alert fires, the action would be downscale 1. The policy 
simply extracts the action according to the input, which is an alert name. 

Difficulty of use. Given that the tool became a web server, in order to access its func-
tionality it is needed to make HTTP requests to its REST interface. There are three 
ways to achieve this: 1- Using curl from the console, 2- Using an HTTP client with 
graphic user interface as Postman20 o 3- Writing a client and integrating it in another 
system. 

The third alternative was chosen and it was decided to develop a graphic user inter-
face in React21, which allows access to the functionality provided by the tool, and it 
loads at the same time the alerts in Prometheus and their respective actions in Open 
Policy Agent. This decision is due to the first alternative going back to the console 
format, which is rudimentary and the format to avoid, and the second one requiring 
external tools and extended knowledge of the REST interface of the tool. However, 
the tool allows any of the three alternatives, and, in fact, a second graphical interface 
with different requirements could be developed using the same tool. 

Fig. 6 shows a new version that includes a graphic user interface and it leaves out 
Docker volumes for the Prometheus and Alertmanager configuration. 

 
19  http://openpolicyagent.org/ 
20  https://www.postman.com/ 
21  https://reactjs.org/ 



13 

 
Fig. 5. – Third version of Crane with graphical user interface 

In this version, the responsibility to load the rules and policies moves to the graph-
ical interface, which uses the functionality of the Python service through its HTTP 
interface. It can be seen how the configuration update (arrow from Crane Python to 
Prometheus and Alert manager) is made directly to the container, which has a small 
service listening, and not through files, which used to tie the implementation to the 
operative system. 

4 Conclusions and future work 

A tool for creating containers automatically was presented. It adds load balancing and 
automatic scaling with configurable rules. Even though it is not in scope of this work, 
the construction of said rules were thoroughly studied for several application styles by 
other authors, as in [6]. 

An interesting point to extend is the possibility of extending the capacities of the 
tool in order to add automatic deployment of new versions of the Docker images. 

In addition, it could add support for multiple ports for each container, or the sup-
port for non-HTTP ports (this is limited due the use of NGINX). In regard to contain-



14 

er parametrization, currently they are listed as console arguments, but support for file 
input could be added. 

At the moment, a local deployment is considered, but if a virtual machine deploy 
were to be made, other tools as Packer22 could be used for vertical scaling, and Ansi-
ble23 for automatic configuration. Finally, regarding the distribution of the tool, it 
could be turned into a packaged and uploaded to repositories as Chocolatey24 (Win-
dows) or the Debian and Ubuntu repositories. 

References 

1. Loukides, M. (2012). What is DevOps?. " O'Reilly Media, Inc.". 
2. Fowler, M., & Foemmel, M. (2006). Continuous integration. 
3. Leszko, R. (2017). Continuous Delivery with Docker and Jenkins. Packt Publishing Ltd. 
4. Virmani, M. (2015, May). Understanding DevOps & bridging the gap from continuous in-

tegration to continuous delivery. In Fifth international conference on the innovative com-
puting technology (intech 2015) (pp. 78-82). IEEE. In press. 

5. Oracle (2021). “Chapter 3 Host Requirements”. URL: 
https://docs.oracle.com/en/operating-systems/olcne/1.1/relnotes/hosts.html 

6. Taherizadeh, S., & Stankovski, V. (2019). Dynamic multi-level auto-scaling rules for con-
tainerized applications. The Computer Journal, 62(2), 174-197. In press. 

7. Baresi, L., & Quattrocchi, G. (2020, March). Cocos: A scalable architecture for container-
ized heterogeneous systems. In 2020 IEEE International Conference on Software Architec-
ture (ICSA) (pp. 103-113). IEEE. In press. 

8. Bullington-McGuire, R. and Dennis, A.K. and Schwartz, M. (2020). Docker for Develop-
ers: Develop and run your application with Docker containers using DevOps tools for con-
tinuous delivery. Packt Publishing. 

9. Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: concepts, technology, & ar-
chitecture. Pearson Education. 

10. Arcidiacono (2020). “DEHIA: una plataforma liviana para definir y ejecutar actividades 
con intervención humana basadas en workflows (DEHIA: a lightweight platform to define 
and execute human intervention activities based on workflows). ” ).  Degree thesis. Facul-
tad de Informática, UNLP 

11. Docker (2022). “Networking with standalone containers”  URL: 
https://docs.docker.com/network/network-tutorial-standalone/ 

12. Docker (2020). “Docker Engine release notes” URL: 
https://docs.docker.com/engine/release-notes/#20100 

13. Nestybox (2019). “Secure Docker-in-Docker with System Containers”.  URL: 
https://blog.nestybox.com/2019/09/14/dind.html 

14.  Docker (2013). “Docker can now run within Docker”. URL: 
https://www.docker.com/blog/docker-can-now-run-within-docker 

 
22  https://www.packer.io/ 
23  https://www.ansible.com/ 
24  https://chocolatey.org/ 


	1 Introduction
	2 Container management architecture precedents
	2.1 SWITCH
	2.2 COCOS

	3 Design evolution of Crane
	3.1 Instances load balancing
	3.2 Container automatic scaling
	Prometheus and Alertmanager. In order to implement this automatic scaling, Prometheus9F , a time series database was used. This means that its specific functionality is to keep track of historical data in order to calculate statistics. On the other ha...

	3.3 Detected implementation problems
	Given the complexity and risks that the first two alternatives involve, the third one was chosen.
	Course of action in case of an alert. In case of an alert, the course of action is fixed: add a container. It was considered that it would be desirable to be able to describe, in a policy form, which is the action to take in case of an alert. Multiple...
	Difficulty of use. Given that the tool became a web server, in order to access its functionality it is needed to make HTTP requests to its REST interface. There are three ways to achieve this: 1- Using curl from the console, 2- Using an HTTP client wi...


	4 Conclusions and future work
	References

