Skip to main content

Experimental Results of a Haptics Based Soldering Education System: A Comparison Study of RNN and LSTM for Detection of Dangerous Movements

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 527))

Abstract

The soldering techniques are one of the industrial techniques required in electronic device manufacturing plants. However, a framework for quantifying soldering techniques has not been established, therefore it hard to evaluate the training of trainees. Also, the safety is very important in the education of beginners. The haptics is able to transmit the power generated in the virtual space to the manipulator. Therefore, we perform soldering virtual training based on haptics and analyze the soldering motion based on time series analysis using training data in a virtual space. In this paper, we propose and evaluate a soldering education system based on haptics. The experimental results show that Long Short-Term Memory (LSTM) performs better than Recurrent Neural Network (RNN) in detecting dangerous movements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Joseph, F.J., et al.: Neurosurgical simulator for training aneurysm microsurgery-a user suitability study involving neurosurgeons and residents. Acta Neurochir. 162(10), 2313–2321 (2020)

    Article  Google Scholar 

  2. Chen, X., Sun, P., Liao, D.: A patient-specific haptic drilling simulator based on virtual reality for dental implant surgery. Int. J. Comput. Assist. Radiol. Surg. 13(11), 1861–1870 (2018). https://doi.org/10.1007/s11548-018-1845-0

    Article  Google Scholar 

  3. Bortone, I., et al.: Wearable haptics and immersive virtual reality rehabilitation training in children with neuromotor impairments. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1469–1478 (2018)

    Article  Google Scholar 

  4. Handa, T., Azuma, M., Shimizu, T., Kondo, S.: A ball-type haptic interface to enjoy sports games. In: Kajimoto, H., Lee, D., Kim, S.-Y., Konyo, M., Kyung, K.-U. (eds.) AsiaHaptics 2018. LNEE, vol. 535, pp. 284–286. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3194-7_63

    Chapter  Google Scholar 

  5. Khosravi, H., et al.: Simulating mass in virtual reality using physically-based hand-object interactions with vibration feedback. In: Proceedings of Graphics Interface, pp. 241–248 (2021)

    Google Scholar 

  6. Liu, L., et al.: Haptic technology and its application in education and learning. In: The 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media), pp. 1–6 (2017)

    Google Scholar 

  7. Salazar, S., et al.: Altering the stiffness, friction, and shape perception of tangible objects in virtual reality using wearable haptics. IEEE Trans. Haptics 13(1), 167–174 (2020)

    Article  Google Scholar 

  8. Oda, T., et al.: Design and implementation of an IoT-based E-learning testbed. Int. J. Web Grid Serv. 13(2), 228–241 (2017)

    Article  Google Scholar 

  9. Hirota, Y., et al.: Proposal and experimental results of a DNN based real-time recognition method for ohsone style fingerspelling in static characters environment. In: Proceedings of IEEE GCCE-2020, pp. 476–477 (2020)

    Google Scholar 

  10. Ji, Y., et al.: A method for LSTM-based trajectory modeling and abnormal trajectory detection. IEEE Access 8, 104063–104073 (2020)

    Article  Google Scholar 

  11. Toyoshima, K., et al.: Proposal of a haptics and LSTM based soldering motion analysis system. In: Proceedings of IEEE GCCE-2021, pp. 774–775 (2021)

    Google Scholar 

  12. Toyoshima, K., et al.: Proposal and evaluation of a soldering motion analysis system based on haptics. In: Proceedings of the 10-th EIDWT-2022, pp. 308–315 (2022)

    Google Scholar 

  13. Sherstinsky, A., et al.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404, 1–43 (2020)

    Article  MathSciNet  Google Scholar 

  14. Hochreiter, S., et al.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Hirota, Y., Oda, T., Saito, N., Hirata, A., Hirota, M., Katatama, K.: Proposal and experimental results of an ambient intelligence for training on soldering iron holding. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 444–453. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_44

    Chapter  Google Scholar 

  16. Ishitaki, T., et al.: Application of deep recurrent neural networks for prediction of user behavior in tor networks. In: Proceedings of IEEE AINA-2017, pp. 238–243 (2017)

    Google Scholar 

  17. Ishitaki, T., et al.: A neural network based user identification for tor networks: data analysis using friedman test. In: Proceedings of IEEE AINA-2016, pp. 7–13 (2016)

    Google Scholar 

  18. Oda, T., et al.: A neural network based user identification for tor networks: comparison analysis of activation function using friedman test. In: CISIS-2016, pp. 477–483 (2016)

    Google Scholar 

  19. Yao, L., et al.: An improved LSTM structure for natural language processing. In: The IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 565–569 (2018)

    Google Scholar 

  20. Nagai, Y., Saito, N., Hirata, A., Oda, T., Hirota, M., Katayama, K.: Approach of a Word2Vec based tourist spot collection method considering COVID-19. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 67–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_7

    Chapter  Google Scholar 

  21. Nagai, Y., et al.: Approach of an emotion words analysis method related COVID-19 for twitter. In: IEEE GCCE-2021, pp. 1–2 (2021)

    Google Scholar 

  22. Nagai, Y., et al.: Approach of a Japanese co-occurrence words collection method for construction of linked open data for COVID-19. In: IEEE GCCE-2020, pp. 478–479 (2020)

    Google Scholar 

  23. Wang, Q., et al.: Speaker diarization with LSTM. In: The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5239–5243 (2018)

    Google Scholar 

  24. Rodríguez-Vila, B., et al.: A low-cost pedagogical environment for training on technologies for image-guided robotic surgery. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/2, pp. 821–824. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-9038-7_151

    Chapter  Google Scholar 

  25. Battagli, E., et al.: TcHand: visualizing hands in CHAI3D. In: The IEEE World Haptics Conference (WHC), p. 354 (2021)

    Google Scholar 

  26. Jose, J., et al.: Design of a bi-manual haptic interface for skill acquisition in surface mount device soldering. Solder. Surf. Mt. Technol. 31(2), 133–142 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ivanov, V., Strelkov, S., Klygach, A., Arseniev, D.: Medical training simulation in virtual reality. In: Voinov, N., Schreck, T., Khan, S. (eds.) Proceedings of International Scientific Conference on Telecommunications, Computing and Control. SIST, vol. 220, pp. 177–184. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6632-9_15

    Chapter  Google Scholar 

  28. McLachlan, G.: The mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  29. Malhotra, P., et al.: Long short term memory networks for anomaly detection in time series. In: European Symposium on Artificial Neural Networks, vol. 23, no. 56, pp. 89–94 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K19793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toyoshima, K. et al. (2022). Experimental Results of a Haptics Based Soldering Education System: A Comparison Study of RNN and LSTM for Detection of Dangerous Movements. In: Barolli, L., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2022. Lecture Notes in Networks and Systems, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-14627-5_20

Download citation

Publish with us

Policies and ethics