Skip to main content

Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13398))

Abstract

In recent years, feature-based automated algorithm selection using exploratory landscape analysis has demonstrated its great potential in single-objective continuous black-box optimization. However, feature computation is problem-specific and can be costly in terms of computational resources. This paper investigates feature-free approaches that rely on state-of-the-art deep learning techniques operating on either images or point clouds. We show that point-cloud-based strategies, in particular, are highly competitive and also substantially reduce the size of the required solver portfolio. Moreover, we highlight the effect and importance of cost-sensitive learning in automated algorithm selection models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Reiyan/pflacco_experiment.

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  2. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without feature extraction. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 198–206 (2019)

    Google Scholar 

  3. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 313–320 (2012)

    Google Scholar 

  4. Bossek, J., Doerr, C., Kerschke, P.: Initial design strategies and their effects on sequential model-based optimization: an exploratory case study based on BBOB. In: Proceedings of the 22nd Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 778–786 (2020)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  6. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  7. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup. Research Report RR-7215, INRIA (2010). https://hal.inria.fr/inria-00462481

  8. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optimi. Meth. Software 36(1), 114–144 (2021)

    Article  MathSciNet  Google Scholar 

  9. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical report RR-6829, INRIA (2009). https://hal.inria.fr/inria-00362633/document

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  11. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms (ICGA), pp. 184–192. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  12. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. (ECJ) 27(1), 3–45 (2019)

    Article  Google Scholar 

  13. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 265–272. ACM, July 2015

    Google Scholar 

  14. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evol. Comput. (ECJ) 27(1), 99–127 (2019)

    Article  Google Scholar 

  15. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the r-package flacco. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.) Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25147-5_7

    Chapter  Google Scholar 

  16. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Networks 3361(10), 1995 (1995)

    Google Scholar 

  17. Loshchilov, I., Schoenauer, M., Sèbag, M.: Bi-population CMA-ES algorithms with surrogate models and line searches. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation. GECCO 2013 Companion, pp. 1177–1184. ACM (2013)

    Google Scholar 

  18. Lunacek, M., Whitley, L.D.: The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 477–484. ACM (2006)

    Google Scholar 

  19. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  20. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. (JIS) 241, 148–163 (2013)

    Article  Google Scholar 

  21. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 829–836. ACM (2011). Recipient of the 2021 ACM SigEVO Impact Award

    Google Scholar 

  22. Muñoz Acosta, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. (TEVC) 19(1), 74–87 (2015)

    Article  Google Scholar 

  23. Muñoz Acosta, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. (JIS) 317, 224–245 (2015)

    Article  Google Scholar 

  24. Muñoz, M.A., Kirley, M.: Sampling effects on algorithm selection for continuous black-box optimization. Algorithms 14(1), 19 (2021). https://doi.org/10.3390/a14010019

    Article  MathSciNet  Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML 2010, Madison, WI, USA, pp. 807–814. Omnipress (2010)

    Google Scholar 

  26. Pearson, K.: On lines and planes of closest fit to system of points in space. Philos. Mug 6th ser. 2, 559–572 (1901)

    Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Prager, R.P., Seiler, M.V., Trautmann, H., Kerschke, P.: Towards feature-free automated algorithm selection for single-objective continuous black-box optimization. In: Proceedings of the IEEE Symposium Series on Computational Intelligence. Orlando, Florida, USA (2021)

    Google Scholar 

  29. Prager, R.P., Trautmann, H., Wang, H., Bäck, T.H.W., Kerschke, P.: Per-instance configuration of the modularized CMA-ES by means of classifier chains and exploratory landscape analysis. In: Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), pp. 996–1003. IEEE (2020)

    Google Scholar 

  30. Raschka, S.: MLxtend: providing machine learning and data science utilities and extensions to python’s scientific computing stack. J. Open Source Software (JOSS) 3(24), 638 (2018)

    Article  Google Scholar 

  31. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15(65–118), 5 (1976)

    Google Scholar 

  32. Seiler, M., Pohl, J., Bossek, J., Kerschke, P., Trautmann, H.: Deep learning as a competitive feature-free approach for automated algorithm selection on the traveling salesperson problem. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 48–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_4

    Chapter  Google Scholar 

  33. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. arXiv preprint (2022)

    Google Scholar 

  34. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-Attention with Relative Position Representations. arXiv preprint arXiv:1803.02155 (2018)

  35. Turney, P.D.: Types of Cost in Inductive Concept Learning. arXiv preprint cs/0212034 (2002)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Patrick Prager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prager, R.P., Seiler, M.V., Trautmann, H., Kerschke, P. (2022). Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics