
Evolutionary Approaches to Improving the
Layouts of Instance-Spaces

Kevin Sim[0000−0001−6555−7721] and Emma Hart[0000−0002−5405−4413]

Edinburgh Napier University
{k.sim, e.hart}@napier.ac.uk

Abstract. We propose two new methods for evolving the layout of an
instance-space. Specifically we design three different fitness metrics that
seek to: (i) reward layouts which place instances won by the same solver
close in the space; (ii) reward layouts that place instances won by the
same solver and where the solver has similar performance close together;
(iii) simultaneously reward proximity in both class and distance by com-
bining these into a single metric. Two optimisation algorithms that utilise
these metrics to evolve a model which outputs the coordinates of in-
stances in a 2d space are proposed: (1) a multi-tree version of GP (2)
a neural network with the weights evolved using an evolution strategy.
Experiments in the TSP domain show that both new methods are capa-
ble of generating layouts in which subsequent application of a classifier
provides considerably improved accuracy when compared to existing pro-
jection techniques from the literature, with improvements of over 10% in
some cases. Visualisation of the the evolved layouts demonstrates that
they can capture some aspects of the performance gradients across the
space and highlight regions of strong performance.

Keywords: Instance-space · Dimensionality-Reduction · Algorithm-Selection.

1 Introduction

Instance Space Analysis is a methodology first proposed by Smith-Miles et al.
in a series of papers [18, 14, 15] with the purpose of (1) providing a means of
visualising the location of benchmark instances in a 2d space; (2) illustrating the
‘footprint’ of an algorithm (i.e. the regions of the space in which it performs well)
and (3) calculating objective (unbiased) metrics of algorithmic power via analysis
of the aforementioned footprints. Once an instance-space has been created, it can
be used in various ways: for example, to identify regions in the space that are
lacking representative data (followed by generation of instances targeted at filling
these gaps) or developing automated algorithm selection tools to determine the
best algorithm for solving a new instance.

A critical step of the methodology is clearly the projection of an instance de-
scribed by a high-dimensional feature-vector into a 2d instance-space, with the
quality of this projection having significant influence of the utility of the resulting
space [14]. Three factors are important. Firstly, the projection method should

2 Sim, K. and Hart, E.

be model-based, i.e. it should learn a model that can be used to project future
unseen instances into the space once it has been created — this rules out embed-
ding approaches such as the popular t-sne [10] technique. Secondly, if instances
are labelled according to the solver which produces the ‘best’ performance, in-
stances with the same label should be co-located in the space (potentially in
multiple distinct regions). Finally, within a subset of instances with the same
label, we propose that the projection should locate instances where the solver
provides similar performance closer together than those where the performance
differs widely, i.e. performance should vary smoothly across a cluster of instances
with the same label, thereby indicating regions in which the winning solver is
particularly strong and vice-versa.

The vast majority of work in the area of instance-space creation has used
Principal Component Analysis (PCA)[12] as the means of projecting to a 2d-
space — despite the fact that this method is unsupervised and therefore does not
take into account either instance-labels or relative performance of solvers. Alter-
native methods for dimensionality-reduction such as manifold-learning methods
(e.g. UMAP [3]) which can be used in a supervised manner seek to place in-
stances that are close in the high-dimensional space close in low-dimensional
instance space: that is, an instance should retain the same nearest neighbours
in the embedded space as in the input space. However, mapping from an high-
dimensional feature-space to a low-dimensional feature-space that also smoothly
captures variation in the performance-space for the purpose of instance-space
creation poses a problem for most manifold-learning methods: neighbours in the
performance-space are not necessarily neighbours in the feature-space. This is
clearly illustrated in figure 1 which plots the distance in a feature-space against
distance in the performance-space for all pairs of instances taken from a large
set of 950 TSP instances, and shows there is very little correlation.

Therefore, in order to produce instance-spaces which attempt to satisfy all
three criteria outlined above, we propose two evolutionary approaches to learn a
model which maps from a high-dimensional feature-space to a low-dimensional
instance-space. The first uses a multi-tree genetic programming (GP) algorithm
to output the coordinates in a 2d space, while the second evolves the weights of
a neural-network which outputs the 2d coordinates, using an evolution strategy
(ES) to train the network. We propose three novel fitness functions that can
be combined with either optimiser to address this. To evaluate the quality of
the evolved layouts, post-evolution we apply multiple classifiers to the space
to determine whether it facilitates algorithm-selection, and visualise the space
to gain a qualitative understanding of whether the space smoothly reflect the
performance gradient of the solvers. Both approaches are demonstrated to evolve
layouts that improve the accuracy of classifiers trained on the 2d space compared
to using layouts created using PCA and UMAP, with some progress towards
improving layouts with respect to the performance gradients within a class.

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 3

(a) Instances won by LKCC (b) Instances won by CLK

Fig. 1: Scatter plots showing distance in feature-space (x-axis) vs performance-
gap for pairwise comparisons of TSP instances, illustrating lack of correlation
between these quantities

2 Related Work

A long line of work by Smith-Miles and her collaborators [18, 14, 15] has gradu-
ally refined the approach to defining an instance-space into a rigorous methodol-
ogy, culminating in the freely available MATILDA toolbox [2]. The method has
been applied in multiple domains within combinatorial optimisation (e.g. TSP
[16], timetabling [17], knapsack [2], graph-colouring [18]) and more recently to
machine-learning datasets [11]. In the vast majority of the work described in
combinatorial optimisation, instance-spaces are created using PCA to project
into low-dimensions. As this is an unsupervised method, in order to find pro-
jections that place instances won by the same solver in similar regions, an evo-
lutionary algorithm is used to select a subset of features that - when projected
via PCA - maximise classification accuracy using an SVM classifier. However,
this potentially biases the projection towards SVM. A more recent approach in
which a single instance-space is developed to represent multiplemachine-learning
datasets uses a new projection method that tries to minimise the approximation
error |F − f |+ |P − p| where F, P correspond to the feature/performance vector
in a high-d space and f, p to the same vectors in the low-d space, but cannot
be directly translated to laying out an instance-space to reflect the performance
gradients of multiple solvers.

More recently, Lensen et al. [7] proposed a GP approach to manifold learning
of machine-learning datasets [19]. A multi-tree GP method is used to learn a 2d
projection using a fitness function that attempts to maintain the same ordering
between neighbours of an instance in both spaces. The quality of a learned em-
bedding is estimated via a proxy measure calculated post-evolution —- applying
a classifier to the newly projected data and measuring classification accuracy. In
more recent work, the same authors propose further extensions that (1) optimise
the embedding learned by GP to match a pre-computed UMAP embedding, and
(2) optimise UMAP’s own cost-function directly [13]. Most recently they adapt
their approach to consider how local structure within an embedding can be bet-
ter reflected, proposing a modified fitness functions that seeks to measure how
well local topology is preserved by the evolved mapping [8]. However, a com-

4 Sim, K. and Hart, E.

mon trait in this body of work is that the various fitness functions proposed
optimise embeddings such that the input and embedded neighbourhood of a
given instance contain the same instances with the same ordering. As previously
discussed in section 1, this is not necessarily desirable if the instance-space is
to capture performance gradients as well as maintain neighbourhoods in the
feature-space. These issues motivate our new approach which is detailed below.

3 Methods

Our goal is to evolve an instance-space layout that places instances won by the
same solver in the same regions of a low-d feature-space while also attempting to
maintain an ordering in the performance-space, i.e. instances won by the same
algorithm and eliciting similar performance from that algorithm should placed
close together. We investigate two approaches for creating the layout: the first
uses an evolution-strategy to evolve the weights of a neural network that outputs
the 2d coordinates of each instances. The second, inspired by the work of Lensen
et al, uses a multi-tree genetic programming approach to achieve the same goal
but with new fitness function(s). Assuming a set of instances, each of which is
described by a high-dimensional feature-vector and is labelled with the solver
that ‘wins’ the instance, we propose the following novel fitness functions:

1. Label-based (L): maximise the proportion of the k nearest neighbours of an
instance i in the embedded space that have the same label as i (averaged
over all instances)

2. Distance-based (D) :minimise the normalised average distance between the
performance of an instance and that of its k nearest neighbours that have
the same label. A penalty of 1 is added to this quantity for every neighbour
that is wrongly labelled, in order to prevent the fitness function favouring a
small number of correctly labelled neighbours with very small distance.

3. Combined (L + D): maximise L + (1 − D), i.e a linear combination of the
previous fitness functions

We evolve mappings using each combination of fitness-function and optimi-
sation algorithm (ES/GP), i.e. 6 combinations in total. Post-optimisation, we
follow the approach of Lensen et al. and estimate the quality of an evolved
instance-space using a proxy measure: we apply three off-the-shelf classifiers to
the evolved layout to predict the best solver on an unseen set of instances,
hence determining whether the layout facilitates algorithm-selection. Secondly,
we provide a qualitative view of the extent to which instances that have simi-
lar performance are mapped to similar regions of the space using visualisation.
Results are compared to PCA and UMAP. PCA is chosen as it is the method
of choice to produce an instance-space in MATILDA. UMAP is selected as it
can be used in a supervised fashion and therefore offers a comparison to our
proposed supervised techniques.

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 5

3.1 Mapping using an Evolution Strategy

An ES is used to learn the hyper-parameters of a neural-network that given a set
of features describing an instance, outputs the coordinates of the instance in a
2-d space. A population encodes a set of individuals that specify the real-valued
weights of a fixed-size neural network. The neural network is a feed-forward
neural network with f inputs corresponding to the number of features describing
an instance, and o = 2 outputs specifying the new coordinates in a 2d space. The
network has one hidden layer with (f + o)/2 neurons. The hidden neurons use a
relu activation function, while the two output neurons have sigmoid activation.

To evolve the population to optimise the chosen fitness function(s) (as defined
above), we apply the standard evolution strategy CMA-ES [4] due its prevalence
in the literature in the context of neuro-evolution [9, 6, 5]. We use the default
implementation of CMA-ES provided in the DEAP library [1]. This requires
three parameters to be set: the centroid (set to 0.0), the value of sigma (set to
1.0) and the number of offspring lambda which is set to 50 in all experiments.
The algorithm was run for 50 generations.

3.2 Mapping using a Multi-Tree Genetic Programming

We use a multi-tree GP representation in which each individual contains 2 GP
trees, each representing a single dimension in the embedding, following the gen-
eral approach of Lensen et al. [7]. The terminal set contains the n features
describing an instance, with a mix of linear/non-linear functions (table 1). The
algorithm is implemented using DEAP. All parameter settings are given in table
1. To enable direct comparison with the ES, the number of generations was fixed
at 25, resulting in the same number of individual evaluations for both methods.

Table 1: GP parameters and settings
GP parameters

Population size 100
Initialisation GenHalfandHalf (5,10)
Selection Tournament (size=7)
Crossover 1 pt
Mutation GenFull (3, 5)

Max tree depth 17

GP Function Set

ADD COSINE
SUBTRACT SIN
MULTIPLY TANH
ProtectedDIVIDE RELU
NEG Eph. Const.(0,1)

3.3 Instance Data

We use the instances from the TSP domain provided via MATILDA [2]. This
includes the meta-data associated with an instance that defines the values of fea-
tures identified as relevant for the domain and the performance data from two

6 Sim, K. and Hart, E.

solvers (Chained Lin-Kernighan (CLK) an Lin-Kernighan with Cluster Compen-
sation (LKCC) [18]). 950 instances are provided which are synthetically gener-
ated to be either easy or hard for each solver (see [18] for a detailed description
of the generation method and solver), labelled by the best-solver determined
according to the time taken to solve.

We conduct experiments using the 17 features given in the MATILDA meta-
data (denoted ‘full features’). In addition we repeat experiments using the subset
of 6 features that were selected by MATILDA to produce the instance-space
projection using PCA, as described in the section 2, referred from here on as the
‘reduced set’. Recall that this reduced set was specifically chosen to optimise a
PCA projection but is used in all experiments to enable direct comparison. The
reader is referred to the MATILDA toolbox [2] for a detailed description of each
feature and the features designated as the ‘reduced’ feature-set.

4 Experiments

Experiments are conducted for each optimiser (ES/GP) combined with each of
the three proposed fitness functions. For each combination we evolve layouts
using both the full and reduced feature set. All experiments are repeated 10
times. The feature-data is normalised (specifically as this provides input in a
suitable range to the neural network). For PCA and UMAP, standardised scaling
is applied to the data to remove the mean and scale to unit variance as this is
widely accepted as best-practice for these methods. The 950 instances are split
into a ‘training’ set using 60% of the data (selected using stratified sampling)
to preserve class distribution in each split. The same training dataset is used in
all experiments to evolve the instance-space layout. In all experiments reported,
the k nearest neighbour parameter required to calculate fitness was set to 15.
(A series of preliminary experiments that varied k between 15 and 45 did not
provide any statistical evidence that the setting influenced results).

Following evolution, we calculate a proxy measure of quality as described in
section 2 to quantify the effectiveness of the evolved layout: three off-the-shelf
classifiers are trained to predict the best solver (a binary classification prob-
lem) using the evolved 2d projection as input to the classifier. The classifier is
trained using the same training data used to evolve the layout, then results are
reported on the held-out test set. Three classifiers are chosen: Random Forest
(generally cited as providing strong performance), support vector machines (as
used in the MATILDA methodology), and finally a k-nearest neighbour clas-
sifier (which would be expected to perform well in the spaces evolved by the
label-based method which also relies on neighbourhoods). For each evolved lay-
out, we record the accuracy and F1 score (which combines the precision and
recall of a classifier into a single metric by taking their harmonic mean) of each
classifier. This is repeated using layouts created using PCA and UMAP on the
same data as comparison. The standard scikit-learn implementation of PCA is
used which does not require any parameter setting. UMAP requires a parameter
nearest neighbor which controls the balance between local versus global struc-

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 7

ture in the data (where low values emphasise local structure) which was set to
5 again following a brief empirical investigation. All other UMAP settings were
left in their default setting as provided in the Python implementation [3]. As
previously noted, UMAP is used in its supervised form.

5 Results

This section reports quantitative and qualitative results that (1) compare the
quality of embedding (using classification accuracy/F1-score as a proxy) using
each combination of optimiser/fitness-function to off-the-shelf methods (PCA,
UMAP) and (2) provide a qualitative evaluation of the evolved instance-spaces
with respect to the extent to which they appear to separate the two classes, and
illustrate gradients in the performance data.

(a) NN (fitness= L) (b) NN (fitness= D) (c) fitness: L+ (1−D))

(d) GP (fitness= L) (e) GP (fitness= D) (f) fitness: L+ (1−D))

Fig. 2: Convergence curves for combinations of (optimiser, fitness function), ob-
tained using the reduced feature-set as input. Top row shows results for the NN
method, the bottom row for GP. Red line shows median value over 10 runs

5.1 Insights into Evolutionary Progress

Figure 2 plots convergence curves for each combination of optimiser/fitness func-
tion applied to evolving a layout in the reduced feature-space1. The GP method
combined with label-based fitness measure L or the combined fitness measure
exhibits less variance than the neural network approach, although both methods

1 similar trends are observed in the plots obtained in the full feature space but not
shown due to space limitations

8 Sim, K. and Hart, E.

show wide variance using the distance based function which only implicitly ac-
counts for class-labels. Furthermore, the GP approaches converge more quickly
than the neural-network equivalents.

Table 2: Median accuracy and F1 score per classifier using projection obtained
by each combination of optimiser/fitness function, with comparison to PCA
and UMAP. Top row - full feature set; bottom row - reduced feature set. Bold
indicates that accuracy is better than both PCA/UMAP, italics that F1 is better
than both. All results reported on held-out test set
Full Features A(SVM) F1(SVM) A(KNN) F1(KNN) A(RndF) F1(RndF)

GP-KNN (L) 0.920 0.911 0.972 0.972 0.959 0.958
GP-DIST (D) 0.953 0.951 0.966 0.966 0.962 0.962
GP-DIST-ADD (L+D) 0.942 0.939 0.966 0.966 0.961 0.960
NN-KNN (L) 0.912 0.912 0.920 0.919 0.915 0.913
NN-DIST (D) 0.833 0.782 0.933 0.933 0.917 0.917
NN-DIST-ADD (L+D) 0.800 0.711 0.778 0.710 0.800 0.711

PCA 0.850 0.843 0.847 0.845 0.858 0.844
UMAP 0.855 0.845 0.861 0.852 0.855 0.845

Reduced Features A(SVM) F1(SVM) A(KNN) F1(KNN) A(RndF) F1(RndF)

GP-KNN (L) 0.891 0.897 0.965 0.964 0.958 0.957
GP-DIST (D) 0.950 0.949 0.970 0.969 0.961 0.960
GP-DIST-ADD (L+D) 0.952 0.952 0.968 0.968 0.961 0.960
NN-KNN (L) 0.800 0.711 0.955 0.955 0.951 0.951
NN-DIST (D) 0.800 0.711 0.958 0.957 0.951 0.951
NN-DIST-ADD (L+D) 0.800 0.711 0.772 0.708 0.800 0.711

PCA 0.874 0.875 0.889 0.888 0.868 0.846
UMAP 0.909 0.907 0.903 0.902 0.913 0.911

5.2 Quantitative evaluation via proxy classification metrics

Table 2 shows the classification accuracy and F1-score obtained from each of
three classifiers on the unseen dataset for each experiment using the projections
evolved in the prior step, and compared to projections obtained from PCA and
UMAP. With the exception of two combinations that use the neural network
method (L, L+D), it is clear that the evolved layouts enable all three classifiers
tested to produce significantly better results that PCA and UMAP, with per-
formance gains of over 10% in several cases. This demonstrates that the evolved
layouts provided a good general basis for classification, in eliciting good per-
formance from mutiple different types of classifier. As expected, the neighbour-
based L fitness function creates layouts that favour the KNN classifier, which
also relies on a neighbourhood method, but it is clear that the other classifiers
(particularly Random Forest) are also competitive in a space evolved to favour
similar neighbours. The GP approach generally outperforms the neural-network

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 9

approaches. The SVM classifier generally provides weaker results than the other
two classifiers, although still markedly better than PCA/UMAP in 4 out of 6
experiments.

Figure 3 shows boxplots of results obtained on the test set from the 10 runs
for each combination, plotted per classifier. Pairwise significance tests were con-
duct on each set of results per classifiers (Mann-Whitney test using Bonferroni
correction). Similar plots of p-values were obtained for all three classifiers, how-
ever only one is shown due to space restrictions. The boxplots demonstrate that
the SVM classifier has more variable performance in the evolved spaces while
the other two classifiers appear robust to the projection; similarly, the neural
approach tends to result in layouts in which classification performance is more
variable than the spaces evolved using GP; this result is consistent across all
three classifiers.

(a) SVM (b) KN

(c) Random Forest

(d) p-value comparison (Ran-
dom Forest)

Fig. 3: Boxplots showing distribution of results per proxy classifier for each layout
combination. (d) shows a typical plot of p-values obtained from comparing pairs
of methods: similar plots were obtained for all 3 classifiers

.

10 Sim, K. and Hart, E.

5.3 Qualitative Evaluation: Visualisation of layouts (by label)

Figure 4 shows examples of layouts obtained by the single run from the 10 runs
of each combination that resulted in the best fitness for each combination of
optimiser/fitness function. The plots are shaded by class label. A wide variety of
layouts are observed. Note that UMAP (as expected) produces plots that favour
local structure within the data. The fitness function L+D that favours both po-
sitioning instance with the same label and similar performance tends to spread
the instances more widely across the space. While all but one of the evolutionary
methods (the exception being NN(L+D) produce layouts that result in consid-
erably higher classification accuracy than PCA/UMAP, the layouts are perhaps
less easy to interpret to the human eye. In several cases, multiple instances are
mapped to the same coordinates which improves classification but does not easily
enable ‘similar’ instances (from an algorithm-selection perspective) to be easily
identified. A trade-off thus exists: ultimately the choice of method depends on
the priorities of the user, i.e. whether the goal is simply to select the best al-
gorithm or from a more scientific perspective, to gain insights into algorithm
performance relative to algorithm features.

Furthermore, while the boxplots show low variance in classification accuracy
across multiple runs, there is considerably variation in the layouts themselves
(see figure 5 as an example). The different biases of the two fitness functions
is clearly observed: note the tighter clustering of instances per class in the top
row from rewarding near neighbours of the same class, while the distance based
fitness function results in a wider spread of instances. This variability further
emphasises the trade-offs to be considered as mentioned above.

5.4 Visualisation of layouts (by performance)

Finally we evaluate the extent to which the distance based fitness function results
in layouts that place instances that elicit similar performance from the same
algorithm close together. Figure 6 shows three examples obtained from separate
runs of the GP optimiser with the distance-based fitness function. Instances
‘won’ by each class are shown on separate plots for clarity with the shading
representing the relative performance of the algorithm (normalised between 0
and 1). Some clear clusters of similar performance are visible (e.g. particularly
regarding the dark colours representing very strong performance), while there is
some evidence of instances with weak performance (lightest colours) appearing
towards the edge of clusters. However, there is clearly further work required to
adapt this method to create smoother gradients across the space.

6 Conclusion

Instance-space analysis methods have been attracting increasing attention as a
way of understanding the ‘footprints’ of an algorithm within a feature-space, en-
abling new insights into relative performance and algorithmic power [14], while
additionally facilitating algorithm-selection. We first outlined the properties that

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 11

(a) GP-KNN (b) GP-DIST (c) GP-KNN-DIST (d) PCA

(e) NN-KNN (f) (NN-DIST (g) NN-KNN-DIST

10 5 0 5 10 15

0

2

4

6

8

10

12

(h) UMAP

(i) GP-KNN (j) GP-DIST (k) GP-KNN-DIST (l) PCA

(m) NN-KNN (n) NN-DIST (o) NN-KNN-DIST (p) UMAP

Fig. 4: Embeddings from run with best accuracy. First row: reduced feature-
set, GP plus PCA reduced features. Second row: reduced feature-set, NN, plus
UMAP reduced features. Third/fourth row: as above using full feature set.

we believe an instance-space should embody, specifically that it should co-locate
instances with the same class label, while also reflecting the performance-gradient
across a cluster, i.e placing instances that elicit the similar performance from
an algorithm close together. These factors are peculiar to the goal of instance-
space analysis in optimisation. Specifically, they differ from the goals of stan-
dard dimensionality reduction methods which usually try to creating a mapping
in which the ordering of neighbours of a point in a high-dimensional space is
reflected in the low-dimensional space. As described in section 1 however, an
ordering in the feature-space of a set of instances can differ extensively from
the ordering within the performance-space, hence manifold-learning techniques
might not be appropriate for instance-space analysis.

We demonstrate that both proposed optimisation methods are capable of
generating layouts that provide considerable improvement in classification accu-
racy to UMAP and PCA, of over 10% in some cases. We also provide a more

12 Sim, K. and Hart, E.

qualitative analysis of the visualisations in terms of their ability to reflect per-
formance gradients. Results suggest that the approach shows promise with the
respect to the latter goal, although there is scope for refinement. The calculation
of the k nearest-neighbours is time-consuming for a large dataset but this can be
significantly improved using an efficient implementation (e.g. k -d trees) and is
therefore not limiting. We deliberately chose not to conduct a wide exploration
of possible neural architectures or to spend a large amount of effort in tuning
the parameters of the proposed algorithms. This will be further investigated in
future work. Finally, we intend to repeat the experiments in other combinatorial
domains, using the MATILDA generated instance-spaces as a baseline.

Fig. 5: Layouts from repeated runs of the same optimiser/fitness function. Top
row - GP with nearest-neighbour fitness; bottom - GP with distance based fitness

Fig. 6: Layouts from 2 runs of GP optimiser (fitness=Distance), one run per row.
Instances shaded by relative performance and separated into two plots according
to the class label of the instance

Acknowledgments

Hart gratefully acknowledges the support EPSRC EP/V026534/1

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 13

References

1. Deap: Distributed evolutionary algorithms in python. https://deap.

readthedocs.io/en/master/
2. Matilda: Melbourne algorithm test instance library with data analytics. https:

//matilda.unimelb.edu.au/matilda/
3. Umap: Uniform manifold approximation and projection for dimension reduction.

https://umap-learn.readthedocs.io/en/latest/index.html
4. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of

the derandomized evolution strategy with covariance matrix adaptation (cma-es).
Evolutionary computation 11(1), 1–18 (2003)

5. Hasselmann, K., Ligot, A., Ruddick, J., Birattari, M.: Empirical assessment and
comparison of neuro-evolutionary methods for the automatic off-line design of
robot swarms. Nature communications 12(1), 1–11 (2021)

6. Le Goff, L.K., Buchanan, E., Hart, E., Eiben, A.E., Li, W., de Carlo, M., Hale,
M.F., Angus, M., Woolley, R., Timmis, J., et al.: Sample and time efficient pol-
icy learning with cma-es and bayesian optimisation. In: Artificial Life Conference
Proceedings. pp. 432–440. MIT Press (2020)

7. Lensen, A., Xue, B., Zhang, M.: Can genetic programming do manifold learning
too? In: European Conference on Genetic Programming. pp. 114–130. Springer
(2019)

8. Lensen, A., Xue, B., Zhang, M.: Genetic programming for manifold learning: Pre-
serving local topology. IEEE Transactions on Evolutionary Computation (2021)

9. Loshchilov, I., Hutter, F.: Cma-es for hyperparameter optimization of deep neural
networks. arXiv preprint arXiv:1604.07269 (2016)

10. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)

11. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for ma-
chine learning classification. Machine Learning 107(1), 109–147 (2018)

12. Partridge, M., Calvo, R.A.: Fast dimensionality reduction and simple pca. Intelli-
gent data analysis 2(3), 203–214 (1998)

13. Schofield, F., Lensen, A.: Using genetic programming to find functional mappings
for umap embeddings. In: 2021 IEEE Congress on Evolutionary Computation
(CEC). pp. 704–711. IEEE (2021)

14. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures of
algorithm performance across instance space. Computers & Operations Research
45, 12–24 (2014)

15. Smith-Miles, K., Bowly, S.: Generating new test instances by evolving in instance
space. Computers & Operations Research 63, 102–113 (2015)

16. Smith-Miles, K., Hemert, J.v., Lim, X.Y.: Understanding tsp difficulty by learning
from evolved instances. In: International conference on learning and intelligent
optimization. pp. 266–280. Springer (2010)

17. Smith-Miles, K., Lopes, L.: Generalising algorithm performance in instance space:
A timetabling case study. In: International conference on learning and intelligent
optimization. pp. 524–538. Springer (2011)

18. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Computers & Operations Research 39(5), 875–889 (2012)

19. Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y.: Understanding how dimension
reduction tools work: an empirical approach to deciphering t-sne, umap, trimap,
and pacmap for data visualization. Journal of Machine Learning Research 22(201),
1–73 (2021)

