
A novelty-search approach to filling an
instance-space with diverse and discriminatory

instances for the knapsack problem

Alejandro Marrero1, Eduardo Segredo1, Coromoto León1 and Emma Hart2

1 Departamento de Ingenieŕıa Informática y de Sistemas, Universidad de La Laguna,
San Cristóbal de La Laguna, Tenerife, Spain
{amarrerd, esegredo, cleon}@ull.edu.es

2 School of Computing, Edinburgh Napier University, UK
e.hart@napier.ac.uk

Abstract. We propose a new approach to generating synthetic instances
in the knapsack domain in order to fill an instance-space. The method
uses a novelty-search algorithm to search for instances that are diverse
with respect to a feature-space but also elicit discriminatory performance
from a set of target solvers. We demonstrate that a single run of the al-
gorithm per target solver provides discriminatory instances and broad
coverage of the feature-space. Furthermore, the instances also show di-
versity within the performance-space, despite the fact this is not explic-
itly evolved for, i.e. for a given ‘winning solver’, the magnitude of the
performance-gap between it and other solvers varies across a wide-range.
The method therefore provides a rich instance-space which can be used
to analyse algorithm strengths/weaknesses, conduct algorithm-selection
or construct a portfolio solver.

Keywords: Instance generation, novelty search, evolutionary algorithm, knap-
sack problem, optimisation

1 Introduction

The term instance-space—first coined by Smith-Miles et al [16]—refers to a
high-dimensional space that summarises a set of instances according to a vector
containing a list of measures features derived from the instance-data. Project-
ing the feature-vector into a lower-dimensional space (ideally 2D) enables the
instance-space to be visualised. Solver-performance can be superimposed on the
visualisation to reveal regions of the instance-space in which a potential solver
outperforms other candidate solvers. The low-dimensional visualisation of the
instance-space can then be used in multiple ways: to understand areas of the
space in which solvers are strong/weak, to perform algorithm-selection or to
assemble a portfolio of solvers.

The ability to generate a useful instance-space however depends on the avail-
ability of a large set of instances. These instance sets should ideally (1) cover a



2 Marrero, Segredo, León, Hart.

high proportion of the 2D-space, i.e. instances are diverse with respect to the
features defining the 2D-space; (2) contain instances on which the portfolio of
solvers of interest exhibit discriminatory performance; (3) contain instances that
highlight diversity in the performance-space (i.e. highlight a range of values for
the performance-gap between the winning solver and the next best solver), in
order to gain further insight into the relative performance of different solvers.

On the one hand, previous research has focused on evolving new instances
that are maximally discriminative with respect to solvers [1,3,13] (i.e. maximise
the performance-gap between a target and other solvers), but tend not to have
explicit mechanisms for creating instances that are diverse w.r.t feature-space.
On the other hand, space-filling approaches [14] directly attempt to fill gaps in
the feature-space, but tend not to account for discriminatory behaviour. The
main contribution of our work is therefore in proposing an approach based on
Novelty Search (NS) [9] that is simultaneously capable of generating a set of
instances which are diverse with respect to a feature space and exhibit discrim-
inatory but diverse performance with respect to a portfolio of solvers (where
diversity in this case refers to variation in the magnitude of the performance
gap). The latter results from forcing the search to explore areas of the feature-
space in which one solver outperforms others only by a small amount, which
would be overlooked by methods that attempt to optimise this. Furthermore,
only one run of the method is required to generate the instance set targeted to
each particular solver considered, where each solution of the NS corresponds to
one KP instance.

We evaluate the approach in the Knapsack Problem (KP) domain, using a
portfolio of stochastic solvers (Evolutionary Algorithms - EAs), extending previ-
ous work on instance generation which has tended to use deterministic portfolios.
Finally, we explain in the concluding section why we believe the method can eas-
ily be generalised both to other domains and other solvers.

2 Related work

The use of EAs to target generation of a set of instances where one solver outper-
forms others in a portfolio is relatively common. For instance, in the bin-packing
domain, Alissa et al. [1] evolve instances that elicit discriminatory performance
from a set of four heuristic solvers. Plata et al. [13] synthesise discriminatory
instances in the knapsack domain, while there are multiple examples of this
approach to generate instances for Travelling Salesman Problem (TSP) [3, 15].
All of these methods follow a similar approach: the EA attempts to maximise
the performance gap between a target solver and others in the portfolio. Hence,
while the methods are successful in discovering instances that optimise this gap,
depending on the search-landscape (i.e. number and size of basins of local op-
tima), multiple runs can converge to very similar solutions. Furthermore, these
methods focus only on discrimination and therefore there is no pressure to ex-
plore the ‘feature-space’ of the domain. An implicit attempt to address this in
TSP is described in [6], in which the selection method of the EA is altered to



An NS approach to generate diverse and discriminatory instances for the KP 3

favour offspring that maintain diversity with respect to a chosen feature, as long
as the offspring have a performance gap over a given threshold. Again working
in TSP, Bossek et al. [3] tackle this issue by proposing novel mutation opera-
tors that are designed to provide better exploration of the feature-space however
while still optimising for performance-gap. In contrast to the above, Smith-Miles
et al [14] describe a method for evolving new instances to directly fill gaps in an
instance-space which is defined on a 2D plane, with each axis representing a fea-
ture derived from the instance data. While this targets filling the instance-space,
it does not pay attention to whether the generated instances show discriminatory
behaviour on a chosen portfolio.

As noted in the previous section, our proposed approach addresses the above
issue using a novelty-search algorithm to generate diverse instances that demon-
strate statistically superior performance for a specified target algorithm com-
pared to the other solvers in the portfolio.

3 Novelty Search for Instance Generation: Motivation

NS was first introduced by Lehman et al [9] as an attempt to mitigate the
problem of finding optimal solution in deceptive landscapes, with a focus on the
control problems. The core idea replaces the objective function in a standard
evolutionary search process with a function that rewards novelty rather than
a performance-based fitness value to force exploration of the search-space. A
‘pure’ novelty-search algorithm rewards only novelty: in the case of knapsack
instances, this can be defined w.r.t a set of user-defined features describing the
instance. However, as we wish to generate instances that are both diverse but also
illuminate the region in which a single solver outperforms others in a portfolio,
we use a modified form of NS in which the objective function reflects a weighted
balance between diversity and performance, where the latter term quantifies
the performance difference between a target algorithm and the others in the
portfolio.

Given a descriptor x, i.e., typically a multi-dimensional vector capturing fea-
tures of a solution, the most common approach to quantify novelty of an indi-
vidual is via the sparseness metric which measures the average distance between
the individual’s descriptor and its k -nearest neighbours. The main motivation
behind the usage of descriptors is to obtain a deeper representation of solutions
via their features. These features are problem dependent.

The k nearest-neighbours are determined by comparing an individual’s de-
scriptor to the descriptors of all other members of the current population and
to those stored in an external archive of past individuals whose descriptors were
highly novel when they originated. Sparseness s is then defined as:

s(x) =
1

k

k∑
i=0

dist(x, µi) (1)

where µi is the ith-nearest neighbour of x with respect to a user-defined distance
metric dist.



4 Marrero, Segredo, León, Hart.

The archive is supplemented at each generation in two ways. Firstly, a sample
of individuals from the current population is randomly added to the archive with
a probability of 1% following common practice in the literature [17]. Secondly,
any individual from the current generation with sparseness greater than a pre-
defined threshold ta is also added to the archive.

In addition to the archive described above which is used to calculate the
sparseness metric that drives evolution, a separate list of individuals (denoted
as the solution set) is incrementally built as the algorithm runs: this constitutes
the final set of instances returned when the algorithm terminates, again following
the method of [17]. At the end of each generation, each member of the current
population is scored against the solution set by finding the distance to the nearest
neighbour (k = 1) in the solution set. Those individuals that score above a
particular threshold tss are added to the solution set. The solution set forms the
output of the algorithm.

It is important to note that the solution set does not influence the sparseness
metric driving the evolutionary process: instead, this approach ensures that each
solution returned has a descriptor that differs by at least the given threshold tss
from the others in the final collection. Finally, both the archive and the solution
set grow randomly on each generation depending on the diversity discovered
without any limit in their final size.

4 Methods

We apply the approach to generating instances for the KP, a commonly studied
combinatorial optimisation problem with many practical applications. The KP
requires the selection of a subset of items from a larger set of N items, each with
profit p and weight w in such a way that the total profit is maximised while
respecting a constraint that the weight remains under the knapsack capacity C.
The main motivation behind choosing the KP over other optimisation problems
is the lack of literature about discriminatory instance generation for this problem
in contrast to other well-known NP-hard problems such as the TSP.

4.1 Instance Representation and Novelty Descriptor

A knapsack instance is described by an array of integer numbers of size N × 2,
where N is the dimension (number of items) of the instance of the KP we want
to create, with the weights and profits of the items stored at the even and odd
positions of the array, respectively. The capacity C of the knapsack is determined
for each new individual generated as 80% of the total sum of weights, as using
a fixed capacity would tend to create insolvable instances. From each instance,
we extract a set of features to form a vector that defines the descriptor used in
the sparseness calculation shown in Equation 1. The features chosen are shown
below, i.e. the descriptor is a 8-dimensional vector taken from [13] containing:
capacity of the knapsack; minimum weight/profit; maximum weight/profit; av-
erage item efficiency; mean distribution of values between profits and weights



An NS approach to generate diverse and discriminatory instances for the KP 5

Table 1: Parameter settings for EAsolver. The crossover rate is the distinguishing
feature for each configuration.

Parameter Value

Population size 32
Max. Evaluations 1e5

Mutation rate 1 / N
Crossover rate 0.7, 0.8, 0.9, 1.0

Crossover Uniform Crossover
Mutation Uniform One Mutation
Selection Binary Tournament Selection

(N × 2 integer values representing the instance); standard deviation of values
between profits and weights. We evolve fixed size instances containing N = 50
items, hence each individual describing an instance contains 100 values describ-
ing pairs of (profit, weight). In addition, upper and lower bounds were set to
delimit the maximum and minimum values of both profits and weights.3 All
algorithms were written in C++.4

4.2 Algorithm Portfolio

While in principle the portfolio can contain any number or type of solvers, we
restrict experiments to a portfolio containing four differently configured versions
of an EA. Parameter tuning can significantly impact EA performance on an in-
stance [12]. That is the reason why we are interested in addressing the generation
of instances for specific EA configurations rather than different heuristics or al-
gorithmic schemes. As a result, it is expected that different configurations of the
same approach cover different regions of the instance space. Each EA (EAsolver)
is a standard generational with elitism GA [10] with parameters defined in Table
1. The four solvers differ only in the setting of the crossover rate, i.e. ∈ 0.7, 0.8,
0.9, 1.0, which are common values used in the literature.

4.3 Novelty Search Algorithm

The NS approach (EAinstance), described by Algorithm 1, evolves a population
of instances: one run of the algorithm evolves a diverse set of instances that are
tailored to a chosen target algorithm. All parameters are given in Table 2. We
note that, since EAinstance is time-consuming, its population size, as well as its
number of evaluations, were set by trying to get a suitable trade-off between the
results obtained and the time invested for attaining them.

To calculate the fitness of an instance in the population (Algorithm 2), two
quantities are required: (1) the novelty score measuring the sparseness of the

3 The description of an instance follows the general method of [13], except that they
converted the real-valued profits/weights to a binary representation.

4 The source code, instances generated and results obtained are available in a GitHub
repository: https://github.com/PAL-ULL/ns_kp_generation.

https://github.com/PAL-ULL/ns_kp_generation


6 Marrero, Segredo, León, Hart.

Table 2: Parameter settings for EAinstance which evolves the diverse population
of instances. This approach was executed 10 times for each targeted algorithm
for statistical purposes.

Parameter Value

Knapsack items (N) 50
Weight and profit upper bound 1,000
Weight and profit lower bound 1

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Evaluations 2,500, 5,000, 10,000, 15,000

Repetitions (R) 10

Distance metric Euclidean Distance
Neighbourhood size (k) 3

Thresholds (ta, tss) 3.0

instance and (2) the performance score measuring difference in average per-
formance over R repetitions between the target algorithm and the best of the
remaining algorithms. The novelty score s (sparseness) for an instance is calcu-
lated according to Equation 1 using the descriptor x detailed in Section 4.1, and
the Euclidean distance between the vectors as the dist function. The performance
score ps is calculated according to Equation 2, i.e., the difference between the
mean profit achieved in R repetitions by the target algorithm and the maximum
of the mean profits achieved in R repetitions by the remaining approaches of the
portfolio (where profit is the sum of the profits of items included in a knapsack).
The reader should consider that, in order to generate discriminatory instances
for different algorithms, the target algorithm must vary from one execution to
another. In other words, our approach does not generate biased instances for
different algorithms in one single execution.

ps = target mean profit−max(other mean profit) (2)

Finally, the fitness f used to drive the evolutionary process is calculated as a
linearly weighted combination of the novelty score s and the performance score
ps of an instance, where φ is the performance/novelty balance weighting factor.

f = φ ∗ ps+ (1− φ) ∗ s (3)

5 Experiments and results

Experiments address the following questions:

1. What influence does the number of generations have on the distribution of
evolved instances?



An NS approach to generate diverse and discriminatory instances for the KP 7

Algorithm 1: Novelty Search

Input: N , k, MaxEvals, portfolio
1 initialise(population, N);
2 evaluate(population, portfolio);
3 archive = ∅ ;
4 feature list = ∅;
5 for i = 0 to MaxEvals do
6 parents = select(population);
7 offspring = reproduce(parents);
8 offspring = evaluate(offspring, portfolio, archive, k) (Algorithm 2);
9 population = update(population, offspring);

10 archive = update archive(population, archive);
11 solution set = update ss(population, solution set);

12 end
13 return solution set

Algorithm 2: Evaluation method

Input: offspring, portfolio, archive, k
1 for instance in offspring do
2 for algorithm in portfolio do
3 apply algorithm to solve instance R times;
4 calculate mean profit of algorithm

5 end
6 calculate the novelty score(offspring, archive, k) (Equation 1);
7 calculate the performance score(offspring) (Equation 2);
8 calculate fitness(offspring) (Equation 3);

9 end
10 return offspring

2. To what extent do the evolved instances provide diverse coverage of the
instance space?

3. What effect does the parameter φ that governs the balance between novelty
and performance have on the diversity of the evolved instances?

4. How diverse are the instances evolved for each target with respect to the
performance difference between the target algorithm and the best of the
other algorithms, i.e. according to Equation 2?

5. Given a set of instances evolved to be tailored to a specific target algorithm,
to what extent is the performance of the target on the set statistically sig-
nificant compared to the other algorithms in the portfolio?

5.1 Influence of generation parameter

EAinstance was run for 250, 500, 1,000 and 1,500 generations (2,500, 5,000, 10,000
and 15,000 evaluations, respectively). EAinstance was run 10 times for each of the
four target algorithms and the instances for each run per target were combined.



8 Marrero, Segredo, León, Hart.

(a) 500 generations (b) 1000 generations (c) 1500 generations

Fig. 1: Instance representation in a 2D space after applying PCA. Colours reflect
the ‘winning’ algorithm for an instance: red (crossover rate 1.0); green (0.9),
orange (0.8), blue (0.7). For more detail about this and following figures please
refer to the GitHub repository previously mentioned.

The parameter φ describing the performance/novelty balance was set to 0.6.
Principal Component Analysis (PCA) was then applied to the feature-descriptor
detailed in Section 4.1 to reduce each instance to two dimensions. The results
are shown in Figure 1.

From a qualitative perspective, the most separated clusters are seen for the
cases of 500 and 1,000 generations. More overlap is observed when running for too
few or too many generations. A plausible explanation often noted in the novelty
search literature, e.g. [4], is that if the novelty procedure is run for too long, it
eventually becomes difficult to locate novel solutions as the search reaches the
boundaries of the feasible space. As a result, the algorithm tends to fill in gaps in
the space already explored. On the other hand, considering 250 generations does
not allow sufficient time for the algorithm to discover solutions that are both
novel and high performing. That is the reason why those results are not shown
in Figure 1. In the remaining experiments, we fix the generations at 1,000.

In order to quantitatively evaluate the extent to which the evolved instances
cover the instance space, we calculate the exploration uniformity (U) metric,
previously proposed in [7, 8]. This enables a comparison of the distribution of
solutions in the space with a hypothetical Uniform Distribution (UD). First, the
environment is divided into a grid of 25 x 25 cells, after which the number of
solutions in each cell is counted. Next, the Jensen-Shannon divergence (JSD) [5]
is used to compare the distance of the distribution of solutions with the ideal
UD. The U metric is then calculated according to Equation 4. The higher the
U metric score, the more uniformly distributed the instances and better covered
the instance space in a given region. Obtaining a score of 1 proves a perfect
uniformity distributed set of solutions.

U(δ) = 1− JSD(Pδ, UD) (4)

In Equation 4, δ denotes a descriptor associated with a solution. Following
common practice in the literature and to simplify the computations, this de-
scriptor is defined as the two principal components of each solution extracted
after applying PCA to the feature-based descriptor described in Section 4.1.



An NS approach to generate diverse and discriminatory instances for the KP 9

Table 3: Average number of instances generated after running EAinstance 10
times for each target algorithm, average coverage metric (U) per run, and total
number of unique instances obtained from combining the instances over multiple
runs with its corresponding coverage metric (U). No duplicated instances were
found when comparing the individual’s descriptors.

Target Avg. instances Avg. U Tot. instances Tot. U

GA 0.7 33.4 0.404 334 0.673
GA 0.8 37.6 0.416 376 0.678
GA 0.9 33.9 0.405 339 0.647
GA 1.0 38.3 0.410 383 0.647

Table 3 summarises the average number of instances generated per run and
the average coverage metric U per each target algorithm, as well as the total
number of unique instances generated and its corresponding coverage metric
U per each target approach. Since the portfolio approaches only differ in the
crossover rate, we use the term GA cr with cr ∈ {0.7, 0.8, 0.9, 1.0} to refer to
each target algorithm. Considering the instance space, it can be observed that
the method is robust in terms of the number of instances generated, as well as
in terms of the corresponding U metric values. Values are similar regardless of
the particular target approach for which instances were generated.

5.2 Instance space coverage

The left-hand side of Figure 2 shows results from running EAinstance with the
performance/novelty weighting factor φ set to 1, i.e., the EA only attempts to
maximise the performance gap and ignores novelty, i.e. an equivalent experiment
to that described in [13]. The target algorithm in this case has crossover rate =
0.7. Small groups of clustered instances are observed, with a U value of 0.3772.
In contrast, the right-hand side (again with target crossover=0.7) demonstrates
that running EAinstance with a performance/novelty weighting factor φ set to

(a) Evolution without NS (b) Evolution including NS

Fig. 2: Instance representation in a 2D search space after applying PCA com-
paring two methods of instances generation.



10 Marrero, Segredo, León, Hart.

0.6 clearly results in a large coverage of the space with a corresponding U value
of 0.7880.

5.3 Influence of the balance between novelty and performance

Recall that the evolutionary process in EAinstance is guided by Equation 3,
where parameter φ balances the contribution of performance and novelty to
calculate an individual’s fitness. Low values favour feature-diversity, while high
values large performance-gaps. We test eight different weighting settings, show-
ing three examples with φ ∈ {1, 0.7, 0.3} in Figure 3. The target approach was
GA 0.7. Results show that a reasonable compromise is obtained with a perfor-
mance/novelty balance weighting factor φ equal to 0.7: instances are clustered
according to the target algorithm while maintaining diversity. As φ reduces to
favour novelty, as expected, coverage increases at the expense of clustered in-
stances.

(a) φ = 1.0 (b) φ = 0.7 (c) φ = 0.3

Fig. 3: Instance representation in a 2D search space after applying PCA for three
examples of performance/novelty balance weighting factors used to calculate
fitness.

5.4 Comparison of target algorithm performance on evolved
instances

The goal of the approach presented is to evolve a diverse set of instances whose
performance is tailored to favour a specific target algorithm. Due to the stochas-
tic nature of the solvers, we conduct a rigorous statistical evaluation to determine
whether the results obtained on the set of instances evolved for a target algo-
rithm show statistically significant differences compared to applying each of the
other algorithms to the same set of instances (Table 4). First, a Shapiro-Wilk
test was performed to check whether the values of the results followed a normal
(Gaussian) distribution. If so, the Levene test checked for the homogeneity of the
variances. If the samples had equal variances, an anova test was done; if not, a
Welch test was performed. For non-Gaussian distributions, the non-parametric
Kruskal-Wallis test was used [11]. For every test, a significance level α = 0.05
was considered. The comparison was carried out considering the mean profits



An NS approach to generate diverse and discriminatory instances for the KP 11

Table 4: Statistical analysis. A win (↑) indicates significance difference between
two configurations and that the mean performance value of the target was higher.
A draw (↔) indicates no significance difference between both configurations.
The number of instances generated for each target approach was 90 (ga 0.7),
101 (ga 0.8), 110 (ga 0.9) and 80 (ga 1.0).

GA 0.7 GA 0.8 GA 0.9 GA 1.0

GA 0.7 ↑ 87↔ 3 ↑ 69↔ 21 ↑ 25↔ 65
GA 0.8 ↑ 100↔ 1 ↑ 77↔ 24 ↑ 21↔ 80
GA 0.9 ↑ 107↔ 3 ↑ 87↔ 23 ↑ 18↔ 92
GA 1.0 ↑ 21↔ 59 ↑ 61↔ 19 ↑ 76↔ 4

achieved by each approach at the end of 10 independent executions for each
instance generated.

For each target approach A in the first column, the number of ‘wins’ (↑)
and ‘draws’ (↔) of each target algorithm with respect to other approach B is
shown. A ‘win’ means that approach A provides statistically better performance
in comparison to approach B, according to the procedure described above, when
solving a particular instance. A ‘draw’ indicates no significant difference. For
example, GA 0.7 provides statistically better performance than GA 0.8 in 87
out of the 90 instances generated for the former. Note that in no case did the
target algorithm lose on an instance to another algorithm.

For the three algorithms with crossover rates {0.7, 0.8, 0.9} then for the vast
majority of instances, the target algorithm outperforms the other algorithms.
However for these three algorithms, it appears harder to find diverse instances
where the respective algorithm outperforms the algorithm with configuration
1.0. Thus the results provide some insights into the relative strengths and weak-
nesses of each algorithm in terms of the size of their footprint within the space
(approximated by the number of generated instances).

5.5 Performance Diversity

Finally, we provide further insight into the diversity of the evolved instances
with respect to the performance space (see Figures 4 and 5). That is, we consider
instances that are ‘won’ by a target algorithm and consider the spread in the
magnitude of the performance gap as defined in Equation 2. We note that the
approach is able to generate diverse instances in terms of this metric: while a
significant number of instances have a relatively small gap (as seen, for instance,
by the left skew to the distribution in Figure 4), we also find instances spread
across the range (see Figure 5). The instances therefore exhibit performance
diversity as well as diversity in terms of coverage of the instance space.

6 Conclusions and further research

The paper proposed an NS-based algorithm to generate sets of instances tailored
to work well with a specific solver that are diverse with respect to a feature-space



12 Marrero, Segredo, León, Hart.

Fig. 4: Histogram showing the distribution of performance gap between the ap-
proach GA 0.7 and the remaining approaches by considering the instances gen-
erated for the former.

Fig. 5: Histogram showing the distribution of performance gap between the ap-
proach GA 1.0 and the remaining approaches by considering the instances gen-
erated for the former.

and also diverse with respect to the magnitude of the performance-gap between
the target solvers and others in a portfolio.

The results demonstrate that the NS-based method provides larges sets of
instances that are considerably more diverse in a feature-space in comparison to
those generated by an evolutionary method that purely focuses on maximising
the performance gap (i.e. following the method of [13]). It also provides instances
that demonstrate diversity in the performance space (Figures 4 and 5). A major
advantage of the proposed method is that a single run returns a set of diverse
instances per target algorithm, in contrast to previous literature for instance
generation [1, 13, 15]) that requires repeated runs due to EA convergence, with
no guarantee that repeated runs will deliver unique solutions.

The results also shed new insights into the strengths and weaknesses of the
four algorithms used, in terms of the size of their footprint in the instance-
space, while also emphasising the benefits of algorithm-configuration. Despite
only changing one parameter (crossover rate) per configuration, we are able to
generate a large set of instances per configuration that are specifically tailored to
that configuration, demonstrating that even small changes in parameter values
can lead to different performance.

Although our results are restricted to evolving knapsack instances in conjunc-
tion with a portfolio of EA-based approaches for generating solutions, we suggest
that the the method is generalisable. The underlying core of the approach is an



An NS approach to generate diverse and discriminatory instances for the KP 13

EA to evolve new instances: this has already been demonstrated to be feasible
in multiple other domains, e.g. binpacking and TSP [1, 3]. Secondly, it requires
the definition of a feature-vector: again the literature describes numerous poten-
tial features relevant to a range of combinatorial domains5. At the same time, a
basic version of NS was recently used by Alissa et al. [2] to evolve instances that
are diverse in the performance-space for 1D bin-packing, suggesting that other
descriptors and other domains are plausible.

Finally, regarding the KP domain, it would be interesting to add the capacity
C of the knapsack as a feature of the instances being evolved.

Acknowledgement

Funding from Universidad de La Laguna and the Spanish Ministerio de Ciencia,
Innovación y Universidades is acknowledged [2022 0000580]. Alejandro Marrero
was funded by the Canary Islands Government “Agencia Canaria de Investi-
gación Innovación y Sociedad de la Información - ACIISI” [TESIS2020010005]
and by HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC
Research Innovation Action under the H2020 Programme. This work used the
ARCHER2 UK National Supercomputing Service (https://www.archer2.ac.uk).

References

1. Alissa, M., Sim, K., Hart, E.: Algorithm Selection Using Deep Learning With-
out Feature Extraction. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’19), July 13–17, 2019, Prague, Czech Re- public. ACM, New
York, NY, USA (2019), https://doi.org/https://doi.org/10.1145/332170710.1145/
3321707, https://doi.org/10.1145/3321707.

2. Alissa, M., Sim, K., Hart, E.: Automated algorithm selec-
tion: from feature-based to feature-free approaches (2022),
https://doi.org/https://doi.org/10.48550/ARXIV.2203.1339210.48550/
ARXIV.2203.13392, https://arxiv.org/abs/2203.13392

3. Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., Trautmann, H.:
Evolving diverse tsp instances by means of novel and creative mutation operators.
In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms. pp. 58–71 (2019)

4. Doncieux, S., Paolo, G., Laflaquière, A., Coninx, A.: Novelty search
makes evolvability inevitable. In: Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference. p. 85–93. GECCO
’20, Association for Computing Machinery, New York, NY, USA
(2020), https://doi.org/https://doi.org/10.1145/3377930.338984010.1145/
3377930.3389840, https://doi.org/10.1145/3377930.3389840

5. Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert
space embedding. In: International Symposium onInforma-
tion Theory, 2004. ISIT 2004. Proceedings. pp. 31– (2004),

5 Features for creating instance-spaces in a broad range described in detail from
MATILDA https://matilda.unimelb.edu.au/matilda/

https://doi.org/https://doi.org/10.1145/3321707
https://doi.org/10.1145/3321707.
https://doi.org/https://doi.org/10.48550/ARXIV.2203.13392
https://arxiv.org/abs/2203.13392
https://doi.org/https://doi.org/10.1145/3377930.3389840
https://doi.org/10.1145/3377930.3389840


14 Marrero, Segredo, León, Hart.

https://doi.org/https://doi.org/10.1109/ISIT.2004.136506710.1109/
ISIT.2004.1365067

6. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for
problem instance classification. In: International Conference on Parallel Problem
Solving from Nature. pp. 869–879. Springer (2016)

7. Gomes, J., Mariano, P., Christensen, A.L.: Devising effective novelty search
algorithms: A comprehensive empirical study. GECCO 2015 - Proceedings
of the 2015 Genetic and Evolutionary Computation Conference pp. 943–
950 (2015), https://doi.org/https://doi.org/10.1145/2739480.275473610.1145/
2739480.2754736

8. Le Goff, L.K., Hart, E., Coninx, A., Doncieux, S.: On Pros and Cons of Evolving
Topologies with Novelty Search. The 2020 Conference on Artificial Life pp. 423–431
(2020)

9. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189–222 (2011)

10. Marrero, A., Segredo, E., Leon, C.: A parallel genetic algorithm to speed
up the resolution of the algorithm selection problem. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. p.
1978–1981. GECCO ’21, Association for Computing Machinery, New York, NY,
USA (2021), https://doi.org/https://doi.org/10.1145/3449726.346316010.1145/
3449726.3463160, https://doi.org/10.1145/3449726.3463160

11. Marrero, A., Segredo, E., León, C., Segura, C.: A Memetic
Decomposition-Based Multi-Objective Evolutionary Algorithm Applied
to a Constrained Menu Planning Problem. Mathematics 8(11) (2020),
https://doi.org/https://doi.org/10.3390/math811196010.3390/math8111960,
https://www.mdpi.com/2227-7390/8/11/1960

12. Nannen, V., Smit, S.K., Eiben, A.: Costs and Benefits of Tuning Parameters of
Evolutionary Algorithms. Proceedings of the 10th international conference on Par-
allel Problem Solving from Nature (2008)

13. Plata-González, L.F., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E.,
Terashima-Maŕın, H., Coello Coello, C.A.: Evolutionary-based tailoring of syn-
thetic instances for the Knapsack problem. Soft Computing 23(23), 12711–12728
(2019), https://doi.org/10.1007/s00500-019-03822-w

14. Smith-Miles, K., Bowly, S.: Generating new test instances by evolving in
instance space. Computers and Operations Research 63, 102–113 (2015),
https://doi.org/https://doi.org/https://doi.org/10.1016/j.cor.2015.04.022https:/
/doi.org/10.1016/j.cor.2015.04.022, https://www.sciencedirect.com/science/

article/pii/S0305054815001136

15. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding tsp difficulty by learn-
ing from evolved instances. In: International Conference on Learning and Intelligent
Optimization. pp. 266–280. Springer (2010)

16. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning
for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2009),
https://doi.org/https://doi.org/10.1145/1456650.145665610.1145/
1456650.1456656, http://doi.acm.org/10.1145/1456650.1456656

17. Szerlip, P.A., Morse, G., Pugh, J.K., Stanley, K.O.: Unsupervised Feature Learning
through Divergent Discriminative Feature Accumulation. AAAI’15: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence (jun 2014), http:

//arxiv.org/abs/1406.1833

https://doi.org/https://doi.org/10.1109/ISIT.2004.1365067
https://doi.org/https://doi.org/10.1145/2739480.2754736
https://doi.org/https://doi.org/10.1145/3449726.3463160
https://doi.org/10.1145/3449726.3463160
https://doi.org/https://doi.org/10.3390/math8111960
https://www.mdpi.com/2227-7390/8/11/1960
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/https://doi.org/https://doi.org/10.1016/j.cor.2015.04.022
https://www.sciencedirect.com/science/article/pii/S0305054815001136
https://www.sciencedirect.com/science/article/pii/S0305054815001136
https://doi.org/https://doi.org/10.1145/1456650.1456656
http://doi.acm.org/10.1145/1456650.1456656
http://arxiv.org/abs/1406.1833
http://arxiv.org/abs/1406.1833

	A novelty-search approach to filling an instance-space with diverse and discriminatory instances for the knapsack problem

