Skip to main content

Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation Using Polar Coordinates (MOEA-LAPCO)

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

Hungarian Differential Evolution (HDE) is a Multi-Objective Evolutionary Algorithm that transforms its selection process into a Linear Assignment Problem (LAP). In a LAP, we want to assign n agents to n tasks, where assigning an agent to a task corresponds to a cost. Thus, the aim is to minimize the overall assignment cost. It has been shown that HDE is competitive with respect to state-of-the-art algorithms. However, in this work, we identify two drawbacks in its selection process: it sometimes selects duplicated solutions and occasionally prefers weakly-dominated solutions over non-dominated ones. In this work, we propose an algorithm that tries to fix these drawbacks using the hypervolume indicator. However, since the computation of the hypervolume indicator is expensive, we adopted an approximation that uses a polar coordinates transformation. The resulting algorithm is called “Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation using Polar Coordinates (MOEA-LAPCO).” Our experimental results show that our proposed MOEA-LAPCO outperforms the original HDE, and it is competitive with state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A solution \(\boldsymbol{x}\) is said to weakly dominate \(\boldsymbol{y}\) (denoted as \(\boldsymbol{x} \preceq \boldsymbol{y}\)) if \(f_i(\boldsymbol{x}) \le f_i(\boldsymbol{y})\) for all \(i=1,\dots ,k\).

References

  1. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems, Revised Reprint. Other Titles in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM) (2012)

    Google Scholar 

  2. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  4. Deng, J., Zhang, Q.: Approximating hypervolume and hypervolume contributions using polar coordinate. IEEE Trans. Evol. Comput. 23(5), 913–918 (2019). https://doi.org/10.1109/TEVC.2019.2895108

    Article  Google Scholar 

  5. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  6. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015). https://doi.org/10.1109/TEVC.2014.2373386

    Article  Google Scholar 

  7. Manoatl Lopez, E., Coello Coello, C.A.: IGD\(^{+}\)-EMOA: a multi-objective evolutionary algorithm based on IGD\(^{+}\). In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 999–1006. IEEE Press, Vancouver, Canada, 24–29 July 2016. https://doi.org/10.1109/CEC.2016.7743898, ISBN 978-1-5090-0623-9

  8. Miguel Antonio, L., Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on linear assignment problem transformations. Soft. Comput. 22(16), 5491–5512 (2018)

    Article  Google Scholar 

  9. Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on Kuhn-Munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1

    Chapter  Google Scholar 

  10. Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff, M.C., Coello Coello, C.A.: An overview of weighted and unconstrained scalarizing functions. In: Trautmann, H., et al. (eds.) Evolutionary Multi-criterion Optimization, 9th International Conference, Münster, Germany, 19–22 March 2017, EMO 2017. LNCS, vol. 10173, pp. 499–513. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_34, ISBN 978-3-319-54156-3

  11. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/TEVC.2007.892759

Download references

Acknowledgements

The first author acknowledges support from CINVESTAV-IPN and CONACyT to pursue graduate studies in computer science. The second author acknowledges support from CONACyT grant no. 1920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Cristina Valencia-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valencia-Rodríguez, D.C., Coello Coello, C.A. (2022). Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation Using Polar Coordinates (MOEA-LAPCO). In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics