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Abstract. Electronic health records (EHRs) involve heterogeneous data
types such as binary, numeric and categorical attributes. As traditional
clustering approaches require the definition of a single proximity measure,
different data types are typically transformed into a common format or
amalgamated through a single distance function. Unfortunately, this early
transformation step largely pre-determines the cluster analysis results
and can cause information loss, as the relative importance of different
attributes is not considered. This exploratory work aims to avoid this
premature integration of attribute types prior to cluster analysis through
a multi-objective evolutionary algorithm called MVMC. This approach
allows multiple data types to be integrated into the clustering process,
explore trade-offs between them, and determine consensus clusters that
are supported across these data views. We evaluate our approach in a
case study focusing on systemic sclerosis (SSc), a highly heterogeneous
auto-immune disease that can be considered a representative example
of an EHRs data problem. Our results highlight the potential benefits of
multi-view learning in an EHR context. Furthermore, this comprehensive
classification integrating multiple and various data sources will help to
understand better disease complications and treatment goals.

Keywords: Clustering · Multi-view clustering · Systemic sclerosis · Multi-
objective optimization.

1 Introduction

Many real-world applications consist of heterogeneous datasets comprising mul-
tiple attribute types, including binary, numerical, and categorical features. For
example, electronic health records (EHRs) in medicine consist of heterogeneous
structured and unstructured data elements, including demographic information,
diagnoses, laboratory results, medication prescriptions, and free-text clinical
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notes [37,28]. In this regard, unsupervised machine learning methods are often
used to discover homogeneous groups from unlabeled data because limited
information is known about the classes’ distribution in these heterogeneous
datasets. However, most clustering algorithms are limited to working on a single
specific attribute type (i.e. numerical or nominal).

Two approaches are mainly used to address this heterogeneous data
clustering problem: (i) methods based on features transformation such as
discretization and (ii) methods that directly use a proximity measure designed
to handle mixed-attribute types such as the Gower distance. Despite their
popularity, those approaches either yield substantial information loss (i) or
require the selection of the “best” proximity measure beforehand (ii).

This work explores multi-view clustering to integrate multiple attribute
types (data views) into the clustering process. First, specialized dissimilarity
measures are used to create views, each characterized by a specific attribute
type in the heterogeneous dataset. Then, the multi-view clustering algorithm
explores trade-offs between the views to discover consensus clusters supported
across all views. This approach was applied and evaluated in a case study of
systemic sclerosis (SSc), a highly heterogeneous disease that can be considered a
representative example of an EHRs data problem.

2 Background and Related Work

With the advent of so-called big-data, most real-world problems now involve
multiple, heterogeneous data sources. Dealing with mixed types of attributes
remains challenging for the clustering and clinical communities as conventional
clustering algorithms require a single common data format (e.g. numerical
or categorical). In the present section, we look at this heterogeneous data
clustering problem through the lens of distance-based methods. A more
complete, exhaustive review of other research fields, e.g., hierarchical ([19,13]),
model-based ([22,6,16]) and neural network-based clusterings ([5]), will be
addressed in future work. With this in mind, we recall that no single best
clustering method exists in a general sense [15,17,36], but rather a wide variety
of clustering techniques that must be carefully selected depending on the data
at hand, especially in a clinical setting.

2.1 Distance-Based Clustering on Heterogeneous Data

Most conventional, e.g., distance-based clustering algorithms work with
numerical-only or categorical-only data. Two main approaches are usually
followed to deal with mixed-type data [38,15,40,3]: (i) methods based on features
transformation [7,41,8] and (ii) methods that cluster the heterogeneous data
types directly [21,29,9,18,2,10,39].

Data transformation-based methods aim to first unify the data format and
then apply a distance-based clustering method, such as K-means [38]. It consists
in either discretizing numerical variables into nominal ones (needed for K-modes
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clustering) or reciprocally encoding nominal attributes into continuous ones
(needed for K-means clustering). Although those transformations are commonly
used for clustering, it involves a potentially substantial information loss, as the
clustering results strongly rely on either the cut-points (which may be inappro-
priate) or the coding mechanism and its underlying assumptions. Alternative
approaches have been proposed to address this limitation. Wei et al. [41] pro-
posed a mutual information-based unsupervised feature transformation (UFT)
for non-numerical variables, avoiding the need for manual coding. Another
popular approach is to use dimensionality reduction techniques, such as Factor
Analysis of Mixed Data [8], in complement to some clustering techniques.

On the other hand, most distance-based clustering methods use a single
proximity measure designed to handle mixed-data types [21,29,9,18,2,10]. The
Gower distance is a widespread example of such a measure, which may be best
suited depending on the data clustering structure [9]. Ahmad et al. [2] proposed
a K-means algorithm based on a weighted combination of the Euclidean distance
and the co-occurrence of discrete values, addressing some limitations of previous
K-prototypes algorithm from Huang et al. [21]. Further work has been published
by Ahmad et al. [4] on a novel K-means initialization technique for mixed
data, called initKmix, which may outperform random initialization methods on
several heterogeneous datasets. Recently, Budiaji et al. [10] proposed a simple
and fast K-medoids algorithm (SFKM) combined with a generalized distance
function (GDF), allowing more flexible trade-offs between numerical, binary,
and categorical variables. Similarly, Harikumar and Surya [18] proposed a K-
medoids approach based on a similarity measure in the form of a triplet. Among
the wide range of mixed-types-based proximity measures, one can also cite
the work of Li et al. [29] focusing on similarity-based agglomerative clustering
(SBAC), an algorithm based on the Goodall dissimilarity.

For a given dataset, most of the above methods require the selection of the
“best” proximity measure (or “best” weighting of distinct proximity measures)
in advance. Therefore, finding more generic, adaptive trade-offs between
the contributions of the different data types remains challenging. Multi-view
clustering [27,1] potentially addresses these limitations by dividing the dataset
into subsets, called views, each characterized by a given data type, and then treats
them simultaneously. In this work, we explore the use of multi-view clustering
to integrate multiple data views during the clustering process.

2.2 From Single to Multi-Objective Clustering

In view of the complementarity between different distance functions, the optimal
cluster structures could be better identified using multiple proximity measures
simultaneously [31,30,11,14,26,27,25]. As said, traditional clustering algorithms
require the choice of a single proximity measure such as the Euclidean, Hamming
or Cosine distance. One approach is to assign weights to the different proximity
measures [21,6,20,12]. However, the appropriate weighting is hard to determine
without any prior knowledge of the data itself, and the reliability of the
information provided by the distance measures.
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Multi-view clustering algorithms can integrate multiple dissimilarity matri-
ces simultaneously in order to find consensus clusters that are consistent across
the different data views [27,14], and yield high-quality clustering results that
optimally balance the contribution of each data source [26]. Recent research has
reported some first steps to exploit the intrinsic multi-criterion nature of the
multi-view problems [31,30,26,27,25].

Liu et al. [31] presented a multi-objective evolutionary algorithm (based on
NSGA-II [30]) that simultaneously considers two different distance measures
(Euclidean and Path distances). Each individual is represented using a label-
based encoding of size N (number of data points) which is then evaluated using
the intra-cluster variance with respect to both distance measures. Afterward,
Liu et al. [30] extended this work by proposing a fuzzy clustering approach
based on a multi-objective differential evolution algorithm. In this approach,
a centroid-based codification is used to represent the candidate clustering
solutions. However, these methods are currently limited to two views due to
the lack of generality of the Pareto dominance-based approaches. In this regard,
Jose-Garcia et al. [27,25] proposed a many-objective approach to multi-view data
clustering that exploits the benefits of complementary information sources taken
from multiple dissimilarity matrices. Additionally, this multi-view clustering
algorithm allows scaling with respect to the number of data views.

3 Multi-view Clustering Approach

The proposed methodology aims to provide a solution in the context of
cluster analysis to deal with heterogeneous data characterized by multiple
attribute types. First, the data is decomposed into several subsets according to
the attribute types. Subsequently, a suitable proximity measure is chosen for
each data subset generating a dissimilarity matrix. Finally, a multi-objective
evolutionary clustering algorithm uses all dissimilarity matrices as data views
to find consensus clusters across the data views. This approach is illustrated in a
general way in Figure 1 and described in detail in the following sections.

3.1 Construction of the Data Views

Multi-view clustering algorithms use multiple feature spaces (data views)
simultaneously. The construction and selection of data views is an important step
for the accurate functioning of the algorithm. In this setting, each view represents
a given data source that describes a specific perspective of a phenomenon. In
this regard, in the presence of a heterogeneous dataset, we propose to create
different views for different types of attributes, e.g. binary, numerical and
categorical. Therefore, the database is decomposed into subsets of attributes
according to their data types, resulting in many feature spaces. Then, for
each data-type feature space, an appropriate proximity measure is used to
generate a dissimilarity matrix representing a particular data view of the overall
heterogeneous problem. To the best of our knowledge, this is the first time an
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Fig. 1: Main stages and components of the proposed multi-view clustering methodology
for a heterogeneous dataset.

unsupervised multi-view approach for clustering a heterogeneous database has
been proposed and evaluated. This is because such approaches usually work on
homogeneous data spliced across several datasets.

3.2 Multi-view Clustering Algorithm: MVMC

The MVMC algorithm is a multi-objective evolutionary approach to multi-view
clustering that was developed to identify all optimal trade-offs between available
data views [27]. It allows scalability to a significant number of views through
the use of a many-objective optimizer. Specifically, MVMC uses a decomposition-
based optimizer, MOEA/D [34], as the underlying search engine for its
clustering approach. Furthermore, it employs a medoid-based representation,
a representation that is more general than centroids, as it can be used both for
problems defined in terms of feature spaces or dissimilarity matrices. In its
current implementation, MVMC uses a fixed number of medoids, so requires the
desired number of clusters as input.

MVMC focuses on a single cluster-quality criterion, but aims to optimize it
concerning each view, resulting in a multi-objective optimization problem with
as many clustering criteria as data views. Let Cr and wr be the partition and
weight vector, respectively, corresponding to the r-th subproblem. Also, let
{D1, . . . ,DM} denote M dissimilarity matrices, which represent M different data
views and are each considered by a separate objective. MVMC then uses the within-
cluster scatter as the optimization criterion, which, for the m-th objective of the
r-th subproblem, is computed as:

fm(Cr) =
∑

ck∈Cr

∑
i,j∈ck

dm(i, j) , (1)

where dm(i, j) is the dissimilarity between the points i and j as defined in Dm.
MVMC overcomes one major dilemma of previous attempts at designing

representations for multi-view clustering: how to ensure that these are scalable
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without biasing the representation or decoding step toward one particular
dissimilarity space. Specifically, the limitations of other representations are:

– For representations that are dissimilarity space agnostic, with each gene
directly encoding cluster membership for each data point, the search space
increases exponentially with the dataset size, affecting their scalability to
large data.

– Representations that employ cluster prototypes in the form of centroids
require the centroid to be represented in one or a concatenation of the feature
spaces, which implies a single fixed weighting between views.

– Representations employing cluster prototypes (whether centroids or
medoids) require a decoding step involving the assignment of data points
to clusters. This step relies on using one or a sum of several dissimilarity
functions, implying a single fixed weighting between views.

MVMC overcomes this issue by exploiting the availability of an explicit weight
vector for each sub-problem in decomposition-based optimizers. Furthermore,
employing a medoid-based encoding and accessing subproblem-specific weights
in the decoding step avoids any prior bias towards one particular dissimilarity
space whilst benefiting from a compact representation.

3.3 Selection of Clustering Solutions

The Silhouette index is often considered to be a more effective measure of cluster
validity, as it combines both within and between-cluster variation of a partition.
Unlike within-cluster scatter, maximizing the Silhouette index is potentially
suitable for solution selection across a range of different numbers of clusters. For
a given clustering solution C with N data points, the Silhouette index Sil(C) can
be defined as the sum of individual Silhouette indexes {SW(i) | i = 1, ...,N} [35]:

Sil(C) =
1

N

N∑
i=1

SW(i) =
1

N

N∑
i=1

bi − ai

max{ai,bi}
(2)

where ai represents the average distance from i to all other data points in its
cluster. bi represents the minimum distance of i to another cluster, where the
distance between i and another cluster is calculated as the average distance from
i to all data points in that cluster.

MVMC generates a set of non-dominated clustering solutions, but a single
solution is usually required in practice. For this purpose, a model selection
approach based on the Silhouette index is used [27]. This approach computes the
index from a weighted dissimilarity matrix obtained from the weights assigned
to the different data views during the clustering task.

4 Experimental Study

4.1 CHUL Database and Data-view Configurations

In this work, the different clustering methods were assessed and compared
using the SSc patient database of the Centre Hospitalier Universitaire de Lille
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(herein referred to as CHUL7 database). The CHUL database was created in 2014
and held clinical information of 550 SSc patients with regular, detailed follow-
up visits recorded on a standardized case-report form. Currently, the database
contains more than 1500 patterns (patient visits) and nearly 400 attributes (e.g.
demographic information, physical examination, laboratory exams, medical
analyses). Two experienced clinicians (VS and DL authors) selected 39 relevant
attributes, of which 22 are binary, 16 are numerical, and three are categorical
(or nominal). In addition, data from the most recent visit of each patient were
considered, limiting the analysis to 530 patterns. As a result, the clustering task
was performed on 530 patterns described by 39 attributes with heterogeneous
types. Three data views were generated from the CHUL database and used in the
multi-view clustering algorithm:

– Binary view, {Bin}. This view is based on the binary dissimilarity data matrix
computed with the Hamming distance on the 22 binary attributes.

– Numerical view, {Num}. This view is based on the numeric dissimilarity data
matrix computed with the Euclidean distance on the 16 numerical attributes
(integer and double data types) of the CHUL database.

– Categorical view, {Str}. This view is based on the categorical dissimilarity
data matrix computed with the Cosine similarity measure on the 3
categorical attributes of the CHUL database.

For the MVMC algorithm, different view combinations of those data views
were considered: {Bin,Num}, {Bin,Str}, {Num,Str}, and {Bin,Num,Str}. In
addition, the {Num,Gower} configuration was considered, where the {Gower}
view is a dissimilarity matrix created using the Gower distance from the union
of the binary and categorical attributes in the CHUL dataset.

4.2 Reference Methods

To indicate baseline performance for the studied SSc data problem, we compare
MVMC against two well-known and conceptually different clustering algorithms:
K-medoids [33] and WARD hierarchical clustering method [38]. Our experiments
apply K-medoids and WARD methods on four dissimilarity matrices, {HAM}, {EUC},
{COS}, and {GOWER}, using Hamming, Euclidean, Cosine, and Gower distances,
respectively. These matrices were obtained from the entire CHUL dataset by
transforming all attributes into numerical values.

The Silhouette scores obtained by WARD and K-medoids methods on each
dissimilarity matrix were also computed, giving rise to possible comparisons
between single-view and multi-view algorithms8.

7 SSc patients in the Internal Medicine Department of University Hospital of Lille,
France, between October 2014 and December 2021 as part of the FHU PRECISE project
(PREcision health in Complex Immune-mediated inflammatory diseaSEs); sample
collection and usage authorization, CPP 2019-A01083-54.

8 Note that the Silhouette score is intended to compare different partitions produced
by a single method. Usually, the Rand index is preferred to the Silhouette score to
compare two solutions when a ground-truth partition is available [35].
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4.3 Parameter Settings

The settings for MVMC adopted in our experiments are as follows [27]. The
population size is NP = 100, the number of generations is Gmax = 100, the
recombination probability is Pr = 0.5, the mutation probability is Pm = 0.03, and
the neighborhood size is T = 10.

For the stochastic clustering methods analyzed and compared in this study,
MVMC and K-medoids, a total of 31 independent executions were performed.
In all cases, statistical significance is evaluated using the Kruskal–Wallis test,
considering a significance level of α = 0.05 and Bonferroni correction.

5 Results and Discussions

This section presents a series of experiments conducted on the CHUL dataset (530
patterns, 39 attributes) where different views and corresponding dissimilarity
measures are considered according to attribute types. As described in Section 4.1,
four dissimilarity matrices and five data-view configurations are used by two
single-view, WARD and K-medoids algorithms, and the multi-view approach MVMC.
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Fig. 2: Illustration of the clustering performance obtained by the different algorithm
configurations when varying the number of clusters, K = {k |2 ⩽ k ⩽ 10 }.

5.1 Clustering Performance

This first experiment aims to analyze the clustering performance of the clustering
algorithms with the number of clusters. Thus, the results obtained by WARD
and K-medoids will serve as a reference (baseline) when compared with those
obtained by the multi-view approach, MVMC. The WARD and K-medoids algorithms
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Table 1: Clustering performance in terms of the Silhouette index obtained by the different
algorithm configurations when varying k, K = {k |2 ⩽ k ⩽ 10 }. The best Silhouette value
scored for each algorithm configuration has been shaded and highlighted in bold and,
additionally, the statistically best (α = 0.05) results are highlighted in boldface.

Alg. Data views Number of clusters (k)

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

WA
RD

{HAM} 0.095 0.060 0.048 0.025 0.031 0.006 0.006 0.010 0.013
{EUC} 0.937 0.861 0.840 0.703 0.703 0.698 0.701 0.452 0.451
{COS} 0.657 0.405 0.433 0.364 0.219 0.190 0.227 0.256 0.182
{GOWER} 0.175 0.196 0.090 0.100 0.094 0.079 0.017 0.026 0.026

K-
me

do
id

s {HAM} 0.043 0.036 0.030 0.029 0.025 0.025 0.025 0.021 0.019
{EUC} 0.861 0.851 0.656 0.465 0.362 0.327 0.255 0.242 0.227
{COS} 0.644 0.440 0.457 0.397 0.369 0.362 0.342 0.347 0.349
{GOWER} 0.208 0.178 0.112 0.098 0.098 0.103 0.094 0.092 0.091

MV
MC

{Bin,Num} 0.894 0.922 0.787 0.506 0.461 0.352 0.321 0.308 0.271
{Bin,Str} 0.770 0.674 0.643 0.751 0.811 0.842 0.857 0.867 0.895
{Num,Str} 0.898 0.933 0.797 0.793 0.860 0.863 0.876 0.876 0.886
{Num,Gower} 0.895 0.925 0.819 0.533 0.499 0.369 0.316 0.302 0.310
{Bin,Num,Str} 0.892 0.891 0.785 0.753 0.803 0.815 0.833 0.849 0.815

were used to separately cluster the four dissimilarity matrices {HAM}, {EUC},
{COS}, and {GOWER}, whereas MVMC used five different data-views combinations.

The experiment was conducted as follows. First, for each clustering algorithm
and each data view, a collection of C partitions were generated by varying the
number of clusters k in the range K = {k |2 ⩽ k ⩽ 10 }. Then, in a second step,
each clustering solution in collection C was evaluated using the Silhouette
index. Usually, the partition(s) with the best index values are considered the
final solutions that best fit the data problem. This procedure is commonly used
when the number of clusters is unknown and needs to be determined using
a cluster validity index. For this purpose, the Silhouette index is well known
and has performed satisfactorily in practice [24]. The results of this analysis
are summarized in Figure 2, with more detailed results, and their statistical
significance, presented in Table 1.

The average Silhouette index values tend to decrease as the number of
clusters increases from two to ten for traditional single-view algorithms, i.e.,
the Silhouette index suggests that the most appropriate number of clusters is
at the beginning of the range of explored clusters. Then, it is observed that the
index quickly loses its discriminative ability to find other suitable underlying
structures in this highly heterogeneous dataset. Moreover, this monotonous
decreasing convergence behavior is observed in both single-view algorithms
and is independent of the type of proximity measure used in the experiments.

On the other hand, regarding the clustering performance obtained by the
multi-view clustering algorithm MVMC using the five data-view configurations,
it is observed that in general, (i) the algorithm obtained higher average
Silhouette values than traditional clustering approaches and (ii) that the
Silhouette values are changing as the number of clusters increases (i.e. the values
increase and decrease). In addition, two types of Silhouette convergences are
observed concerning the performance of the different data configurations. First,
configurations {Bin,Num} and {Num,Gower} obtained very similar convergence
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results: they start by slightly increasing, up to a certain k, and then start
to decrease as the number of clusters increases further. Second, for data
configurations {Bin,Str}, {Num,Str}, and {Bin,Num,Str} the Silhouette values
increase, decrease, increase again to a certain threshold, and then remain
constant. These Silhouette index fluctuations indicate that multiple suitable
cluster structures are encountered across the range of explored clusters. Thus, in
the following subsection, we investigate the selection of the most appropriate
clustering solutions.
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Fig. 3: Best clustering solutions obtained by WARD (left) and K-medoids (right) algorithms
using the Silhouette index. For each subfigure, the median convergence plot is shown
in blue. The best solution is marked in red. The corresponding clustering solution is
visualized in the embedding space associated with a proximity measure.

5.2 Selection of Clustering Solutions

An important problem in cluster analysis is to determine the number of
clusters from the inherent information in a clustering structure [23]. Thus,
the following experiment aims to find both the most appropriate number of
clusters and its corresponding clustering solution from a collection of solutions
using the Silhouette index. This experiment was conducted as follows. First,
the solutions(s) with the highest Silhouette value(s) are selected among the
collection of solutions generated by a clustering algorithm. Subsequently, the
chosen solution(s) is visualized in an embedded two-dimensional feature space,
obtained from a dissimilarity matrix using the t-SNE [32] projection technique
(parameters: n_components=2, n_iter=100, perplexity=30). The resulting clustering
solutions of this analysis are presented in Figures 3-4.
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Fig. 4: MVMC clustering solutions for the configurations, {Bin,Str}, {Num,Str}, and
{Bin,Num,Str}. Each configuration includes the convergence plots shown in blue and
gray, with the two best solutions marked red. Then, for each selected solution, (i) the
Pareto front approximation (PFAs) and (ii) the clustering solution, which is visualized in
a weighted embedding space associated with the data views in the configuration.

Figure 3 presents the selected solutions for the two single-view algorithms. In
general, we can observe that the choice of the distance function over the original
heterogeneous dataset considerably influences the two-dimensional distribution
of t-SNE projections. Furthermore, there is a clear tendency for the Silhouette
index to discover two clusters in most scenarios, except for configurations
WARD{GOWER} and K-medoids{EUC}, where the number of groups is three.

Regarding the clustering solutions generated by the multi-view approach
MVMC, from Figure 5 (Appendix), it is clear that the determined number of clusters
is three as the Silhouette index obtained its highest point value at this point,
k = 3. Figure 4 illustrates the generated clustering solutions for the data-view
configurations, {Bin,Str}, {Num,Str}, and {Bin,Num,Str}. Two solutions with
the best Silhouette values were chosen for each configuration in this scenario.
Firstly, we observe that the best clustering solutions tend to be found at the
knee of the Pareto front approximations (PFAs), red box in the PFA, representing
trade-offs between the views involved. These compromise points suggest that
the consensus clustering solution exploits pieces of information from all the
multiple data views in a complementary manner. As a result, the multi-view
clustering setting reveals three and six clusters (inflection points in convergence
plots). Interestingly, the combination of the (mixed) data-view contributions
produces embedded feature spaces with observable groups, particularly for the
six-cluster solutions, as illustrated in Figure 4.

Finally, Table 2 presents two clustering solutions (P and G) obtained by
the MVMC algorithm with the data-view configuration {Bin,Num,Str}. The first
clustering solution contains two clusters and is shown in the first two columns
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Table 2: Two final clustering solutions obtained by MVMC with {Bin,Num,Str}.

Descriptive Atts.1 P(k = 2) G(k = 6)

P1 P2 G1 G2 G3 G4 G5 G6

Cluster Size 177 353 255 70 68 50 50 37
Sex (m,f) (25,75) (12,88) (10,90) (29,71) (13,87) (38,62) (18,82) (14,86)
SSc Type (dc,lc,sc) (40,59,1) (10,72,18) (0,82,18) (29,69,3) (13,87,0) (92,8,0) (0,66,34) (81,19,0)
Active DU (y,n) (60,40) (42,58) (41,59) (54,46) (53,47) (68,32) (36,64) (65,35)
Active SRC (y,n) (3,97) (0,100) (0,100) (4,96) (0,100) (4,96) (0,100) (0,100)
ILD (y,n) (98,2) (6,94) (1,99) (100,0) (85,15) (100,0) (24,76) (3,97)
PH (y,n) (12,88) (8,92) (7,93) (11,89) (15,85) (16,84) (6,94) (11,89)
Calcinosis (y,n) (10,90) (13,87) (14,86) (6,94) (18,82) (6,94) (4,96) (19,81)
Joint Sx (y,n) (34,66) (41,59) (40,60) (31,69) (37,63) (34,66) (42,58) (43,57)
Intestinal Sx (y,n) (27,73) (30,70) (31,69) (23,77) (32,68) (28,72) (16,84) (43,57)
mRSS 8.78±7.6 5.73±4.8 4.30±3.3 8.58±8.2 7.05±6.0 11.28±7.4 5.63±5.7 10.47±6.2
LVEF 63.44±28.6 64.74±23.3 63.91±5.5 60.85±4.4 65.05±4.5 62.84±6.9 61.20±6.5 65.06±5.4
FVC 87.41±27.1 102.13±29.4 107.83±19.1 83.49±23.6 101.95±16.3 85.54±24.1 106.07±20.4 103.57±21.9
DLCO 55.54±16.5 69.38±21.9 74.21±22.0 54.78±18.8 68.08±18.0 56.07±19.4 73.84±19.1 70.92±17.1
Score EUSTAR 1.70±1.5 1.55±1.3 1.42±1.1 1.59±1.3 1.77±1.5 2.38±1.8 1.61±1.3 2.32±1.6
Score Medsger 1.41±0.8 1.25±0.7 1.46±0.8 1.67±0.9 1.77±0.9 1.67±0.8 1.71±1.0 2.17±1.2

1Sex: m (male), f (female); SSC Type: dc / lc (diffuse / limited cutaneous), sc (sine scleroderma); DU: digital
ulceration; SRC: scleroderma renal crisis; ILD: interstitial lung disease; PH: pulmonary hypertension; Sx:

symptoms; mRSS: mean Rodnan skin score; LVEF: left ventricular injection fraction; FVC: forced vital capacity;
DLCO: diffusion lung capacity for carbon monoxide; EUSTAR: european scleroderma trials and research.

in gray. In contrast, the second solution involves six groups and is described
in the last six columns in light blue. Regarding clinical relevance, solution
P exhibits two groups of patients separated on the basis of the presence of
ILD, and interestingly not regarding the cutaneous involvement (historical
subclassification [37]). The six-cluster solution provided a better delineation
of six homogeneous groups, which best captured the patients’ variability in
terms of the disease severity as expressed by the EUSTAR and Medsger scores.
G1 included the majority of patients with mild disease. G4 and G6 were mostly
patients with diffuse cutaneous involvement. G2, G3, and G4 were patients with
ILD and different degrees of severity as shown by the FVC and DLCO values.
PH was found with a high prevalence in G2, G3, G4 and G6, but DLCO values
unveiled that G2 and G4 were the most severe regarding gas exchange capacity.

6 Conclusion

This work explores the benefits of multi-view clustering to identify groups
of systemic sclerosis (SSc) patients, a highly heterogeneous auto-immune
disease, within electronic health records (EHRs) capturing several types of
attributes. Our approach avoids the premature integration of attribute types
before cluster analysis through a multi-objective evolutionary algorithm called
MVMC. MVMC integrates multiple data types into the clustering process in the form
of data views, explores trade-offs between them, and determines consensus
clusters supported across these views. This comprehensive classification
integration of multiple and various data sources helped to discover meaningful
clustering solutions (Pk=2 and Gk=6) that will help to better understand disease
complications and treatment goals.
Acknowledgments The authors are grateful to the University of Lille, CHU Lille,
and INSERM, founded by the MEL through the I-Site cluster humAIn@Lille.
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Appendix

This Appendix includes figures complementing the results of the experiments
presented in Section 5. From Figure 5 (Appendix), it is clear that the determined
number of clusters is three as the Silhouette index obtained its highest point
value at this point, k = 3. Also, from the Pareto front approximations obtained by
these configurations, a substantial inference of the {Num} view is observed over
the {Bin} and {Gower} views, respectively. Accordingly, the clustering solutions
and the weighted embedding space are remarkably similar between these two
data-view configurations.
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Fig. 5: MVMC clustering solutions for two data-view configurations, {Bin,Num} and
{Num,Gower}. Each configuration includes (i) the convergence plots shown in blue and
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to the estimated k value; (iii) the clustering solution, which is visualized in a weighted
embedding space associated with the data views in the configuration.
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