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A First Runtime Analysis of the NSGA-II on a

Multimodal Problem

Benjamin Doerr Zhongdi Qu

Abstract

Very recently, the first mathematical runtime analyses of the multi-
objective evolutionary optimizer NSGA-II have been conducted. We
continue this line of research with a first runtime analysis of this al-
gorithm on a benchmark problem consisting of two multimodal ob-
jectives. We prove that if the population size N is at least four times
the size of the Pareto front, then the NSGA-II with four different
ways to select parents and bit-wise mutation optimizes the OneJump-
ZeroJump benchmark with jump size 2 ≤ k ≤ n/4 in time O(Nnk).
When using fast mutation, a recently proposed heavy-tailed muta-
tion operator, this guarantee improves by a factor of kΩ(k). Overall,
this work shows that the NSGA-II copes with the local optima of
the OneJumpZeroJump problem at least as well as the global SEMO
algorithm.

1 Introduction

The mathematical runtime analysis of evolutionary algorithms (EAs) has
contributed significantly to our understanding of these algorithms, given
advice on how to set their parameters, and even proposed new algo-
rithms [AD11, DN20, Jan13, NW10]. Most of the insights, however, have been
obtained by regarding artificially simple algorithms such as the (1 + 1) EA,
the fruit fly of EA research.

In contrast, the recent work [ZLD22] succeeded in analyzing the non-
dominated sorting genetic algorithm II (NSGA-II) [DPAM02], the multi-
objective EA (MOEA) most used in practice [ZQL+11]. This line of research
was immediately followed up in [BQ22] and [ZD22]. These three works, just
like the vast majority of the theoretical works on other MOEAs, only regard
multi-objective problems composed of unimodal objectives (see Section 2 for
more details).

1

http://arxiv.org/abs/2204.13750v5


In this work, we continue the runtime analysis of the NSGA-II with a
first analysis on a problem composed of two multi-modal objectives, namely
the OneJumpZeroJump problem proposed in [DZ21]. This problem, de-
fined on bit strings of length n, is a natural multi-objective analogue of
the single-objective Jump problem, which might be the multimodal problem
most studied in single-objective runtime analysis. The Jump problem (and
the two objectives of the OneJumpZeroJump problem) comes with a diffi-
culty parameter k ∈ [1..n] := {1, . . . , n}, which is the width of the valley of
low fitness around the global optimum. Consequently, typical hillclimbers at
some point need to flip the right k bits, which is difficult already for moderate
sizes of k. For the multi-objective OneJumpZeroJump problem the situa-
tion is similar. Here the set of Pareto optima is not a connected set in the
search space {0, 1}n, but there are solutions which can only be reached from
other points on the Pareto front by flipping k bits, which creates a challenge
similar to the single-objective case.

Our results: We conduct a mathematical runtime analysis of the NSGA-II
algorithm on the OneJumpZeroJump problem with jump sizes k ∈ [2..1

4
n].

We allow that k is functionally dependent on n and let all asymptotic notation
be with respect to n. We note that k = 1 is not interesting since it gives the
OneMinMax problem studied in [ZLD22]. Since the runtimes we observe,
as in the single-objective case, are at least exponential in k, the restriction
k ≤ 1

4
n, done mostly to avoid some not very interesting technicalities, does

not exclude any particular relevant situation.
As runtime, we consider the number of fitness evaluations until the full

Pareto front is covered by the parent population, that is, at least one in-
dividual for each Pareto-optimal objective value is contained in the parent
population of the NSGA-II. As in [ZLD22], we assume that the population
size N of the NSGA-II is sufficiently large, here at least four times the size of
the Pareto front (since a population size equal to the Pareto front size does
not suffice to find the Pareto front even of the simple OneMinMax prob-
lem [ZLD22], this assumption appears justified). We regard the NSGA-II with
four different ways to select the parents (each individual once (“fair selec-
tion”), uniform, N independent binary tournaments, and N binary tourna-
ments from two random permutations of the population (“two-permutation
tournament scheme”)), with bit-wise mutation with mutation rate 1

n
, and,

for the theoretical analyses, without crossover. For all these variants of the
NSGA-II, we prove an expected runtime of at most (1 + o(1))KNnk on the
OneJumpZeroJump problem with jump size k, where K is a small con-
stant depending on the selection method. Hence for N = Θ(n), the NSGA-II
satisfies the same asymptotic runtime guarantee of O(nk+1) as the (mostly
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relevant in theory) algorithm global SEMO (GSEMO), for which a runtime
guarantee of (1 + o(1))1.5e(n− 2k + 3)nk was shown in [DZ21].

Since it has been observed that a heavy-tailed mutation operator called
fast mutation can significantly speed up leaving local optima [DLMN17], we
also regard the NSGA-II with this mutation operator. Similar to previous
works, we manage to show a runtime guarantee which is lower by a factor
of kΩ(k) (see Theorem 8 for a precise statement of this result). This result
suggests that the NSGA-II, similar to many other algorithms, profits from
fast mutation when local optima need to be left.

This work is organized as follow. We give an overview of the state of the
art in the following section. In Section 3, we describe the NSGA-II algorithm
and the OneJumpZeroJump benchmark. The heart of this work is the
mathematical runtime analysis in Section 4. A brief experimental analysis
can be found in Section 5. The last section contains a conclusion and some
directions for future works.

2 State of the Art

The mathematical runtime analysis of evolutionary algorithms is a small,
but established research area. Its foundations were laid in the nineties of the
last century in works like [Rud97, DJW02] (noting that a decent number of
sporadic results existed earlier). Runtime analyses for MOEAs follows soon
thereafter [LTDZ02, Gie03]. Both in single-objective and in multi-objective
evolutionary computation theory, the typical focus of the early works was
on analyzing how very simple algorithms (such as randomized local search,
the (1 + 1) EA, their multi-objective counterparts, the simple evolutionary
multi-objective optimizer (SEMO), or the global SEMO) solve simple bench-
mark problems (such as OneMax and LeadingOnes or OneMinMax or
LOTZ). While the single-objective side soon moved on to more complex al-
gorithms [JJW05, Wit06] and problems [STW04, NW07], the progress on the
multi-objective side was slower. In particular, apart from an early work on the
hypervolume-based SIBEA [BFN08] (with [NSN15, DGN16] as only follow-
up works), it was only in [LZZZ16, HZCH19, HZ20] that the decomposition-
based MOEA/D was analyzed.

The first mathematical runtime analysis of the NSGA-II, the MOEA most
used in practice, was conducted only very recently [ZLD22]. It showed that
this algorithm can efficiently find the Pareto front of the OneMinMax and
LOTZ bi-objective problems when the population size N is at least some
constant factor larger than the size of the Pareto front (which is n+1 for these
problems). In this case, once an objective value of the Pareto front is covered
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by the population, it remains so for the remaining run of the algorithm. This
is different when the population size is only equal to the size of the Pareto
front. Then such values can be lost, and this effect is strong enough so that
for an exponential number of iterations a constant fraction of the Pareto front
is not covered [ZLD22]. Nevertheless, also in this case the NSGA-II computes
good approximations of the Pareto front as the first experiments in [ZLD22]
show.

This aspect is discussed in more detail in [ZD22]. There it was observed
that the main reason for the frequent loss of desirable solutions lies in the
fact that the NSGA-II does not update the crowding distance after each
removal, but bases all removals in the selection of the next parent population
on the same initial crowding distance values. When using an updated version
of the crowding distance, also with smaller population sizes provably good
approximations can be computed.

The most recent work [BQ22] extends [ZLD22] in several direc-
tions. (i) For the NSGA-II using crossover, runtime guarantees for the
OneMinMax, COCZ, and LOTZ problems are shown which agree with
those in [ZLD22]. (ii) By assuming that individuals with identical objective
value appear in the same or inverse order in the sortings used to compute
the crowding distance, the minimum required population size is lowered to
2(n + 1). (iii) A stochastic tournament selection is proposed that reduces
the runtimes by a factor of Θ(n) on LOTZ and Θ(log n) on the other two
benchmarks.

The OneMinMax, COCZ, and LOTZ benchmarks are all composed
of two unimodal objectives, namely functions isomorphic to the benchmarks
OneMax and LeadingOnes from single-objective EA theory. The theory
of MOEA has largely focused on such benchmarks, a benchmark composed
of multimodal objectives was only proposed and analyzed in [DZ21].

Besides the definition of the OneJumpZeroJump problem, the main
results in that work are that the SEMO algorithm cannot optimize this
benchmark, that the GSEMO takes time O((n − 2k + 3)nk) (where the
implicit constants can be chosen independent of n and k), and that the
GSEMO with fast mutation with power-law exponent β > 1 succeeds in
time O((n − 2k + 3)k−k+β−0.5nk( n

n−k
)n−k) (where the implicit constant can

be chosen depending on β only). A slightly weaker bound (but still much
better than that for classic GESMO) was shown for the GSEMO with the
stagnation detection mechanism of Rajabi and Witt [RW20]. Since the im-
plementation of this stagnation detection mechanism in a MOEA is quite
technical, we omit the details.
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3 Preliminaries

3.1 The NSGA-II Algorithm

We give an overview of the algorithm here and refer to [DPAM02] for a more
detailed description of the general algorithm and to [ZLD22] for more details
on the particular version of the NSGA-II we regard.

The algorithm starts with a random initialization of a parent population
of size N . At each iteration, N children are generated from the parent popu-
lation via a mutation method, and N individuals among the combined parent
and children population survive to the next generation based on their ranks
in a non-dominated sorting and, as tie-breaker, the crowding distance.

Ranks are determined recursively. All individuals that are not strictly
dominated by any other individual have rank 1. Given that individuals of
rank 1, . . . , i are defined, individuals of rank i + 1 are those only strictly
dominated by individuals of rank i or smaller. Clearly, individuals of lower
ranks are preferred.

The crowding distance, denoted by cDis(x) for an individual x, is used to
compare individuals of the same rank. To compute the crowding distances
of individuals of rank i with respect to a given objective function fj , we
first sort the individuals in ascending order according to their fj objective
values. The first and last individuals in the sorted list have infinite crowding
distance. For the other individuals, their crowding distance is the difference
between the objective values of its left and right neighbors in the sorted list,
normalized by the difference of the minimum and maximum values. The final
crowding distance of an individual is the sum of its crowding distances with
respect to each objective function.

At each iteration, the critical rank i∗ is the rank such that if we take all
individuals of ranks smaller than i∗, the total number of individuals will be
less than or equal to N , but if we also take all individuals of rank i∗, the total
number of individuals will be over N . Thus, all individuals of rank smaller
than i∗ survive to the next generation, and for individuals of rank i∗, we take
the individuals with the highest crowding distance, breaking ties randomly,
so that in total exactly N individuals are kept.

3.2 The OneJumpZeroJump Benchmark

The OneJumpZeroJump benchmark was proposed in [DZ21] as a bi-
objective analogue of the single-objective Jump benchmark [DJW02]. This
single-objective benchmark has greatly supported our understanding how
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evolutionary algorithms cope with local optima, see, e.g., [JW02, DLMN17,
DFK+18, RW20, Doe21, Doe22].

Let n ∈ N and k = [2..n/4]. The bi-objective function
OneJumpZeroJumpn,k = (f1, f2) : {0, 1}n → R2 is defined by

f1(x) =

{

k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else;

f2(x) =

{

k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else.

The aim is to maximize both f1 and f2. The first objective is the classical
Jumpn,k function. It has a valley of low fitness around its optimum, which
can be crossed only by flipping the k correct bits, if no solutions of lower
fitness are accepted. The second objective is isomorphic to the first, with the
roles of zeroes and ones exchanged.

According to Theorem 2 of [DZ21], the Pareto set of the
OneJumpZeroJumpn,k function is

S∗ = {x ∈ {0, 1}n | |x|1 = [k..n− k] ∪ {0, n}},

and the Pareto front F ∗ is

F ∗ = {(a, 2k + n− a) | a ∈ [2k..n] ∪ {k, n+ k}},

making the size of the front |F ∗| = n− 2k + 3.
We define the inner part of the Pareto set by S∗

I = {x | |x|1 ∈ [k..n− k]},
the outer part by S∗

O = {x | |x|1 ∈ {0, n}}, the inner part of the Pareto
front by F ∗

I = f(S∗
I ) = {(a, 2k + n− a) | a ∈ [2k..n]}, and the outer part by

F ∗
O = f(S∗

O) = {(a, 2k + n− a) | a ∈ {k, n+ k}}.

4 Runtime Analysis for the NSGA-II

In this section, we prove our runtime guarantees for the NSGA-II, first with
bit-wise mutation with mutation rate 1

n
(Subsection 4.1), then with fast mu-

tation (Subsection 4.2).
The obvious difference to the analysis forOneMinMax in [ZLD22] is that

with OneJumpZeroJump, individuals with between 1 and k − 1 zeroes or
ones are not optimal. Moreover, all these individuals have a very low fitness
in both objectives. Consequently, such individuals usually will not survive
into the next generation, which means that the NSGA-II at some point will
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have to generate the all-ones string from a solution with at least k zeroes
(unless we are extremely lucky in the initialization of the population). This
difference is the reason for the larger runtimes and the advantage of the fast
mutation operator.

A second, smaller difference which however cannot be ignored in the math-
ematical proofs is that the very early populations of a run of the algorithm
may contain zero individual on the Pareto front. This problem had to be
solved also in the analysis of LOTZ in [ZLD22], but the solution developed
there required that the population size is at least 5 times the size of the Pareto
front (when tournament selection was used). For OneJumpZeroJump, we
found a different argument to cope with this situation that only requires
N ≥ 9.

We start with a few general observations that apply to both mutation
methods. A crucial observation, analogous to a similar statement in [ZLD22],
is that with sufficient population size, objective values of rank-1 individuals
always survive to the next generation.

Lemma 1. Consider one iteration of the NSGA-II algorithm optimizing the
OneJumpZeroJumpn,k benchmark, with population size N ≥ 4(n − 2k +
3). If in some iteration t the combined parent and offspring population Rt

contains an individual x of rank 1, then the next parent population Pt+1

contains an individual y such that f(y) = f(x). Moreover, if an objective
value on the Pareto front appears in Rt, it will be kept in all future iterations.

Proof. Let F1 be the set of rank-1 individuals in Rt. To prove the first
claim, we need to show that for each x ∈ F1, there is a y ∈ Pt+1 such
that f(x) = f(y). Let S1.1, . . . , S1.|F1| be the list of individuals in F1 sorted
by ascending f1 values and S2.1, . . . , S2.|F1| be the list of individuals sorted
by ascending f2 values, which were used to compute the crowding distances.
Then there exist a ≤ b and a′ ≤ b′ such that [a..b] = {i | f1(S1.i) = f1(x)}
and [a′..b′] = {i | f2(S2.i) = f2(x)}. If any one of a = 1, a′ = 1, b = |F1|, or
b′ = |F1| is true, then there is an individual y ∈ F1 satisfying f(y) = f(x)
of infinite crowding distance. Since there are at most 4 < N individu-
als of infinite crowding distance, y is kept in Pt+1. So consider the case
that a, a′ > 1 and b, b′ < |F1|. By the definition of the crowding dis-

tance, we have that cDis(S1.a) ≥ f1(S1.a+1)−f1(S1.a−1)
f1(S1.|F1|)−f1(S1.1)

≥ f1(S1.a)−f1(S1.a−1)
f1(S1.|F1|)−f1(S1.1)

. Since

f1(S1.a)− f1(S1.a−1) > 0 by the definition of a, we have cDis(S1.a) > 0. Sim-
ilarly, we have cDis(S1.a′), cDis(S1.b), cDis(S1.b′) > 0. For i ∈ [a + 1..b − 1]
and S1.i = S2.j for some j ∈ [a′ + 1..b′ − 1], we have that f1(S1.i−1) =
f1(x) = f1(S1.i+1) and f2(S2.j−1) = f2(x) = f2(S2.j+1). So cDis(S1.i) = 0.
Therefore, for each f(x) value, there are at most 4 individuals with the same
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objective value and positive crowding distances. By Corollary 6 in [DZ21],
|F1| ≤ n−2k+3. So the number of rank-1 individuals with positive crowding
distances is at most 4(n− 2k+3) ≤ N and therefore they will all be kept in
Pt+1.

The second claim then follows since if x ∈ Rt and f(x) is on the Pareto
front, we have x ∈ F1. By the first claim, x ∈ Pt+1 and therefore x ∈ Rt+1.
The same reasoning applies for all future iterations.

For our analysis, we divide a run of the NSGA-II algorithm optimizing
the OneJumpZeroJumpn,k benchmark into the following stages.

• Stage 1 : Pt ∩ S∗
I = ∅. In this stage, the algorithm tries to find the first

individual with objective value in F ∗
I .

• Stage 2 : There exists a v ∈ F ∗
I such that v /∈ f(Pt). In this stage, the

algorithm tries to cover the entire set F ∗
I .

• Stage 3 : F ∗
I ⊆ f(Pt), but F

∗
O * f(Pt). In this stage, the algorithm tries

to find the extremal values of the Pareto front.

By Lemma 1, once the algorithm has entered a later stage, it will not go back
to an earlier stage. Thus, we can estimate the expected number of iterations
needed by the NSGA-II algorithm by separately analyzing each stage.

A mutation method studied in [ZLD22] is to flip one bit selected uniformly
at random. For reasons of completeness, we prove in the following lemma the
natural result that the NSGA-II with this mutation operator with high proba-
bility is not able to cover the full Pareto front of the OneJumpZeroJumpn,k

benchmark.

Lemma 2. With probability 1−N exp(−Ω(n)), the NSGA-II algorithm using
one-bit flips as mutation operator does not find the full Pareto front of the
OneJumpZeroJumpn,k benchmark, regardless of the runtime.

Proof. Since k ≤ n/4, a simple Chernoff bound argument shows that a ran-
dom initial individual is in S∗

I with probability 1− exp(−Ω(n)). By a union
bound, we have P0 ⊆ S∗

I with probability 1−N exp(−Ω(n)). We argue that
in this case, the algorithm can never find an individual in S∗

O.
We observe that any individual in S∗

I strictly dominates any individual in
the gap regions of the two objectives, that is, with between 1 and k−1 zeroes
or ones. Consequently, in any population containing at least one individual
from S∗

I , such a gap individual can never have rank 1, and the only rank 1
individuals are those on the Pareto front. Hence if Pt for some iteration t
contains only individuals on the Pareto front, Pt+1 will do so as well.
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By induction and our assumption P0 ⊆ S∗
I , we see that the parent popula-

tion will never contain an individual with exactly one one-bit. Since only from
such a parent the all-zeroes string can be generated (via one-bit mutation),
we will never have the all-zeroes string in the population.

In the light of Lemma 2, the one-bit flip mutation operator is not suitable
for the optimization of OneJumpZeroJump. We therefore do not consider
this operator in the following runtime analyses.

4.1 Runtime Analysis for the NSGA-II Using Bit-Wise

Mutation

In this section, we analyze the complexity of the NSGA-II algorithm when
mutating each bit of each selected parent with probability 1

n
. We consider

four different ways of selecting the parents for mutation: (i) fair selection
(selecting each parent once), (ii) uniform selection (selecting one parent uni-
formly at random for N times), (iii) via N independent tournaments (for N
times, uniformly at random sample 2 different parents and conduct a binary
tournament between the two, i.e., select the one with the lower rank and, in
case of tie, select the one with the larger crowding distance, and, in case of
tie, select one randomly), and (iv) via a two-permutation tournament scheme
(generate two random permutations π1 and π2 of Pt and conduct a binary
tournament between πj(2i− 1) and πj(2i) for all i ∈ [1..N/2] and j ∈ {1, 2};
this is the selection method used in Deb’s implementation of the NSGA-II
when ignoring crossover [DPAM02]).

Lemma 3. Using N ≥ 9, bit-wise mutation for variation, and any parent
selection method, stage 1 needs in expectation at most e(4k

3
)k iterations.

Proof. Suppose x is selected for mutation during one iteration of stage 1 and
|x|1 = i. Then i < k or i > n−k. If i < k, then the probability of obtaining an
individual with k 1-bits is at least

(

n−i
k−i

)

( 1
n
)k−i(1− 1

n
)n−(k−i) ≥ ( n−i

n(k−i)
)k−i(1−

1
n
)n−1 > 1

e
( 3
4(k−i)

)k−i ≥ 1
e
( 3
4k
)k (where the second to last inequality uses the

assumption that i < k ≤ n
4
). If i > n− k, then the probability of obtaining

an individual with n− k 1-bits is at least
(

i
i−(n−k)

)

( 1
n
)i−(n−k)(1− 1

n
)2n−i−k ≥

( i
n(i−n+k)

)i−n+k(1 − 1
n
)n−1 > 1

e
( 3
4(i−n+k)

)i−n+k ≥ 1
e
( 3
4k
)k (where the second

to last inequality uses the assumption that i > n − k ≥ 3
4n
). Suppose Rt

is a combined parent and offspring population where there is at least one
individual in S∗

I . Then the rank-1 individuals of Rt are all in S∗. By the
proof of Lemma 1, there are at most 8 rank-1 individuals in Rt that are
not in S∗

I and have positive crowding distance (4 copies of the all-zeroes
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string and 4 of the all-ones string). Since N ≥ 9, at least one individual in
S∗
I survives to the next generation. Hence each iteration with probability at

least 1
e
( 3
4k
)k marks the end of stage 1. Consequently, stage 1 ends after in

expectation at most (1
e
( 3
4k
)k)−1 = e(4k

3
)k iterations.

For the remaining two stages, we first regard the technically easier fair
and uniform selection methods.

Lemma 4. Using population size N ≥ 4(n− 2k+3), selecting parents using
fair or uniform selection, and using bit-wise mutation for variation, stage 2
needs in expectation O(n logn) iterations.

The proof, naturally, is very similar to the corresponding part of the
analysis on OneMinMax [ZLD22].

Proof of Lemma 4. Let x ∈ Pt be an individual such that |x|1 = v ∈ [k..n−
k]. Denote the probability that x is selected as the parent at least once by p,
the probability that the result of mutating x gives us a y such that |y|1 = v+1
by p+v and the probability that the result of mutating x gives us a y such
that |y|1 = v − 1 by p−v . Then, since by Lemma 1, f(x) is kept in f(Pt) for
all iterations after it first appears, the expected number of iterations needed
to obtain a y such that |y|1 = v + 1 is at most 1

pp+v
. Similarly, the expected

number of iterations needed to obtain a y such that |y|1 = v − 1 is at most
1

pp−v
.

Consider one iteration t of stage 2. We know that there is x ∈ Pt such that
|x|1 = v ∈ [k..n−k]. Then the expected number of iterations needed to obtain
objective values (k+v+1, n+k−v−1), (k+v+2, n+k−v−2), . . . , (n, 2k) is at
most

∑n−k
i=v

1
pp+i

. Similarly, the expected number of iterations needed to obtain

objective values (k+v−1, n+k−v+1), (k+v−2, n+k−v+2), . . . , (2k, n)
is at most

∑v
i=k

1
pp−i

. As a result, the number of iterations needed to cover

F ∗
I is at most

∑n−k
i=v

1
pp+

i

+
∑v

i=k
1

pp−
i

. With fair selection, we have p = 1, and

with uniform selection, p = 1 − (1 − 1
N
)N ≥ 1 − 1

e
. Flipping each bit with

probability 1
n
, we have p+v = n−v

n
(1− 1

n
)n−1 ≥ n−v

en
and p−v = v

n
(1− 1

n
)n−1 ≥ v

en
.

So the expected number of iterations is at most ne2

e−1
(
∑n−v

i=k
1
i
+

∑v
i=k

1
i
) =

O(n logn).

Different arguments, naturally, are needed in the following analysis of
stage 3.

Lemma 5. Using population size N ≥ 4(n− 2k + 3) and bit-wise mutation
for variation, stage 3 needs in expectation at most 2enk iterations if selecting
parents using fair selection, and 2 e2

e−1
nk iterations if using uniform selection.
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Proof. Consider one iteration t of stage 3. We know that there is an x ∈ Pt

such that |x|1 = k. Denote the probability that x is selected at least once to
be mutated in this iteration by p1. Conditioning on x being selected, denote
the probability that all k 1-bits of x are flipped in this iteration by p2. Then
the probability of generating 0n in this iteration is at least p1p2. Since by
Lemma 1, x is kept for all future generations, we need at most 1

p1p2
iterations

to obtain 0n. With fair selection, we have p1 = 1 and with uniform selection,
p1 = 1− (1− 1

N
)N ≥ 1− 1

e
. On the other hand, p2 = ( 1

n
)k(1− 1

n
)n−k ≥ 1

enk . So
the expected number 1

p1p2
of iterations to obtain 0n is bounded by enk if using

fair selection, and by e2

e−1
nk if using uniform selection. The case for obtaining

1n is symmetrical. Therefore, the expected total number of iterations needed
to cover the extremal values of the Pareto front is at most 2enk if using fair
selection, and 2 e2

e−1
nk if using uniform selection.

Combining the lemmas, we immediately obtain the runtime guarantee.

Theorem 6. Using population size N ≥ 4(n − 2k + 3), selecting parents
using fair or uniform selection, and mutating using bit-wise mutation, the
NSGA-II needs in expectation at most (1 + o(1))KNnk fitness evaluations
to cover the entire Pareto front of the OneJumpZeroJumpn,k benchmark,

where K = 2e for fair selection and K = 2 e2

e−1
for uniform selection.

In the above result, we have given explicit values for the leading con-
stant K to show that it is not excessively large, but we have not tried to
optimize this constant. In fact, it is easy to see that the 2 could be replaced
by 1.5 by taking into account that the expected time to find the first extremal
point is only half the time to find a particular extremal point. Since we have
no non-trivial lower bounds at the moment, we find it too early to optimize
the constants.

We now turn to the case where the mutating parents are chosen using one
of two ways of binary tournaments, namely, via N independent tournaments
and the two-permutation tournament scheme.

Theorem 7. Using population size N ≥ 4(n−2k+3), selecting parents using
N independent tournaments or the two-permutation tournament scheme, and
mutating using bit-wise mutation, the NSGA-II takes in expectation at most
(1 + o(1))KNnk fitness evaluations to cover the entire Pareto front of the
OneJumpZeroJumpn,k benchmark, where K = 2 e2

e−1
if using N independent

tournaments, and K = 8
3
e if using the two-permutation tournament scheme.

The proof of this result follows the outline of the proof of Theorem 6,
but needs some technical arguments from [ZLD22] on the probability that
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an individual next to an uncovered spot on the Pareto front is chosen to be
mutated.

Proof of Theorem 7. Since we aim for an asymptotic statement, we shall al-
ways assume that n, and consequently N , are sufficiently large.

From Lemma 3 we know that stage 1 takes at most e(4k
3
)k iterations in

expectation.
The analysis for stage 2 is similar to that in Lemma 4, but due to the

different parent selection method, we need to find a new lower bound for p,
the probability of selecting a suitable parent. Consider an iteration t of stage
2, let V = f(Pt), and let vmin = min{f1(x) | x ∈ Pt} and vmax = max{f1(x) |
x ∈ Pt}. Also, define V + = {(v1, v2) ∈ V | ∃y ∈ Pt : (f1(y), f2(y)) = (v1 +
1, v2−1)} and V − = {(v1, v2) ∈ V | ∃y ∈ Pt : (f1(y), f2(y)) = (v1−1, v2+1)}.
Then by Lemma 3 of [ZLD22], for any (v1, v2) ∈ V \(V + ∩ V −), there is at
least one individual x ∈ Pt with f(x) = (v1, v2) and cDis(x) ≥ 2

vmax−vmin
. We

call such individuals “desirable individuals”. By Lemma 4 of [ZLD22], for
any (v1, v2) ∈ V +∩V −, there are at most two individuals x ∈ Pt with f(x) =
(v1, v2) and cDis(x) ≥ 2

vmax−vmin
. Since |F ∗

I \{(2k, n), (n, 2k)}| = n − 2k − 1,
there are at most 2(n− 2k − 1) such individuals. By the proof of Lemma 1,
there are at most 16 individuals with objectives values (k, n + k), (2k, n),
(n, 2k), or (n+ k, k) and positive crowding distance. Therefore, there are at
least (N − 1)− 2(n− 2k− 1)− 16 ≥ N

2
− 9 individuals that, if chosen as the

opponent of a desirable individual, the winner of the binary tournament is a
desirable individual. Thus, with N independent tournaments, the probability
that a desirable individual participates and wins in a binary tournament is

at least p = 1 − (1− 1
N

N
2
−9

N−1
)N = 1− (1 − 1

2N
N−18
N−1

)N , which is an increasing
function for N > 0. So for N ≥ 4(n − 2k + 3) ≥ 28, we have p ≥ 0.17.
With the two-permutation tournament scheme, the probability is at least
N
2
−9

N−1
= N−18

2(N−1)
≥ 0.18 for N ≥ 28. Following the proof of Lemma 4, the

expected number of iterations when using either tournament scheme is at
most en

Ω(1)
(
∑n−v

e−1
1
i
+
∑v

i=k
1
i
) = O(n logn), where v is the number of 1-bits in

the first x ∈ S∗
I found by the algorithm.

The analysis for stage 3 is similar to that in Lemma 5. Let x be an
individual in Pt such that |x|1 = k. Suppose 0n /∈ Pt, then x has the largest
f2 value in rank-1 individuals of Pt. Therefore cDis(x) = ∞ and if x is
selected to participate in a binary tournament, in the worst case it wins with
probability 1

2
. If using N independent binary tournaments, the probability

of x chosen as a mutating parent is 1 − (1 − 1
2

2
N
)N ≥ 1 − 1

e
. With the two-

permutation tournament scheme, the probability is 1 − (1
2
)2 = 3

4
. Following

the proof of Lemma 5, the number of iterations to obtain 0n in stage 3 is at

12



most 1
(1− 1

e
) 1

enk

= e2

e−1
nk using N independent tournaments, and 1

3
4

1

enk

= 4
3
enk

under the two-permutation tournament scheme. The case for covering 1n

is symmetrical. So in total stage 3 needs in expectation at most 2 e2

e−1
nk

iterations using N independent tournaments, and 8
3
enk iterations under the

two-permutation tournament scheme.

4.2 Runtime Analysis for the NSGA-II Using Fast Mu-

tation

We now consider the NSGA-II with heavy-tailed mutation, i.e., the muta-
tion operator proposed in [DLMN17] and denoted by MUTβ(·) in [DZ21],
a work from which we shall heavily profit in the following. We note that
fast mutation, that is, choosing the mutation strength from a heavy-tailed
distribution, was shown to lead to good performances in many other works
as well [FQW18, FGQW18, QGWF21, WQT18, ABD20a, ABD20b, AD20,
ABD21, DZ21, COY21, DR22].

Let β > 1 be a constant (typically below 3). Let Dβ
n/2 be the distribution

such that if a random variable X follows the distribution, then Pr[X = α] =
(Cβ

n/2)
−1α−β for all α ∈ [1..n/2], where n is the size of the problem and

Cβ
n/2 :=

∑n/2
i=1 i

−β. In an application of the mutation operator MUTβ(·), first
an α is chosen according to the distribution Dβ

n/2 (independent from all other

random choices of the algorithm) and then each bit of the parent is flipped
independently with probability α/n. Let x ∈ {0, 1}n, y ∼ MUTβ(x), and
H(x, y) denote the Hamming distance between x and y. Then, by Lemma 13
of [DZ21], we have

P β
j := Pr[H(x, y) = j] =

{

(Cβ
n/2)

−1Θ(1) for j = 1;

(Cβ
n/2)

−1Ω(j−β) for j ∈ [2..n/2].

Theorem 8. Using population size N ≥ 4(n − 2k + 3), any one of the
four parent selection methods, and mutating with the MUTβ(·) operator, the
NSGA-II takes at most (1+o(1)) 1

Pβ

k

NK
(

n
k

)

fitness evaluations in expectation

to cover the entire Pareto front of the OneJumpZeroJumpn,k benchmark,
where K = 2 for fair selection, K = 2e

e−1
for uniform selection and selection

via N independent binary tournaments, and K = 8
3
for the two-permutation

binary tournament scheme.

Proof of Theorem 8. The analysis for stage 1 is similar to the proof of
Lemma 3. Now the probability of obtaining an individual with k 1-bits from

13



an individual with i < k 1-bits is p1 =
(n−i

k−i)
( n

k−i)
P β
k−i = (n−i)!(n−k+i)!

(n−k)!n!
P β
k−i >

(n−k
n
)iP β

k−i > (3
4
)kP β

k−i. Similarly, the probability of obtaining an indi-
vidual with n − k 1-bits from an individual with i > n − k 1-bits is

p2 =
( i

i−(n−k))
( n

i−(n−k))
P β
i−(n−k) =

i!(2n−i−k)!
(n−k)!n!

P β
i−(n−k) > (n−k

n
)n−iP β

k−i > (3
4
)kP β

k−i. Since

β > 1, Cβ
n/2 ≤ β

β−1
. Consequently p1, p2 > (3

4
)k β−1

β
Ω(k−β). So the number of

iterations needed in expectation is at most O((4
3
)kkβ).

The analysis of stage 2 follows the one in Lemma 4. Now, from an indi-
vidual with i 1-bits, p+i , the probability of generating an individual with one
more 1 is n−i

n
P β
1 , and p−i , the probability of generating an individual with

one more 0 is i
n
P β
1 . So the number of iterations needed in expectation for

stage 2 is at most

n−k
∑

i=v

1

pp+i
+

v
∑

i=k

1

pp−i
≤ 2en

(e− 1)P β
1

(1 + lnn) = O(n logn).

The analysis of stage 3 is again similar to the one in Lemma 5 except that
now we profit from the much larger probability to flip k bits. The probability
of selecting an individual with k 1-bits as a mutating parent, p1, remains
unchanged, and thus p1 = 1 with fair selection and p1 ≥ 1− 1

e
with uniform

selection. Now, the probability of generating an individual with 0 1-bits from

an individual with k 1-bits, p2 =
Pβ

k

(nk)
. So the number of iterations needed

in expectation to find 0n is at most
(nk)
Pβ

k

with fair selection, and
e(nk)

(e−1)Pβ

k

with

uniform selection. Finding 1n is the same. So the total number of iterations

needed in expectation is at most
2(nk)
Pβ

k

for fair selection and
2e(nk)

(e−1)Pβ

k

for uniform

selection.
Combining the three stages, the number of fitness evaluations needed

in total is at most (1 + o(1)) 1

Pβ

k

K
(

n
k

)

in expectation, where K = 2 for fair

selection, K = 2e
e−1

for uniform selection.
With binary tournaments, the analysis is the same with the exception that

the probabilities of selecting a particular individual are different. According
to the proof of Theorem 7, using N independent binary tournaments, the
probability of selecting a desirable individual in stage 2 becomes at least
0.17, and the probability of selecting a desirable individual in stage 3 is
at least 1 − 1

e
. Accordingly, K = 2e

e−1
. Moreover, with the two-permutation

binary tournament scheme, in stage 2 the probability that a desirable parent
is selected is at least 0.18, and the probability in stage 3 is at least 3

4
, which

makes K equal to 8
3
.
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Noting that
(

n
k

)

is by a factor of kΩ(k) smaller than nk, whereas 1/P β
k is

only O(kβ), we see that the runtime guarantee for the heavy-tailed operator
is by a factor of kΩ(k) stronger than our guarantee for bit-wise mutation.
Without a lower bound on the runtime in the bit-wise setting, we cannot
claim that the heavy-tailed algorithm is truly better, but we strongly believe
so (we do not see a reason why the NSGA-II with bit-wise mutation should
be much faster than what our upper bound guarantees).

We note that it is easy to prove a lower bound of Ω(nk) for the runtime of
the NSGA-II with bit-wise mutation (this is a factor of N below our upper
bound, which stems from pessimistically assuming that in each iteration, N
times a parent is selected that has a Θ(n−k) chance of generating an extremal
point of the Pareto front). For k larger than, say, log(N), this weak lower
bound would suffice to show that the heavy-tailed NSGA-II is asymptotically
faster. We spare the details and hope that at some time, we will be able to
prove tight lower bounds for the NSGA-II.

When k ≤ √
n, the runtime estimates above can be estimated further as

follows. In [DZ21], it was shown that

P β
i ≥

{

β−1
eβ

for i = 1;
β−1

4
√
2πe8

√
2+13β

i−β for i ∈ [2..⌊√n⌋].

Also, for k ≤ √
n, a good estimate for the binomial coefficient is

(

n
k

)

≤ nk

k!

(losing at most a constant factor of e, and at most a (1 + o(1))-factor when
k = o(

√
n). Hence the runtime estimate from Theorem 8 for k ≤ √

n becomes

(1 + o(1))K
4
√
2πe8

√
2+13β

β − 1
Nkβ n

k

k!
,

which is a tight estimate of the runtime guarantee of Theorem 8 apart from
constants independent of n and k. In any case, this estimate shows that for
moderate values of k, our runtime guarantee for the heavy-tailed NSGA-II is
better by a factor of Θ(k!k−β), which is substantial already for small values
of k.

5 Experiments

To complement our theoretical results, we also experimentally evaluate the
runtime of the NSGA-II algorithm on the OneJumpZeroJump benchmark.
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5.1 Settings

We implemented the algorithm as described in Section 3 in Python (the code
can be found at https://github.com/deliaqu/NSGA-II). We use the following
settings.

• Problem size n: 20 and 30.

• Jump size k: 3.

• Population size N : In our theoretical analysis, we have shown that with
N = 4(n − 2k + 3), the algorithm is able to recover the entire Pareto
front. To further explore the effect of the population size, we conduct
experiments with this population size, with half this size, and with twice
this size, that is, for N ∈ {2(n− 2k+ 3), 4(n− 2k+ 3), 8(n− 2k+ 3)}.

• Parent selection: For simplicity, we only experiment with using N in-
dependent binary tournaments.

• Mutation operator: Following our theoretical analysis, we consider two
mutation operators, namely bit-wise mutation (flipping each bit with
probability 1

n
) and fast mutation, that is, the heavy-tailed mutation

operator MUTβ(·). We set β to be 1.5.

• Number of independent repetitions per setting: 50. This number is a
compromise between the longer runtimes observed on a benchmark
like OneJumpZeroJump and the not very concentrated runtimes (for
most of our experiments, we observed a corrected sample standard de-
viation between 50% and 80% of the mean, which fits to our intuition
that the runtimes are dominated by the time to find the two extremal
points of the Pareto front).

5.2 Experimental Results

Table 1 contains the average runtime (number of fitness evaluations done
until the full Pareto front is covered) of the NSGA-II algorithm when using
bit-wise mutation and the heavy-tailed mutation operator. The most obvious
finding is that the heavy-tailed mutation operator already for these small
problem and jump sizes gives significant speed-ups.

While our theoretical results are valid only for N ≥ 4(n − 2k + 3),
our experimental data suggests that also with the smaller population size
N = 2(n − 2k + 3) the algorithm is able to cover the entire Pareto front of
the OneJumpZeroJump benchmark. We suspect that this is because even

16

https://github.com/deliaqu/NSGA-II


Table 1: Average runtime of the NSGA-II and the GSEMO with bit-wise
mutation and heavy-tailed mutation operator on the OneJumpZeroJump

benchmark with k = 3.

n = 20 n = 30
Bit-wise HT Bit-wise HT

N = 2(n− 2k + 3) 264932 178682 1602552 785564
N = 4(n− 2k + 3) 366224 188213 1777546 1080458
N = 8(n− 2k + 3) 529894 285823 2836974 1804394

GSEMO 511365 215001 2654620 1422455

though theoretically for each objective value there could be 4 individuals in
each generation having positive crowding distances, empirically this happens
relatively rarely and for each objective value the expected number of individ-
uals with positive crowding distances is closer to 2. We also note that with a
larger population, e.g., N = 8(n− 2k + 3), naturally, the runtime increases,
but usually by significantly less than a factor of two. This shows that the
algorithm is able to profit somewhat from the larger population size.

For comparison, we also conducted experiments with the global simple
evolutionary multi-objective optimizer (GSEMO) [Gie03]. The results can
be found on the last row of Table 1. We note that with bit-wise mutation,
the GSEMO has a similar runtime as the NSGA-II when N = 8(n−2k+3). In
other words, when using the population size N = 4(n−2k+3), for which our
runtime guarantee applies, or smaller, but still efficient population sizes, the
NSGA-II clearly outperforms the GSEMO. The heavy-tailed operator speeds
up the GSEMO more than the NSGA-II, but still the NSGA-II remains faster
with the two smaller population sizes.

5.3 Crossover

Besides fast mutation, two further mechanisms were found that can speed up
the runtime of evolutionary algorithms on (single-objective) jump functions,
namely the stagnation-detection mechanism of Rajabi and Witt [RW20,
RW21b, RW21a, DR22] and crossover [JW02, DFK+16, DFK+18, ABD22].
We are relatively optimistic that stagnation detection, as when used with the
global SEMO algorithm [DZ21], can provably lead to runtime improvements,
but we recall from [DZ21] that the implementation of stagnation detection is
less obvious for MOEAs. For that reason, we ignore this approach here and
immediately turn to crossover, given that no results proving a performance
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Table 2: Average runtime of the NSGA-II with bit-wise mutation and
crossover on the OneJumpZeroJump benchmark with k = 3.

n = 20 n = 30 n = 40
N = 2(n− 2k + 3) 68598 265993 773605
N = 4(n− 2k + 3) 45538 205684 510650
N = 8(n− 2k + 3) 68356 316500 635701

gain from crossover for the NSGA-II exist, and there are clear suggestions
on how to use it in [DFK+18].

Inspired by [DFK+18], we propose and experimentally analyze the follow-
ing variant of the NSGA-II. The basic algorithm is as above. In particular,
we also select N parents via independent tournaments. We partition these
into pairs. For each pair, with probability 90%, we generate two intermedi-
ate offspring via a 2-offspring uniform crossover (that is, for each position
independently, with probability 0.5, the first child inherits the bit from the
first parent, and otherwise from the second parent; the bits from the two par-
ents that are not inherited by the first child make up the second child). We
then perform bit-wise mutation on these two intermediate offspring. With
the remaining 10% probability, mutation is performed directly on the two
parents.

Table 2 contains the average runtimes for this algorithm. We observe that
crossover leads to massive speed-ups (which allows us to also conduct exper-
iments for problem size n = 40). More specifically, comparing the runtimes
for n = 30 and bit-wise mutation (which is fair since the crossover version
also uses this mutation operator), the crossover-based algorithm only uses
between 8% and 15% percent of the runtime of the mutation-only algorithm.

We note that different from the case without crossover, with N = 2(n−
2k+3), the algorithm consistently takes more time than with N = 4(n−2k+
3). We suspect that the smaller population size makes it less likely that the
population contains two parents from which crossover can create a profitable
offspring. We note that in [DFK+18], the best speed-up from crossover on a
jump function with jump size k = 3 was obtained for a population size of
Θ(n) – since this result was for the single-objective jump function, the whole
population is concentrated on the fitness value of the local optima. As our
larger runtimes for N = 8(n− 2k+ 3) suggest, for the NSGA-II comparably
smaller population sizes (having in average a constant number of individuals
on each objective value) are more profitable.

Table 3 contains the average runtimes when using heavy-tailed mutation
with crossover. Similarly to the case of using bit-wise mutation, the selected
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Table 3: Average runtime of the NSGA-II with heavy-tailed mutation and
crossover on the OneJumpZeroJump benchmark with k = 3.

n = 20 n = 30 n = 40
N = 2(n− 2k + 3) 52874 234005 695998
N = 4(n− 2k + 3) 60626 248681 696766
N = 8(n− 2k + 3) 103741 474932 1504574

parents are divided into pairs and with 90% chance uniform crossover is per-
formed on the pair followed by heavy-tailed mutation, and with 10% chance
only mutation is performed. We observe that when compared with using bit-
wise mutation and crossover, we only see improvement in the case where
N = 2(n − 2k + 3). We do not yet understand why the two mechanisms
to speed up the runtimes in combination do not consistently bring further
improvements. We believe that a much more thorough understanding of the
working principles of crossover in this application is needed to make further
progress here.

6 Conclusions and Future Works

In this first mathematical runtime analysis of the NSGA-II on a bi-ojective
multimodal problem, we have shown that the NSGA-II with a sufficient popu-
lation size performs well on the OneJumpZeroJump benchmark and profits
from heavy-tailed mutation, all comparable to what was shown before for the
GSEMO algorithm.

Due to the more complicated population dynamics of the NSGA-II, we
could not yet prove an interesting lower bound. For this, it would be necessary
to understand how many individuals with a particular objective value are
in the population. Note that this number is trivially one for the GSEMO,
which explains why for this algorithm lower bounds could be proven [DZ21].
Understanding better the population dynamics of the NSGA-II and then
possibly proving good lower bounds is an interesting and challenging direction
for future research.

A second interesting direction is to analyze theoretically how the NSGA-II
with crossover optimizes the OneJumpZeroJump benchmark. Our exper-
iments show clearly that crossover can lead to significant speed-ups here.
Again, we currently do not have the methods to analyze this algorithm, and
we speculate that a very good understanding of the population dynamics is
necessary to solve this problem. We note that the only previous work [BQ22]
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regarding the NSGA-II with crossover does not obtain faster runtimes from
crossover. Besides that work, we are only aware of two other runtime analyses
for crossover-based MOEAs, one for the multi-criteria all-pairs shortest path
problem [NT10], the other also for classic benchmarks, but with an initializa-
tion that immediately puts the extremal points of the Pareto front into the
population [QYZ13]. So it is unlikely that previous works can be used to an-
alyze the runtime of the crossover-based NSGA-II on OneJumpZeroJump.
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