Skip to main content

Two-Dimensional Drift Analysis:

Optimizing Two Functions Simultaneously Can Be Hard

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13399))

Included in the following conference series:

Abstract

In this paper we show how to use drift analysis in the case of two random variables \(X_1, X_2\), when the drift is approximatively given by \(A\cdot (X_1,X_2)^T\) for a matrix A. The non-trivial case is that \(X_1\) and \(X_2\) impede each other’s progress, and we give a full characterization of this case. As application, we develop and analyze a minimal example TwoLinof a dynamic environment that can be hard. The environment consists of two linear function \(f_1\) and \(f_2\) with positive weights 1 and n, and in each generation selection is based on one of them at random. They only differ in the set of positions that have weight 1 and n. We show that the \((1 + 1)\)-EAwith mutation rate \(\chi /n\) is efficient for small constant \(\chi \) on TwoLin, but does not find the shared optimum in polynomial time for large constant \(\chi \).

Extended Abstract. All proofs and further details are available on arxiv [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The statement for \(\chi =1\) is contained in [12], but the proof was wrong. It was later proven in [2].

  2. 2.

    We follow the convention that we always call drift towards the optimum positive, and drift away from the optimum negative. Since the optimum in our case is at 0, this means that we consider the difference \(X^{t}-X^{t+1}\) for the drift, not vice versa.

  3. 3.

    For direct comparison it is important to note that [28] works with the matrix \(I-A\) instead of A, where I is the identity matrix.

  4. 4.

    This is because for any matrix M of norm 1 we can write \(\lambda _1(A+\beta M) = \lambda _1(A) + \beta D{\lambda _1}(A)\cdot M + O(\beta ^2)\), where the total differential \(D\lambda _1(A)\) has bounded norm, and analogously for the other eigenvalues and eigenvectors.

References

  1. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \((\mu , \lambda )\) EA. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1461–1469 (2019)

    Google Scholar 

  2. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760 (2014)

    Google Scholar 

  3. Dang, D.C., Eremeev, A., Lehre, P.K.: Escaping local optima with non-elitist evolutionary algorithms. In: AAAI Conference on Artificial Intelligence, vol. 35, pp. 12275–12283 (2021)

    Google Scholar 

  4. Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1133–1141 (2021)

    Google Scholar 

  5. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_75

    Chapter  Google Scholar 

  6. Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative multiplicative drift. Evol. Comput. 29(2), 305–329 (2021)

    Article  Google Scholar 

  7. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  9. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1151–1159 (2021)

    Google Scholar 

  10. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategyand when not. In: Foundations of Computational Intelligence (FOCI), pp. 25–32. IEEE (2007)

    Google Scholar 

  11. Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions simultaneously can be hard (2022). https://arxiv.org/abs/2203.14547

  12. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4

    Chapter  MATH  Google Scholar 

  13. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest function for fitness improvements (2022). https://arxiv.org/abs/2204.07017

  14. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the \((1, \lambda )\)-EA on monotone functions. In: Parallel Problem Solving from Nature (PPSN). Springer (2022)

    Google Scholar 

  15. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica 75(3), 490–506 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_25

    Chapter  Google Scholar 

  17. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

    Article  Google Scholar 

  18. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2

    Chapter  Google Scholar 

  19. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone functions: An entropy compression argument. In: Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102. SIAM (2019)

    Google Scholar 

  20. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_42

    Chapter  Google Scholar 

  21. Lengler, J., Riedi, S.: Runtime Analysis of the \((\mu + 1)\)-EA on the Dynamic BinVal Function. In: Evolutionary Computation in Combinatorial Optimization (EvoCom). pp. 84–99. Springer, Heidelberg (2021)

    Google Scholar 

  22. Lengler, J., Schaller, U.: The \((1+1)\)-EA on noisy linear functions with random positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)

    Google Scholar 

  23. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the compact genetic algorithm. Algorithmica 83(4), 1096–1137 (2021)

    Article  MathSciNet  Google Scholar 

  25. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the \((\mu + 1)\)-EA on monotone functions. Theoret. Comput. Sci. 875, 28–51 (2021)

    Article  MathSciNet  Google Scholar 

  26. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-best update. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 63–70 (2010)

    Google Scholar 

  27. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

    Article  MathSciNet  Google Scholar 

  28. Rowe, J.E.: Linear multi-objective drift analysis. Theoret. Comput. Sci. 736, 25–40 (2018)

    Article  MathSciNet  Google Scholar 

  29. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  30. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization. Algorithmica 81(4), 1450–1489 (2019)

    Article  MathSciNet  Google Scholar 

  31. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lengler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janett, D., Lengler, J. (2022). Two-Dimensional Drift Analysis:. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics