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Abstract. Evolutionary algorithms have been widely applied for solving
multiobjective optimization problems. Such methods can approximate
many Pareto optimal solutions in a population. However, when solving
real-world problems, a decision maker is usually involved, who may only
be interested in a subset of solutions that meet their preferences. Several
methods have been proposed to consider preference information during
the solution process. Among them, interactive methods support the de-
cision maker in learning about the trade-offs among objectives and the
feasibility of solutions. Also, such methods allow the decision maker to
provide preference information iteratively. Typically, interactive multiob-
jective evolutionary algorithms are modifications of existing a priori or a
posteriori algorithms. However, they mainly focus on finding a region of
interest and do not support the decision maker finding the most preferred
solution. In addition, the cognitive load imposed on the decision maker
is usually not considered. This article proposes an architecture for devel-
oping interactive decomposition-based evolutionary algorithms that can
support the decision maker during the solution process. The proposed
architecture aims to improve the applicability of interactive methods
in solving real-world problems by considering the needs of a decision
maker. We apply our proposal to generate an interactive decomposition-
based algorithm utilizing a reference vector re-arrangement procedure
and MOEA/D. We demonstrate the performance of our proposal with a
real-world problem and multiple benchmark problems.

Keywords: multiobjective optimization · evolutionary algorithms · pref-
erence information · decision making · interactive methods · interactive
preference incorporation

1 Introduction

Multiobjective optimization problems involve multiple conflicting objective func-
tions that must be optimized simultaneously. Because of the conflict among the
objective functions, these problems do not have a single optimal solution, but
a set of trade-off solutions named a Pareto optimal set. The goal of solving a
multiobjective optimization problem is to help a decision maker (DM) find the
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most preferred trade-offs among objectives. A DM is a person with expertise
about the problem and is usually interested in a subset of solutions that meets
their preferences, known as a region of interest.

Methods for solving multiobjective optimization problems can be classified
according to the role of the DM in the solution process into no preference, a
priori, interactive, and a posteriori methods [22]. No preference methods are
utilized when no DM is available and the problem is solved without considering
any preference information. A priori methods ask for preference information once
at the beginning of the solution process. On the other hand, a posteriori methods
generate multiple solutions representing Pareto optimal ones and consider the
preference information afterward. In interactive methods, the DM can provide
preference information iteratively, allowing them to direct the solution process
progressively. When studying interactive solution processes of DMs, one can
often observe two phases: learning and decision phases, as stated in [21]. The
DM explores different solutions during the learning phase until they find a region
of interest. Then, in the decision phase, the DM fine-tunes the search to find the
most preferred solution in that region.

Several scalarization-based methods [22] and evolutionary algorithms [7] have
been proposed to solve multiobjective optimization problems. Multiobjective
evolutionary algorithms (MOEAs) are population-based metaheuristics capable
of representing the Pareto optimal set with approximated solutions. MOEAs
can be divided into three main classes [29]: dominance-based, indicator-based,
and decomposition-based algorithms. Decomposition-based MOEAs [14] have
recently gained researchers’ attention because of their scalability in terms of the
number of objectives. These MOEAs decompose the original multiobjective opti-
mization problem into multiple single-objective optimization problems or simpler
multiobjective optimization problems to be solved collaboratively with the use
of a scalarizing function and a set of so-called reference vectors. Decomposition-
based MOEAs are suitable for preference incorporation as they can easily focus
on certain parts of the Pareto optimal set by modifying the decomposition.
MOEAs have been typically utilized as a posteriori methods. Although some
interactive decomposition-based MOEAs are available in the literature (e.g. [12,
11, 3]), most of them focus only on the learning phase and identifying the region
of interest. In other words, they do not consider a decision phase to help the DM
find the most preferred solution.

In this article, we propose a general architecture for developing interactive
decomposition-based MOEAs that address the needs of a decision maker. Our
proposal consists of multiple modules that can be utilized to convert a priori
and a posteriori methods into interactive ones. Each module contains different
procedures that some interactive MOEAs have employed in the literature. In
addition, new procedures can be incorporated into each one of the modules.
The rest of the article is structured as follows. Section 2 presents background
information on the main concepts used in the article. Then, a brief review of
the existing interactive decomposition-based MOEAs is presented in Section 3.
Section 4 describes some desirable properties of an interactive solution process.
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Then, we present the proposed architecture to meet the desirable properties of
interactive decomposition-based MOEAs in Section 5. As a proof of concept, we
present some results and an algorithmic comparison in Section 6. We conclude
the article in Section 7.

2 Background

A multiobjective optimization problem minimizing k (with k ≥ 2) conflicting
objective functions fi (i = 1, . . . , k) can be mathematically formulated as follows:

minimize F(x) = (f1(x), . . . , fk(x))

subject to x ∈ S,
(1)

where S ⊂ Rn is the feasible set of decision vectors x = (x1, ..., xn)
T with n

decision variables. For every feasible decision vector x, there is a corresponding
objective vector F(x). In some problems, feasible decision vectors have to satisfy
equality constraints and inequality constraints. Because of the conflict among
the objective functions in (1), not all of them can achieve their optimal values
simultaneously. A solution x1 ∈ S dominates a solution x2 ∈ S if and only if
fi(x

1) ≤ fi(x
2) for all i = 1, . . . k, and fj(x

1) < fj(x
2) for at least one index

j = 1, . . . , k. Then, a solution x∗ ∈ S is Pareto optimal if and only if there is
no solution x ∈ S that dominates it. A Pareto optimal set is then formed by
all Pareto optimal solutions, and the corresponding objective vectors compose a
Pareto front.

An ideal z∗ and a nadir znad point represent the best and worst objective
function values in the Pareto front, respectively. The ideal point can be calculated
by minimizing each objective function separately. Calculating the nadir point
is usually difficult since it requires computing the entire Pareto optimal set.
However, it can be approximated using a pay-off table [22] or other means [9].

Decomposition-based MOEAs [14] utilize a set of reference vectors (which are
also known as reference points or weight vectors) 1 to decompose the original
multiobjective optimization problem into a set of single-objective optimization
problems or simpler multiobjective optimization problems to be solved collabo-
ratively. Usually, in the initialization of decomposition-based MOEAs, a set of
reference vectors uniformly distributed in the objective space is generated utiliz-
ing e.g. a simplex lattice design [6]. This method requires a parameter p to control
the density of the reference vectors. Then, the total amount of reference vectors
is given by

(
p+k−1
k−1

)
. A scalarizing function is utilized to evaluate the solutions

belonging to a part of the objective space. The solutions then evolve in the di-
rection of the reference vector associated with such a part. Scalarizing functions
map an objective vector to a real-valued scalar. Examples of decomposition-
based MOEAs are MOEA/D [30], RVEA [5], and NSGA-III [8] which utilize
dominance in combination with decomposition.

1 For simplicity, we will utilize the term reference vectors throughout this article
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In interactive methods, the DM provides preference information iteratively.
Iterations are intervals during which MOEAs ask for preference information
from the DM. They typically occur every GEN generations, where GEN is a
parameter set before the method start. It is worth noting that a DM can provide
preference information in multiple ways [4, 20]. Reference points are a common
way of representing preference information in MOEAs [4]. A reference point
zref is a k-dimensional vector consisting of a desirable value for each objective
function.

3 Related Works

Some interactive decomposition-based MOEAs have been proposed in the litera-
ture. As stated in [4], most of the preference-based MOEAs are modifications of
an existing a posteriori MOEA. We can classify interactive decomposition-based
MOEAs according to how they accomplish interactivity. Although different types
of preference information have been utilized in these methods, we consider here
only the ones employing reference points.

The simplest way of imitating interactivity in MOEAs is by performing a
series of a priori steps. However, the applicability of such methods in real-world
problems is often not considered in the papers where they have been proposed, as
some of their properties would significantly increase the DM’s workload. For ex-
ample, they usually do not let the DM decide when to interact with the method.
In addition, they typically display an extensive set of solutions to be compared
at each iteration. The interactive version of R-MOEA/D [25] is an example of
an algorithm utilizing this structure.

Some methods modify the decomposition without altering the structure of
the decomposition-based MOEA. Each iteration uses the preferences to update
the decomposition and guide the search toward the region of interest. The most
common modification to the decomposition involves rearranging the reference
vectors according to the preference information [3, 12, 15, 19]. Some other meth-
ods utilize the preference information to modify the approximation of the ideal
point required by the decomposition-based MOEA [23, 24]. The IOPIS frame-
work [27] is another example in this category, as it creates a new (typically
lower-dimensional) preference incorporated space (consisting of a set of scalar-
ization functions) to reformulate the problem. It is worth noting that IOPIS can
also be applied to other types of MOEAs (e.g., dominance-based and indicator-
based); however, it has only been tested with decomposition-based methods.
Although the structure of the methods in this category is similar to the methods
in the previous category, these methods typically include mechanisms to ensure
their applicability to real-world problems (e.g., considering a limited number of
solutions to be shown to the DM at each iteration, controlling the frequency of
iterations and the size of the region of interest).

Finally, some methods add additional steps for each generation of the decom-
position-based algorithm for managing the preference information. Such steps
are commonly intended to update the reference vectors inside the evolution-
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ary process (and not before running the method as in the previous category).
MOEA/D-a [31], MOEA/D-b [31], and MOEA/D-c [31] are examples of methods
in this category. Interactive WASF-GA [26] is another example, as it replaces the
dominance relation of NSGA-II by utilizing an achievement scalarizing function,
which directs the search toward the region of interest.

4 Properties of an interactive solution process

In an interactive solution process, a DM iterates by providing preference informa-
tion to the method and studying the received solutions until the most preferred
one is found. A DM learns about the trade-offs among the objective functions
as well as the feasibility of the preferences after each iteration. As a result, the
DM may change the preference information during the solution process. To en-
sure the practical usability of the method, it should limit the level of cognitive
burden and provide solutions that help the DM gain insight into the problem.
Thus, we can summarize the main desirable properties of an interactive method
as follows [2, 28]:

1. The method provides accurate information about possible solutions.
2. The DM and the method can communicate quite easily.
3. The method identifies and produces Pareto optimal solutions.
4. The method provides the DM with a clear overview of the Pareto optimal

set/Pareto front.
5. The method enables the DM to find a region of interest in a learning phase.
6. The method has a decision phase to enable the DM to fine-tune the solutions

in the region of interest.
7. The method gives the DM confidence that the final solution is the most

preferred one, or at least close enough to it.

These properties are directly applicable to scalarization-based methods. Al-
though MOEAs have to meet these properties, they have somewhat different
needs and characteristics. Instead of producing Pareto optimal solutions, MOEAs
can provide a set of non-dominated solutions, as they are metaheuristics and can-
not guarantee optimality. In addition, most interactive MOEAs focus only on
the learning phase, representing a region of interest without helping the DM se-
lect the most preferred solution. In the next section, we present an architecture
for developing interactive decomposition-based MOEAs that meet the above-
mentioned properties.

5 Proposed architecture

We propose an architecture consisting of multiple modules that can be utilized to
generate interactive decomposition-based MOEAs that meet the properties dis-
cussed in the previous section. Also, a posteriori or a priori decomposition-based
algorithms can be converted to interactive ones with the help of the architecture.
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The architecture has two types of modules: static and dynamic. Static mod-
ules consist of multiple steps that must be considered during the solution process.
On the other hand, dynamic modules allow us to personalize the method accord-
ing to our needs. Such modules present multiple alternatives from which we can
select one or multiple. This architecture aims to provide a guideline for devel-
oping new interactive decomposition-based MOEAs that consider the structure
and properties of an interactive solution process. The alternatives presented in
the dynamic modules have been selected after analyzing the structure of mul-
tiple interactive MOEAs. This means that the interested user can incorporate
new options that accomplish the main aim of each module. The architecture
is illustrated in Figure 1. The static modules have a red marker in the upper
right corner of the corresponding box, while the dynamic modules have a green
marker. The architecture has seven modules: initialization, preference elicitation,
component adaptation, optimization, spread adjustment, selection of solutions,
and iteration. Below, we give details of each module.

Initialization Preference
elicitation

Optimization

Selection of

solutions

Ideal point

Nadir point

Run MOEA

Preference

information

Maximum number of
solutions to be shown

Clustering

Random selection

ASF valuesSpread
adjustment

Iteration

New preferences

Reutilize preferences

Select final solution

Component
adaptation

Solution pool

Fig. 1. Proposed architecture for developing interactive decomposition-based MOEAs.

Initialization module: This module provides a DM information for learn-
ing about feasible solutions to the problem before starting the solution process
(property 1). The alternatives in this module are: computing the ideal point,
estimating the nadir point, and running an MOEA for a fixed number of gener-
ations. Usually, showing the ideal and nadir points to the DM may help them
provide more realistic preference information within the lower and upper bounds
of the objective functions. If we want to show some feasible solutions to the DM
before starting the solution process, running an a posteriori MOEA would be a
good alternative. However, only a representative set of solutions should be dis-
played to the DM. E.g., a clustering method can be utilized to limit the number
of solutions to display.

Preference elicitation module: This module retrieves the DM’s preference
information and the maximum number of solutions (Ns) they want to see at each
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iteration (property 2). Here, we utilize reference points to represent the DM’s
preferences. However, we can extend the architecture to support more types of
preference information. If an a priori method is employed in the optimization
module, then the type of preference information is the same utilized by such a
method. However, if the optimization module uses an a posteriori method, the
preference information is selected according to the mechanism employed in the
component adaptation module. The preference information provided during all
the iterations is stored for further use.

Component adaptation module: This module is needed only when an a
posteriori MOEA is utilized in the optimization module. It aims to modify some
elements used by the decomposition-based MOEA to consider preference infor-
mation. For example, modifying the distribution of the reference vectors, chang-
ing the problem formulation, or using the preferences information to replace the
approximation of the ideal point required by some MOEAs (e.g., MOEA/D).

Optimization module: In this module, an MOEA is utilized to solve a
multiobjective optimization problem considering the preference information pro-
vided by the DM (property 3). There are two alternatives for this module: uti-
lizing an a priori MOEA or an a posteriori one. In both cases, the methods do
not need to be modified.

Spread adjustment module: This module controls the size of the region
of interest depending on the phase of the interactive solution process (properties
5 and 6). A higher spread value is utilized during the learning phase, as the aim
is to learn and eventually find the region of interest. The value will be reduced
during the decision phase to help the DM find the most preferred solution in the
region of interest. The preference information stored in the preference elicitation
module is used to identify the decision phase. If the preference information starts
to be similar among multiple iterations, the decision phase has begun. Some a
priori methods utilize a spread parameter. When using some of those methods
in the optimization module, no additional procedures are needed to control the
size of the region of interest, and the parameter is updated iteratively. On the
other hand, if the optimization module employs an a posteriori method or a
priori method that does not consider a spread parameter, a mechanism to select
a subset of solutions from the region of interest is needed (e.g., the trimming
procedure of the R-metric [13]).

Solution selection module: This module filters the solutions on the region
of interest to show only a reduced set of Ns representative solutions to the
DM (property 4). The solutions can be selected in multiple ways: randomly,
dividing the solution set into Ns clusters and selecting the solutions closest to
each centroid, or selecting the Ns solutions with the best values of a scalarizing
function. In addition, this module stores the best solutions in an archive to avoid
losing them. A scalarizing function can be utilized to determine which solutions
to keep. These solutions can be used when the DM provides a reference point
close to another one from a previous iteration.

Iteration module: In this module, the DM can decide whether or not to
provide new preference information. When no new preference information is
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available, the same values as in the previous iteration are utilized. The DM can
also select the final solution among the ones displayed, in which case the solution
process is finished (property 7).

We create an interactive decomposition-based MOEA in the following section
to demonstrate how the proposed architecture can be used. In addition, we
compare it with a method consisting of multiple a priori steps.

6 Example method and experiments

In this section, as a proof of concept, we demonstrate how a method created
with the proposed architecture can support a DM during an interactive solution
process. The method considered has the following configuration of modules:
Initialization: MOEA/D is run 200 generations. Then, the ideal and nadir points
are estimated from the resulting population.
Preference elicitation: Reference points are utilized to represent the preferences
of the DM. All the reference points provided during the solution process will be
stored. A maximum of five solutions (Ns = 5) will be shown to the DM during
each iteration.
Component adaptation: The reference vectors are rearranged utilizing the NUMS
procedure [15]. It is worth noting that the adaptation is performed based on the
initial values of the reference vectors (which are generated utilizing a simplex
lattice design [6]).
Optimization: MOEA/D is utilized with 200 generations per each iteration.
Spread adjustment: We adapt the spread parameter of the NUMS procedure
based on the differences among the reference points. Initially, the spread pa-
rameter is set as 0.5. If the DM utilizes a reference point close to another one
provided in a previous iteration, the spread parameter is divided by two.
Selection of solutions: The five most representative solutions are shown to the
DM. These are obtained by clustering the solution set utilizing the k-means
method [18]. These solutions will be stored in the solution pool if other solutions
do not dominate them. In addition, the dominated solutions are removed from
the pool every time a new solution is incorporated.
Iteration: When a new reference point is provided, the solutions in the pool
are included in the initial population of MOEA/D. If the DM does not provide
new preferences, the optimization module is run again without modifying the
population or the reference point. The process only stops if the DM has found
a preferred solution.

6.1 Interactive solution process

In what follows, we refer to the method created with our architecture as MOEA/D-
NUMS+, while the one consisting of multiple a priori steps is called MOEA/D-
NUMS. We conduct an experiment with the crash-worthiness design of vehicles
problem [17]. It is a real-world engineering problem whose goal is to make vehicles
crash-safe. During a collision, the frontal structure of the vehicle absorbs energy,
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which increases passenger safety. Increasing the mass of the vehicle generally
improves its energy absorption capacity. By contrast, lightweight materials are
necessary for a vehicle’s mass to be reduced and, therefore, its fuel consumption.
To achieve a proper design, we must find a compromise between higher energy
absorption and lightweight construction. In this problem, five decision variables
are used to represent the thickness of five reinforced components surrounding
the frontal structure of the vehicle. Specifically, three objective functions need
to be minimized: 1) the mass of a vehicle; 2) deceleration during full-frontal
crashes (which influence passenger injuries); and 3) toe board intrusion during
offset-frontal crashes (which affect the structural integrity of the vehicle). It is
worth noting that we will take the role of the DM in this experiment, as its main
aim is to exemplify how the method works. Experiments with real DMs will be
considered as future work.

Now, we can describe the iterations of the solution process. At the be-
ginning, the ideal and nadir points were shown to the DM, whose values are
z∗ = (1661.708, 6.986, 0.0708) and znad = (1666.211, 8.304, 0.106).

Iteration 1. First, the DM set the ideal point as the reference point to see
how difficult it is to achieve these promising values. The five solutions (obtained
after applying the clustering method) displayed to the DM are shown in Table 1.
It is worth noting that the solutions are sorted in increasing order of f1. However,
the DM should be able to decide how to see the solutions displayed by the method
(e.g., in an increasing or decreasing order of some of the objectives).

Table 1. Results of the first iteration

Mass Deceleration Intrusion
(kg) (m/s) (m)

1 1662.032 8.209 0.078
2 1662.420 8.095 0.086
3 1663.010 7.923 0.096
4 1663.839 7.680 0.104
5 1665.229 7.273 0.104

Table 2. Results of the second iteration

Mass Deceleration Intrusion
(kg) (m/s) (m)

1 1662.007 8.216 0.078
2 1662.077 8.196 0.079
3 1662.152 8.174 0.081
4 1662.233 8.150 0.082
5 1662.342 8.118 0.085

Iteration 2. Since the reference point had been too optimistic, the DM
adjusted its components to be more realistic but focused on improving the value
of the first objective. The new reference point was (1661.9, 8.0, 1.0), and the
obtained five solutions are shown in Table 2.

Iteration 3. Based on the solutions shown, the DM realized the trade-off
between f1 and f2 and provided a new reference point (1665, 7.4, 0.1) with the
aim of obtaining better values for f2. The results obtained are shown in Table 3.
There was a good improvement on f2, but f1 and f3 impaired.

Iteration 4. After noticing the impairment in f1 and f3, the DM decided
to get similar results to the ones of Iteration 2. For this, the DM did not need
to provide a new reference point, but it was taken from the list of reference
points utilized during the solution process. In addition, the spread of the region
of interest was reduced automatically. The results obtained are shown in Table 4.
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Table 3. Results of the third iteration

Mass Deceleration Intrusion
(kg) (m/s) (m)

1 1663.181 7.873 0.098
2 1663.584 7.755 0.102
3 1664.070 7.612 0.105
4 1664.581 7.463 0.107
5 1664.999 7.340 0.106

Table 4. Results of the fourth iteration

Mass Deceleration Intrusion
(kg) (m/s) (m)

1 1662.016 8.214 0.078
2 1662.060 8.201 0.079
3 1662.106 8.187 0.080
4 1662.163 8.171 0.081
5 1662.221 8.154 0.082

Iteration 5. The DM was satisfied with the improvement on f1 and f3
and wanted to find more solutions in the same region. Thus, the DM kept the
same reference point as the previous iteration, and the algorithm automatically
reduced the spread of the region of interest. The results are shown in Table 5.

Iteration 6. The DM noticed that the solutions were refined and was satis-
fied with the fifth one. The DM selected it as the final solution, as its value on
f2 was better than the rest without losing too much on f1 and f3.

Table 5. Results of the fifth iteration

Mass Deceleration Intrusion
(kg) (m/s) (m)

1 1662.034 8.208 0.078
2 1662.054 8.203 0.079
3 1662.074 8.197 0.079
4 1662.097 8.190 0.080
5 1662.123 8.182 0.080

Now we summarize the advantages of our method compared to another one
consisting of multiple a priori steps. Providing the ideal and nadir points before
starting the solution process can help the DM give a reference point when the
DM does not have a clear idea of the feasibility of the solutions, as was shown
in iteration 1. The solutions provided in each iteration can be easily compared
to identify trade-offs between objectives, as there is only a reduced number of
representative solutions. We took advantage of this property on iterations 3
and 4. This reduces the cognitive burden of the DM compared with a method
consisting of multiple a priori steps. As we stored the preferences provided during
the solution process, the DM can easily re-utilize a previous reference point, as
was shown in iteration 4. Then, the spread adjustment allowed us to refine the
solutions when reaching the decision phase in iterations 5 and 6. If we had used
a method consisting of a priori steps, the support during the solution process
would not be enough for allowing the DM to learn about the problem trade-offs
and the feasibility of solutions.

6.2 Algorithmic comparison

In the previous section, we showed how MOEA/D-NUMS+ could support a DM
during an interactive solution process. In this section, we compare the perfor-
mance of MOEA/D-NUMS+ and MOEA/D-NUMS utilizing the artificial deci-
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sion maker (ADM) proposed in [1] (to replace the DM), and the R-IGD perfor-
mance indicator [16]. The ADM adjusts the preference information according to
the insight gained during each iteration, producing reference points differently
depending on the phase of the solution process. The generated reference points
simulate the exploration in the Pareto optimal set during the learning phase.
On the other hand, the reference points mimic a progressive convergence on the
region of interest obtained from the learning phase during the decision phase.
We considered 4 iterations for the learning phase (L = 4) and 3 for the decision
phase (D = 3) in this experiment. For each iteration, ADM computes the R-IGD
for the results obtained by each method. After the run, the cumulative R-IGD
for the learning phase is obtained by adding the R-IGD values of the first L
iterations. The cumulative R-IGD for the decision phase is obtained by adding
the R-IGD values of the last D iterations. The methods were tested utilizing the
same parameters for both of them: 50 generations per iteration, a lattice reso-
lution of 5, 0.7 as a spread parameter during the learning phase, and 0.3 during
the decision phase. We did not employ the spread adjustment procedure in this
experiment, as the ADM controls the value of the spread parameter according
to the phase of the solution process. We considered two benchmark problems:
DTLZ1 and DTLZ3 [10] with 4, 7, and 9 objectives, resulting in six different
problems. The number of variables was set as 10+k−1 [10]. We made ten inde-
pendent runs for each problem. The median R-IGD values of MOEA/D-NUMS
and MOEA/D-NUMS+ are shown in Table 6. The best results are highlighted
in boldface.

Table 6. R-IGD values for DTLZ1 and DTLZ3 with 7, 5, and 9 objectives.

Problem k Phase
MOEA/D-NUMS MOEA/D-NUMS+

Median Std. dev. Median Std. dev
DTLZ1 4 Learning 2.804056 0.174749 2.671504 0.236763

Decision 2.722246 0.283701 2.74031 0.269508
7 Learning 4.663774 0.126492 3.523776 0.16947

Decision 3.317874 0.210076 3.046718 0.515918
9 Learning 4.332031 0.195637 3.011431 0.268385

Decision 3.36567 0.21437 3.113235 0.658471
DTLZ3 4 Learning 0.451812 0.039745 0.377324 0.031323

Decision 1.472565 0.019187 1.497671 0.000519
7 Learning 0.803064 0.922071 1.958682 1.522243

Decision 0.383067 0.429625 0.234077 0.122247
9 Learning 1.182198 0.448281 0.754516 0.908085

Decision 0.81725 0.299627 0.377474 0.111261

For DTLZ1, MOEA/D-NUMS+ outperformed MOEA/D-NUMS in most of
the cases, except during the decision phase when four objectives were considered.
In the DTLZ3 problem, MOEA/D-NUMS had a better performance than the
proposed method only in the learning phase with seven objectives and the de-
cision phase with four objectives. This experiment showed us that the proposed
architecture can help in improving the quality of the solutions obtained dur-
ing the learning and decision phase. However, more extensive experimentation
considering different types of problems is needed.
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6.3 Discussion

We utilized the proposed architecture to create an interactive version of MOEA/D.
To this aim, we employed a procedure for re-arranging the reference vectors uti-
lized in the optimization method. However, our proposal can also be applied to
a priori methods. We do not need to use the component adaptation module in
such a case, as the a priori method internally modifies the decomposition-based
MOEA to handle the preference information. It is worth noting that although
we only utilized reference points in this article, our proposal can be extended to
other types of preference information. The type of preference information in the
current architecture is related to the one required by the component adaptation
and/or optimization modules. To handle more types of preferences, we would
need an additional module for preference unification. Such a module should al-
low the DM to use any kind of preference information and then transform it into
the one required by the rest of the modules. In addition, there are some meth-
ods that do not consider a spread parameter to control the size of the region
of interest. In this case, we can utilize an external method like the one consid-
ered in the R-metric [16]. In this article, we did not consider the case where the
same value of the spread parameter can be utilized in multiple iterations. Such
behavior can be useful when the MOEA needs more generations to converge to
the Pareto optimal set. However, the DM is usually not aware of the technical
details of the method. Finally, the selection of the solutions to be shown to the
DM can be performed in multiple ways, for example, through different clustering
techniques or scalarizing functions.

7 Conclusions

Multiple interactive versions of decomposition-based MOEAs have been pro-
posed in the literature, but they typically do not consider the DM’s needs
and cognitive load. We have introduced an architecture to create interactive
decomposition-based MOEAs by integrating multiple modules with existing a
priori or a posteriori methods. To demonstrate how our architecture can be
employed, we created an interactive MOEA utilizing NUMS, a method for rear-
ranging the reference vectors which has been mainly to convert an a posteriori
method into an a priori one. We solved a real-world problem to demonstrate the
advantages of using our proposal for improving the applicability of the methods
and reducing the cognitive load of the DM. In addition, we compared the pro-
posed method with another one (which does not include the properties of the
architecture) consisting of multiple a priori steps. According to the results, uti-
lizing the proposed architecture improves the performance in most test problems
utilized. This is the first step toward improving the performance of interactive
decomposition-based MOEAs. The proposed architecture can be improved in
multiple directions, for example, by including a preference unification module to
consider different types of preference information and also developing different
methods for adapting the spread parameter. In addition, it can be extended to
other types of MOEAs (e.g., dominance- and indicator-based MOEAs).
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