Skip to main content

An Exact Inverted Generational Distance for Continuous Pareto Front

  • Conference paper
  • First Online:
  • 831 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13399))

Abstract

So far, many performance indicators have been proposed to compare different evolutionary multiobjective optimization algorithms (MOEAs). Among them, the inverted generational distance (IGD) is one of the most commonly used, mainly because it can measure a population’s convergence, diversity, and evenness. However, the effectiveness of IGD highly depends on the quality of the reference set. That is to say, all the reference points should be as close to the Pareto front (PF) as possible and evenly distributed to become ready for a fair performance evaluation. Currently, it is still challenging to generate well-configured reference sets, even if the PF can be given analytically. Therefore, biased reference sets might be a significant source of systematic error. However, in most MOEA literature, biased reference sets are utilized in experiments without an error estimation, which may make the experimental results unconvincing. In this paper, we propose an exact IGD (eIGD) for continuous PF, which is derived from the original IGD under an additional assumption that the reference set is perfect, i.e., the PF itself is directly utilized as an infinite-sized reference set. Therefore, the IGD values produced by biased reference sets can be compared with eIGD so that systematic error can be quantitatively evaluated and analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In Sect. 3 and below, the variable x is not related to the x mentioned in Eq. (1), i.e., the solutions in the decision space. Here, since we are discussing performance evaluation, all the points or coordinates are in the objective space.

References

  1. Blank, J., Deb, K., Dhebar, Y.D., Bandaru, S., Seada, H.: Generating well-spaced points on a unit simplex for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 25(1), 48–60 (2021). https://doi.org/10.1109/TEVC.2020.2992387

    Article  Google Scholar 

  2. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  Google Scholar 

  3. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998). https://doi.org/10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L.C., Goldberg, R.R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, Heidelberg (2005). https://doi.org/10.1007/1-84628-137-7_6

  6. He, C., Pan, L., Xu, H., Tian, Y., Zhang, X.: An improved reference point sampling method on pareto optimal front. In: IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, 24–29 July 2016, pp. 5230–5237. IEEE (2016). https://doi.org/10.1109/CEC.2016.7748353

  7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006). https://doi.org/10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  8. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in inverted generational distance for triangular linear pareto front. IEEE Trans. Evol. Comput. 22(6), 961–975 (2018). https://doi.org/10.1109/TEVC.2017.2776226

    Article  Google Scholar 

  9. Ishibuchi, H., Masuda, H., Nojima, Y.: Sensitivity of performance evaluation results by inverted generational distance to reference points. In: IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, 24–29 July 2016, pp. 1107–1114. IEEE (2016). https://doi.org/10.1109/CEC.2016.7743912

  10. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  11. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput. Surv. 52(2), 26:1–26:38 (2019). https://doi.org/10.1145/3300148

  12. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012). https://doi.org/10.1109/TEVC.2011.2161872

    Article  Google Scholar 

  13. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–20 (2021). https://doi.org/10.1109/TEVC.2020.3013290

    Article  Google Scholar 

  14. Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y.: Sampling reference points on the pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–6. IEEE (2018). https://doi.org/10.1109/CEC.2018.8477730

  15. Valenzuela-Rendón, M., Uresti-Charre, E.: A non-generational genetic algorithm for multiobjective optimization. In: Bäck, T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, East Lansing, MI, USA, 19–23 July 1997, pp. 658–665. Morgan Kaufmann (1997)

    Google Scholar 

  16. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.P.K.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE International Conference on Evolutionary Computation, CEC 2006, part of WCCI 2006, Vancouver, BC, Canada, 16–21 July 2006, pp. 892–899. IEEE (2006). https://doi.org/10.1109/CEC.2006.1688406

  17. Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011). https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  18. Zhou, A., Zhang, Q., Jin, Y., Sendhoff, B.: Adaptive modelling strategy for continuous multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, Singapore, 25–28 September 2007, pp. 431–437. IEEE (2007). https://doi.org/10.1109/CEC.2007.4424503

  19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Innovation 2030 Major Projects under Grant No. 2018AAA0100902, the Science and Technology Commission of Shanghai Municipality under Grant No. 19511120601, the National Natural Science Foundation of China under Grant No. 61731009 and 61907015, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyun Xiao or Aimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Xiao, C., Zhou, A. (2022). An Exact Inverted Generational Distance for Continuous Pareto Front. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics