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Abstract. Computer algebra can answer various questions about par-
tial differential equations using symbolic algorithms. However, the in-
clusion of data into equations is rare in computer algebra. Therefore,
recently, computer algebra models have been combined with Gaussian
processes, a regression model in machine learning, to describe the be-
havior of certain differential equations under data. While it was possible
to describe polynomial boundary conditions in this context, we extend
these models to analytic boundary conditions. Additionally, we describe
the necessary algorithms for Gröbner and Janet bases of Weyl algebras
with certain analytic coefficients. Using these algorithms, we provide ex-
amples of divergence-free flow in domains bounded by analytic functions
and adapted to observations.

Keywords: Gaussian processes · boundary conditions · Gröbner bases
· partial differential equations.

1 Introduction

Differential algebra is concerned with structural properties of systems of ordinary
and partial differential equations (ODEs and PDEs) and provides algorithms for
their analysis [31,1]. The properties unveiled by these algorithms correspond
to intrinsic properties of the solutions of the system. At the same time these
algorithms isolate equations of interest via elimination, transform systems into
normal forms [8], describe singularities [24], allow to investigate control-theoretic
properties [23,22], or detect the size of solution sets [20,18,17].

Usually, PDEs come with additional information on the evaluation of func-
tions. For example in inverse problems, parameters in differential equations are
being estimated from data points. Or in theoretical and numerical methods for
PDEs, boundary conditions, i.e. evaluations of functions on manifolds, ensure
well-posedness. Data points and boundary conditions have rarely been addressed
by algebraic means, with the exception of modeling of boundary conditions by
integro-differential operators [35,38].

Seemingly disconnected from these algebraic algorithms are Gaussian Pro-
cesses (GPs) [34], a general regression technique, which arise as limit of large
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2 Lange-Hegermann and Robertz

neural networks [29] and generalize linear (ridge) regression, Kriging, and many
spline models. GPs describe probability distributions on function spaces. As
such,

(1) they can be conditioned on observations given as data points using Bayes’
rule in closed form, which avoids overfitting,

(2) they admit an extensive dictionary between their mathematical properties
and their covariance function, which allows to prescribe intended behavior,

(3) form the maximum entropy prior distribution under the assumption of a
finite mean and variance in the unknown behavior, and

(4) the class of GPs is closed under various operations like conditioning, marginal-
ization, and linear operators.

They are typically used in applications when data is rare or expensive to produce,
e.g., in active learning [50], biology [11], anomaly detection [3] or engineering
[45]. The mean function of the posterior is used for regression and the variance
quantifies uncertainty. In that sense, they allow to deal with data, noise, and
uncertainty in a way algebraic algorithms usually cannot.

The inclusion of algebraic methods for differential equations into covariance
functions of GPs began by divergence-free and curl-free vector fields [25,40],
extended to electromagnetic fields [47,43] and strain fields [14]. These approaches
were formalized in [15], building on [39]. Then, [19] used Gröbner bases and
worked out the necessity of systems being controllable. Boundary conditions
were added to the setup in [21], restricted to simple polynomial boundaries.

In this paper, we develop algebraic algorithms suitable for this framework to
deal with analytic boundary conditions. These algorithms might take

(i) parametrizable linear systems of differential equations,
(ii) assumptions on the solutions of the differential equations, e.g. smoothness,
(iii) various forms of boundary conditions specified by analytic functions, and
(iv) (noisy or noiseless) evaluations of functions at finitely many points

as inputs. They yield a probability distribution on the solution space of the
differential equation given by a GP, which has the above properties (1)–(4).

Our approach is as follows. We construct a first parametrization of the so-
lution set of the system of differential equations by finding a matrix whose row
nullspace is generated by the equations of the given system. We take a second
parametrization of the boundary condition. Then, we construct a parametriza-
tion of the intersection of the images of these two parametrizations. Algorith-
mically, this requires Gröbner bases over a Weyl algebra enlarged by various
analytic functions, for which we develop the necessary theory and algorithms.
After this symbolic approach, numeric algorithms incorporate measurement data
into the GP.

In this setup, ODEs are trivial, both algebraically, as parametrizable linear
systems of ODEs with constant or variable coefficients are isomorphic to free
systems due to the Jacobson form [12], and also from the stochastic point of
view, as boundary conditions in ODEs can be modelled by conditioning on data
points [16]. Hence, we focus on PDEs.
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From the point of view of machine learning, the results of this paper allow
to incorporate information into the covariance structure of a GP prior. This
prior is supported by solutions of the differential equation and the boundary
conditions. In particular, rare measurement data can refine and improve this
prior knowledge, instead of being necessary to learn this prior knowledge.

The contributions of this paper can be summarized as follows:

(a) we develop Gröbner basis algorithms for Weyl algebras over certain rings of
analytic functions (cf. Sects. 5 and 6),

(b) we study boundary conditions parametrized by analytic functions, in partic-
ular how they constrain GPs (cf. Sect. 7), and

(c) we construct GP priors for solution sets of PDEs including boundary condi-
tions (cf. Sect. 8).

2 Gaussian processes

A Gaussian Process (GP) g = GP(µ, k) defines a probability distribution on the
evaluations of functionsD → R` whereD ⊆ Rd ≡ R1×d such that function values
g(x1), . . . , g(xn) at points x1, . . . , xn ∈ D are jointly (multivariate) Gaussian. A
GP g is specified by a mean function µ : D → R` : x 7→ E(g(x)) and a positive
semidefinite3 covariance function

k : D ×D −→ R`×`�0 : (x, x′) 7−→ E
(
(g(x)− µ(x))(g(x′)− µ(x′))T

)
.

Any finite set of evaluations of g follows the multivariate Gaussian distributiong(x1)
...

g(xn)

 ∼ N

µ(x1)

...
µ(xn)

 ,
k(x1, x1) . . . k(x1, xn)

...
. . .

...
k(xn, x1) . . . k(xn, xn)


 .

Now, one knows where a function value g(x) is supposed to be (mean µ(x)), which
ignorance we have about g(x) (variance k(x, x)), and how two function values
g(x1) and g(x2) are related (covariance k(x1, x2)). GPs are popular functional
priors in Bayesian inference due to their maximum entropy property [13].

Assume the probabilistic regression model y = g(x) for a GP g = GP(0, k).
Normalizing the data to mean zero justifies assuming a prior mean function zero.
Conditioning the GP on training data points (xi, yi) ∈ D×R1×` for i = 1, . . . , n
by Bayes’ theorem yields the posterior

p( g(x) = y | g(xi) = yi ) =
p( g(xi) = yi | g(x) = y )

p( g(xi) = yi )
· p( g(x) = y ),

where i always runs from 1 to n. All of these distributions are multivariate
Gaussian. Hence, the posterior p( g(x) = y | g(xi) = yi ) is again a GP and can

3 The function k is positive (semi)definite if and only if for any x1, . . . , xn ∈ D the
matrix K = (k(xi, xj))i,j ∈ Rn`×n` is positive (semi)definite, i.e. K � 0.
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be computed in closed form via linear algebra:

GP
(

x 7→ yk(X,X)−1k(X,x), (1)

(x, x′) 7→ k(x, x′)− k(x,X)k(X,X)−1k(X,x′)
)

,

where y ∈ R1×`n denotes the row vector obtained by concatenating the yi and
k(x,X) ∈ R`×`n resp. k(X,x) ∈ R`n×` resp. k(X,X) ∈ R`n×`n�0 denote the (co-
variance) matrices obtained by concatenating the blocks k(x, xj) resp. k(xj , x)
resp. k(xi, xj) to a matrix. In case of a noisy data (yi)j , one adds the noise vari-
ance var((yi)j) to the ((i− 1)`+ j)-th diagonal entry of k(X,X). The Cholesky
decomposition improves numerical stability regarding the inversion of the posi-
tive definite matrix k(X,X) [34]. In the posterior (1), the mean function can be
used as regression model and its variance as model uncertainty.

The class of GPs is closed under linear operators once mild assumptions hold,
e.g. the derivative of a GP with differentiable realizations is again a GP.
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Fig. 1. Left: a regression plot (mean and the 2σ confidence bands) of a GP with mean
zero and squared exponential covariance function conditioned on the points (−2,−1)
and (2, 1) with noise variance of 0.12. Right: the GP is additionally conditioned on
derivative 1 with noise 0.12 at both data points.

D

Y Z

b◦g∈b∗G

g∈G

b

Given a set of functions G ⊆ Y D and b : Y → Z, then the
pushforward is b∗G = {b ◦ f | f ∈ G} ⊆ ZD. The pushforward of
a stochastic process g : D → Y by b : Y → Z is defined as

b∗g : D −→ Z : d 7−→ (b ◦ g)(d).

Lemma 1 ([21, Lemma 2.2]). Let F and G be spaces of functions de-
fined on a set D with product σ-algebra of the function evaluations. Let g =
GP(µ(x), k(x, x′)) with realizations in F and B : F → G a linear, measurable
operator which commutes with expectation w.r.t. the measure induced by g on
F and by B∗g on G. Then, the pushforward Gaussian Process (GP) B∗g of g
under B is a GP with

B∗g = GP(Bµ(x), Bk(x, x′)(B′)T ) ,

where B′ denotes the operation of B on functions with argument x′.
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Example 1. Let g = GP(0, k(x, x′)) be a GP with realizations (a.s.) in the set
C1(R,R) of differentiable functions. The pushforward GP

[
∂
∂x

]
∗ g := GP

(
0,

∂2

∂x∂x′
k(x, x′)

)
describes derivatives of the GP g [6, §5.2]. The one-argument derivative ∂

∂xk(x, x′)
yields the cross-covariance between on the one hand a function evaluation g(x′)
of g at x′ ∈ R and on the other hand its derivative (

[
∂
∂x

]
∗ g)(x) evaluated at

x ∈ R. We use this to include data of derivatives into a model in Figure 1.

3 Solution sets of operator equations

This section discusses how GPs describe the real vector space F = C∞(D,R),
a candidate set of solutions for the linear differential equations, and how such
GPs interplay with linear operators. Assume that D ⊂ Rd is compact and F is
endowed with the usual Fréchet topology generated by the separating family

‖f‖a := sup
i∈Zd≥0

|i|≤a

sup
x∈D

∣∣∣∣ ∂|i|∂xi
f(x)

∣∣∣∣ (2)

of seminorms for all a ∈ Z≥0, where i = (i1, . . . , id) ∈ Zd≥0 is a multi-index with
|i| = i1 + . . .+ id. The squared exponential covariance function

kF : Rd × Rd −→ R : (xi, xj) 7−→ exp

(
−1

2

d∑
a=1

(xi,a − xj,a)2

)
(3)

induces an adapted GP prior in F = C∞(D,R).

Proposition 1. The scalar GP gF = GP(0, kF ) has realizations dense (a.s.) in
F with respect to the Fréchet topology defined by Equation (2).

Proof. We show that the realizations of gF are densely contained in F in three
steps: first, the realizations are contained in F , i.e. smooth; second, the elements
of the reproducing kernel Hilbert space (RKHS)4 H(gF ) of the GP gF , are
realizations; and third, the RKHS H(gF ) is dense in F .

First, show that the realizations of gF lie in F . They are continuously differ-
entiable, as kF is twice continuously differentiable [6, (9.2.2)]. Continue induc-

tively, as the covariance ∂2

∂x∂x′ kF (x, x′) of the derivative of gF is again smooth.
For the second step, we note that C∞(D,R) is Radon as D is compact, hence

gF induces a Radon measure on F . For any Radon measure, H(gF ) is contained

4 For GP(0, k), the set H0(g) generated as a vector space by the x 7→ k(xi, x) for
xi ∈ D with scalar product 〈k(xi,−), k(xj ,−)〉 := k(xi, xj) is a pre-Hilbert space.
Its closure H(g) is the reproducing kernel Hilbert space of the GP g [2].
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in the topological support of the measure induced by gF by [4, Thm. 3.6.1]. For
this, F = C∞(D,R) needs to be locally convex, which it is being Fréchet.

For the third step, by [41, Prop. 4], H(gF ) is continuously contained in F
and dense by [41, Thm. 12, Prop. 42] or [41, after proof of Cor. 38]. ut

The following three R-algebras R model linear operator equations by making
F a left R-module. Sects. 5 and 6 introduce Gröbner bases for such rings.

Example 2. The polynomial ring R = R[∂x1 , . . . , ∂xd ] models linear PDEs with
constant coefficients, where ∂xi acts on F = C∞(D,R) via partial derivative
with respect to xi.

Example 3. Let f1, . . . , fn ∈ F be functions. The ring R = R[f1, . . . , fn] is com-
mutative and models boundary conditions by multiplication, see Sect. 7.

Example 4. Let F ⊆ F be an R-algebra closed under partial derivatives. To com-
bine linear differential equations with boundary conditions, consider the Weyl al-
gebra R = R[F ]〈∂x1

, . . . , ∂xd〉. The non-commutative relation ∂xif = f∂xi + ∂f
∂xi

represents the product rule of differentiation for f ∈ F and 1 ≤ i ≤ d.

Operators defined over these three rings satisfy the assumptions of Lemma 1:
multiplication commutes with expectations and the dominated convergence the-
orem implies that expectation commutes with derivatives, as realizations of gF
are continuously differentiable. Furthermore, these rings act continuously on F :
the Fréchet topology makes derivation continuous by construction, and multipli-
cation by elements in F is bounded as D is compact, which implies continuity
in the Fréchet space F . In particular, we have the following:

Corollary 1. Let F = C∞(D,R) be the space of smooth functions defined on
a compact set D ⊂ Rd. Let g = GP(µ(x), k(x, x′)) with realizations in F`′′ and
B : F`′′ → F` a linear operator over one of the operator rings in Examples 2,
3, or 4. Then, the pushforward GP B∗g is again Gaussian with

B∗g = GP(Bµ(x), Bk(x, x′)(B′)T ) ,

where B′ denotes the operation of B on functions with argument x′.

4 Parametrizations

We consider solution sets of linear differential equations, how to parametrize
them by a suitable matrix B and thereby describe them by a GP B∗g. Let R be
one of the rings from the previous section, F the left R-module C∞(D,R) and
A ∈ R`′×`. Define the solution set solF (A) := {f ∈ F`×1 | Af = 0} of A. We
say that a GP is in a function space, if its realizations are a.s. contained in said
space. We first describe the interplay of GPs and solution sets of operators.

Lemma 2 ([19, Lemma 2.2]). Let g = GP(µ, k) be a GP in F`×1. Then g is
a GP in the solution set solF (A) of A ∈ R`′×` if and only if both µ is contained
in solF (A) and A∗(g − µ) is the constant zero process.
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This lemma motivates how to construct GPs with realizations in solF (A):
find a B ∈ R`×`

′′
with AB = 0 [15]. Then, taking any GP g = GP(0, k) in

F`′′×1, the realizations of B∗g are (possibly strictly) contained in solF (A), as
A∗(B∗g) = (AB)∗g = 0∗g = 0. One prefers to enlarge B to approximate all
solutions in solF (A) by B∗g, i.e., the realizations of B∗g should be dense in
solF (A). Call B ∈ R`×`

′′
a parametrization of solF (A) if solF (A) = BF`′′×1.

Such a parametrization does not always exist, e.g., for the matrix A =
[
∂x1

]
.

Proposition 2 ([21, Proposition 3.5]). Let B ∈ R`×`′′ be a parametrization

of solF (A). Let g`
′′×1
F be the GP of `′′ i.i.d. copies of gF , the GP with squared

exponential covariance kF (3). Then, B∗g
`′′×1
F has realizations dense in solF (A).

We summarize how to algorithmically decide whether a parametrization ex-
ists and how to compute it in the positive case. Computations directly over the
space of functions F are infeasible. Hence, we compute over R instead. Inferring
results over F is possible once F is an injective5 R-module, i.e. HomR(−,F) is
exact. Luckily, for PDEs with constant coefficients we have the following:

Theorem 1 ([26], [7] [31, §2(54)], ). Let R = R[∂x1
, . . . , ∂xd ] be as in Exam-

ple 2 and D ⊂ Rd convex. Then, F = C∞(D,R) is an injective R-module.

With this in mind, we recall the construction of parametrizations.

Theorem 2 ([49, Thm. 2], [31, §7.(24)], [33], [32], [5], [37]). Let R be a
ring and F an injective left R-module. Let A ∈ R`′×`. Let B be the right nullspace
of A and A′ the left nullspace of B. Then solF (A′) is the largest subset of solF (A)
that is parametrizable, B parametrizes solF (A′), and solF (A) is parametrizable
if and only if the rows of A and A′ generate the same row module, i.e. if all rows
of A′ are contained in the row module generated by A.

Gröbner bases turn Theorem 2 effective, as they allow to compute the right
nullspace B of A, the left nullspace A′ of B and decide whether the rows of A′

are contained in the row space of A over R. We have the following criterion.

Theorem 3 ([31, §7.(21)]). A system solF (A) is parametrizable if and only if
it is controllable. If A is not parametrizable, then the solution set solF (A′) is the
subset of controllable behaviors in solF (A), where A′ is defined as in Theorem 2.

Solution sets of differential equations and polynomial boundary conditions
can be intersected [21].

Theorem 4 ([21, Theorem 5.2]). Let B1 ∈ R`×`
′′
1 and B2 ∈ R`×`

′
2 . Denote

by C :=

[
C1

C2

]
∈ R(`′1+`

′
2)×m the right-nullspace of the matrix B :=

[
B1 B2

]
∈

R`×(`
′
1+`
′
2). Then B1C1 = −B2C2 parametrizes solutions of B1F`

′
1 ∩B2F`

′
2 .

Here, B1 might be a matrix of differential operators and B2 a matrix of
polynomial functions, and we consider both matrices over a common ring R.

5 In algebraic system theory, one usually works with injective cogenerators F [32].
Injective cogenerators allow to infer back from analysis in F to algebra over R. In
our setting, this step back is superfluous, as the algebra cannot encode data points.
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5 Rings of differential operators over differential algebras

We have considered parametrizations by differential operators and in Sect. 7
we consider parametrizations of boundary conditions by analytic functions. For
their combination in Sect. 8, we now extend classical Gröbner and Janet bases.

Let D ⊂ Rd be connected and denote by δ1, . . . , δd the commuting derivations
in the coordinate directions of Rd. Let K be a differential algebra over the real
numbers6 R generated by analytic function f1, . . . , fr : D → R. For algorithmic
reasons assume that K is finitely presented as a differential algebra over R as

K = R{f1, . . . , fr} ∼= R{F1, . . . , Fr}/P,

where P is a prime differential ideal of R{F1, . . . , Fr}, generated by

{ δjFi − gi,j | i = 1, . . . , r, j = 1, . . . , d }, (4)

where gi,j ∈ R[F1, . . . , Fr] are (non-differential) polynomials in F1, . . . , Fr, and
the above isomorphism is given by fi 7→ Fi + P . In particular, the generators
f1, . . . , fr of K are algebraically independent over R. Then K is isomorphic to
R[f1, . . . , fr] as an R-algebra, and K is Noetherian, factorial, and a GCD domain.

Example 5. For the differential algebra K = Q{x, y, exp(x2 + y2 − 1)} with
derivations δ1 = ∂/∂x, δ2 = ∂/∂y we have K ∼= Q{F1, F2, F3}/P , where

δ1F1 − 1, δ2F1, δ1F2, δ2F2 − 1, δ1F3 − 2F1F3, δ2F3 − 2F2F3,

generate the prime differential ideal P such that

Q{F1, F2, F3} −→ K : F1 7−→ x, F2 7−→ y, F3 7−→ exp(x2 + y2 − 1)

is an epimorphism of differential algebras over Q mapping precisely P to zero.

Definition 1. Let the ring of differential operators R = K〈∂1, . . . , ∂d〉 be the
iterated Ore extension of K defined by

∂i a = a ∂i + δi(a), a ∈ K, i = 1, . . . , d,

∂i ∂j = ∂j ∂i, i, j = 1, . . . , d.

Remark 1. The ring R is (left) Noetherian, because K is Noetherian (cf., e.g.,
[28, Thm. 1.2.9 (iv)]). Moreover, R has the left Ore property, i.e., every pair of
non-zero elements of R has a non-zero common left multiple [28, Thm. 2.1.15],
which, in particular, implies the existence of a skew field of fractions of R.

6 Of course, the constructions in this and the following section work over any suffi-
ciently algorithmic differential field of characteristic zero, not only R. In practice,
we assume to work over a computable subfield of R.
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We define the set of monomials of R as

Mon(R) = { fα1
1 . . . fαrr ∂β1

1 . . . ∂βdd | α1, . . . , αr, β1, . . . , βd ∈ Z≥0 }.

It is a basis of R as an R-vector space: every p ∈ R has a unique representation

p =
∑

m∈Mon(R)

cmm, (∗)

where cm ∈ R and only finitely many cm are non-zero.

A monomial ordering < on R is a total ordering on Mon(R) satisfying

f01 . . . f
0
r ∂

0
1 . . . ∂

0
d = 1 < m for all 1 6= m ∈ Mon(R),

m1 < m2 ⇒ fim1 < fim2 for all m1,m2 ∈ Mon(R), i = 1, . . . , r,

m1 < m2 ⇒ m1 ∂j < m2 ∂j for all m1,m2 ∈ Mon(R), j = 1, . . . , d.

For every 0 6= p ∈ R the <-greatest monomial m occurring with non-zero coef-
ficient cm in the representation (∗) of p is called the leading monomial of p and
is denoted by lm(p). Its coefficient cm is called the leading coefficient of p and is
denoted by lc(p). For a subset S of R we let lm(S) = { lm(s) | 0 6= s ∈ S }.

Example 6. The weighted degree-reverse-lexicographical ordering < with weights
w = (w1, . . . , wr+d) ∈ Qr+d>0 (weighted deg-rev-lex) is defined by

fα1
1 . . . fαrr ∂

αr+1

1 . . . ∂
αr+d
d < f

α′1
1 . . . f

α′r
r ∂

α′r+1

1 . . . ∂
α′r+d
d

⇐⇒

(
r+d∑
j=i

wiαi, αr+d, . . . , α1

)
>lex

(
r+d∑
j=i

wiα
′
i, α
′
r+d, . . . , α

′
1

)
,

where αi, α
′
i ∈ Z≥0 and >lex compares tuples lexicographically.

Example 7. We let the elimination ordering < on R (eliminating ∂1, . . . , ∂d) be

fα1
1 . . . fαrr ∂β1

1 . . . ∂βdd < f
α′1
1 . . . f

α′r
r ∂

β′1
1 . . . ∂

β′d
d

⇐⇒
(
∂β1

1 . . . ∂βdd ≺∂ ∂
β′1
1 . . . ∂

β′d
d or

∂β1

1 . . . ∂βdd = ∂
β′1
1 . . . ∂

β′d
d and fα1

1 . . . fαrr ≺f f
α′1
1 . . . f

α′r
r

)
,

where αi, α
′
i, βj , β

′
j ∈ Z≥0 and where ≺∂ and ≺f are the deg-rev-lex ordering

on the polynomial algebras Q[∂1, . . . , ∂d] and Q[f1, . . . , fr], respectively.

Assumption 1 The monomial ordering < on R is chosen such that the leading
monomial of

∂j fi = fi ∂j + δj(fi) = fi ∂j + gi,j

with respect to > is fi ∂j, for all i = 1, . . . , r and j = 1, . . . , d. (Recall that
fi ∂j + gi,j is the representation (∗) of ∂j fi taking the generators (4) of the
prime differential ideal P into account.)
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In what follows, we make Assumption 1, which is met if > is a degree-reverse-
lexicographical ordering with weights (v1, . . . , vr, w1, . . . , wd) satisfying

wj ≥ max
i=1,...,r

(
r∑

k=1

vk degfk(gi,j)− vi

)
for all j = 1, . . . , d,

or if > is an elimination ordering as in Example 7.

Before introducing Janet bases for left ideals of R we recall the concept of
Janet division, which we formulate for ideals of the free commutative semigroup
(Z≥0)r+d in our context. Note that if I is a non-zero left ideal of R, then the
exponent vectors (α1, . . . , αr, β1, . . . , βd) of all elements of lm(I) form an ideal of
(Z≥0)r+d due to the definition of a monomial ordering and Assumption 1. The
bijection between Mon(R) and (Z≥0)r+d may as well be chosen to be, e.g.,

ε : Mon(R) −→ (Z≥0)r+d : fα1
1 . . . fαrr ∂β1

1 . . . ∂βdd 7−→ (β1, . . . , βd, α1, . . . , αr),

which is the bijection we usually work with.

Recall that every ideal of (Z≥0)r+d is finitely generated; moreover, it has
a unique minimal generating set. For k ∈ {1, . . . , r + d} we denote by 1k the
multi-index with 1 in position k and 0 elsewhere. Following M. Janet (cf., e.g.,
[36]) we make the following definition in terms of exponent vectors.

Definition 2. Let A ⊂ (Z≥0)r+d be finite and α = (α1, . . . , αr+d) ∈ A. Then
ε−1(1k) is said to be multiplicative for the monomial ε−1(α) if and only if

αk = max{α′k | (α′1, . . . , α′r+d) ∈ A with α′1 = α1, . . . , α
′
k−1 = αk−1 }.

Let M ⊂ Mon(R) be finite. Then for every m ∈ M we obtain a partition
µ(m,M) ] µ(m,M) of {f1, . . . , fr, ∂1, . . . , ∂d}, where each element of µ(m,M)
is multiplicative for m and each element of µ(m,M) is non-multiplicative for m.

Example 8. Let r = 2, n = 1, M = { f1 f22 , f21 f2, f2 ∂21 , f1 ∂21 }. Using the above
bijection ε we obtain

µ(f1 f
2
2 ,M) = { f2 }, µ(f21 f2,M) = { f1, f2 },

µ(f2 ∂
2
1 ,M) = { ∂1, f2 }, µ(f1 ∂

2
1 ,M) = { ∂1, f1, f2 }.

Definition 3. Let M ⊂ Mon(R) be finite. We define two supersets of M in
Mon(R) as follows:

〈M 〉 =
⋃
m∈M

{ fφ1

1 . . . fφrr m∂ψ1

1 . . . ∂ψdd | φi, ψj ∈ Z≥0 },

[M ] =
⊎
m∈M

{ fφ1

1 . . . fφrr m∂ψ1

1 . . . ∂ψdd | φi, ψj ∈ Z≥0,

φi = 0 if fi 6∈ µ(m,M) and ψj = 0 if ∂j 6∈ µ(m,M) },

where the latter union is disjoint by construction of Janet division. The set M
of monomials is said to be Janet complete if [M ] = 〈M 〉.
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Any finite subset M of Mon(R) has a unique smallest (finite) Janet complete
superset of M , which we call the Janet completion of M [36, Subsect. 2.1.1].

Definition 4. Let I be a non-zero left ideal of R. Using the notation of Def-
inition 3, a finite generating set G ⊂ R \ {0} for I is called a Gröbner basis
for I with respect to the monomial ordering < if 〈 lm(G) 〉 = lm(I). If moreover,
lm(G) is Janet complete, i.e., [ lm(G) ] = 〈 lm(G) 〉 = lm(I), then G is called a
Janet basis for I with respect to <.

Assumption 1 facilitates a multivariate polynomial division in R.

Remark 2. Suppose L ⊂ R \ {0} is finite and lm(L) is Janet complete. Let
p1 ∈ R \ {0}. If lm(p1) ∈ [ lm(L) ], then there exists a unique p2 ∈ L such that

lm(p1) = fφ1

1 . . . fφrr lm(p2) ∂ψ1

1 . . . ∂ψdd

for certain φi, ψj ∈ Z≥0, where φi = 0 if fi 6∈ µ(lm(p2), lm(L)) and ψj = 0

if ∂j 6∈ µ(lm(p2), lm(L)). Therefore, subtracting lc(p1) fφ1

1 . . . fφrr ∂ψ1

1 . . . ∂ψdd p2
from lc(p2) p1 yields either zero or an element of R whose leading monomial is less
than lm(p1). Since a monomial ordering < does not admit infinitely descending
chains of monomials, this reduction procedure always terminates.

Iterated reduction, as just defined, modulo a Gröbner basis or a Janet basis
for the left ideal I allows to decide membership to I.

Proposition 3. Let G be a Gröbner basis or a Janet basis for the left ideal I of
R with respect to any monomial ordering <, and let p ∈ R. Then we have p ∈ I
if and only if the remainder of reduction of p modulo G is zero.

Remark 3. Given a finite generating set L for a non-zero left ideal I of R and
given a monomial ordering < as above, a Janet basis for I with respect to
< can be computed in finitely many steps [36]. After a preliminary pairwise
reduction of elements of L ensuring that the leading monomials of elements of
L are pairwise different and that ε(lm(L)) is the unique minimal generating
set of the ideal of (Z≥0)r+d it generates, multiplicative and non-multiplicative
variables are determined for each leading monomial (with respect to lm(L)) and
L is replaced by its Janet completion. Reduction of left multiples of elements of L
by non-multiplicative variables may yield non-zero remainders in I. Augmenting
L by such elements results in a larger ideal ε(lm(L)) of (Z≥0)r+d than previously.
Since every ascending chain of such ideals becomes stationary after finitely many
steps, by iteration of these steps, one obtains a generating set G for I whose left
multiples by non-multiplicative variables reduce to zero modulo G, which is a
Janet basis for I with respect to <.

6 Module-theoretic constructions

The techniques of Sect. 5 can be extended to effectively deal with finitely pre-
sented left (and right) R-modules and module homomorphisms between them.
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Let R be as in the previous section and q ∈ N. We choose the standard basis
e1, . . . , eq of the free left R-module R1×q and define the set of monomials

Mon(R1×q) = { fα1
1 . . . fαrr ∂β1

1 . . . ∂βdd ek | αi, βj ∈ Z≥0, k = 1, . . . , q }.

Then every element of R1×q has a unique representation as in (∗), where Mon(R)
is replaced by Mon(R1×q). By generalizing the notion of monomial ordering
defined in Sect. 5 to total orderings on Mon(R1×q), one can extend the reduction
procedure described in Remark 2 and indeed any algorithm computing Gröbner
or Janet bases for left ideals of R to one that computes Gröbner or Janet bases
for submodules R1×pA of R1×q, where A ∈ Rp×q. In particular, membership
to such a submodule can be decided by reduction, and therefore, computations
with residue classes in R1×q/R1×pA can be performed effectively.

We recall some relevant monomial orderings on R1×q.

Example 9. A monomial ordering≺ onR can be extended to monomial orderings
< on R1×q in different ways, for example, by defining

m1 ek < m2 el ⇐⇒
(
m1 ≺ m2 or

(
m1 = m2 and k > l

) )
(“term-over-position”), or by defining

m1 ek < m2 el ⇐⇒
(
k > l or

(
k = l and m1 ≺ m2

) )
(“position-over-term”), where m1, m2 ∈ Mon(R) and k, l ∈ {1, . . . , q}.

Example 10. Let s ∈ {1, . . . , q− 1} and ≺1, ≺2 be monomial orderings on R1×s

and R1×(q−s), with standard bases e1, . . . , es and es+1, . . . , eq, respectively. A
monomial ordering < on R1×q eliminating e1, . . . , es is defined by

m1 ek < m2 el ⇐⇒
(
l ≤ s < k or(
k ≤ s and l ≤ s and m1 ek ≺1 m2 el

)
or(

k > s and l > s and m1 ek ≺2 m2 el
) )

,

where m1, m2 ∈ Mon(R) and k, l ∈ {1, . . . , q}.

Remark 4. Let ϕ : R1×a → R1×b be a homomorphism of left R-modules, rep-
resented by a matrix A ∈ Ra×b. A Janet basis for the nullspace of ϕ can be
computed as follows. Join the two standard bases of R1×a and R1×b to ob-
tain the basis e1, . . . , ea, ea+1, . . . , ea+b of R1×a ⊕ R1×b ∼= R1×(a+b). Let <
be a monomial ordering on R1×(a+b) as defined in Example 10 for q = a + b,
s = a and certain ≺1 and ≺2, i.e., eliminating e1, . . . , ea. Then let J0 be a
Janet basis, with respect to <, for the submodule of R1×(a+b) generated by the
rows of the matrix (A Ia) ∈ Ra×(b+a), where Ia is the identity matrix. Now
J := {w ∈ R1×a | (0, w) ∈ J0 } is a a Janet basis for the nullspace of ϕ with
respect to ≺2 (cf. also [37, Ex. 3.10], [36, Ex. 3.1.27]).
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Remark 5. An involution θ : R → R of R allows to reduce computations with
right R-modules to computations with left R-modules. More precisely, if we have
θ(r1 + r2) = θ(r1) + θ(r2) and θ(r1 r2) = θ(r2) θ(r1) and θ(θ(r)) = r for all r1,

r2, r ∈ R, then any right R-module M is turned into a left R-module M̃ := M
(as abelian groups) via rm := mθ(r), where r ∈ R, m ∈ M̃ , and vice versa. The
involution θ is extended to matrices by (cf. also [37, Rem. 3.11])

θ(A) := (θ((Atr)i,j))1≤i≤q,1≤j≤p ∈ Rq×p, A ∈ Rp×q.

Since for A ∈ Rp×q, B ∈ Rq×r we have AB = 0 if and only if θ(B) θ(A) = 0, the
computation of nullspaces of homomorphisms of right R-modules is reduced to
the situation described in Remark 4. For R introduced in Definition 1 we choose

θ : R→ R, θ|K := idK , θ(∂j) := −∂j , j = 1, . . . , d.

7 Parametrizing boundary conditions

This section constructs parametrizations of functions satisfying certain boundary
conditions, independent of the parametrization of differential equations.

We restrict ourselves to boundary conditions parametrized by analytic func-
tions for two reasons. First, this allows algebraic algorithms. Second, due to the
limiting behaviour of GPs when conditioning on more data points, closed sets of
functions are preferable, see Theorem 6. For approximate resp. asymptotic resp.
partially unknown boundary conditions for GPs see [42] resp. [44] resp. [10]. For
a theoretic approach to endow RKHS with boundary information see [30].

Let again F = C∞(D,R) with Fréchet topology from (2) be the set of smooth
functions on D ⊂ Rd compact, K = R{f1, . . . , fr} with analytic functions fi :
D → R, and let R ⊇ K be the Ore extension of K.

This section is based on two theorems. The first one describes closed modules
satisfying a Nullstellensatz via their Taylor expansion. Denote by Tp the Taylor
series of a (vector or matrix of) smooth function(s) around a point p ∈ D.

Theorem 5 (Whitney’s Spectral Theorem; [48], [46, V Theorem 1.3]).
An F-module M ≤ C∞(D,R)` has topological closure M =

⋂
p∈D T

−1
p (Tp(M)).

The second theorem specifies that analytic functions generate closed modules.

Theorem 6 ([27, Theorem 4], [46, VI Theorem 1.1]). Let C be an m×n-
matrix of analytic functions on D ⊂ Rd and φ ∈ (C∞(D,R))

m
. Then there is a

ψ ∈ (C∞(D,R))
n

with φ = C · ψ if and only if for all p ∈ D the Tp(φ) are an
R[[x1 − p1, . . . , xd − pd]]-linear combination of the columns of T (C).

7.1 Boundary conditions for function values of single functions

We begin parametrizing functions which are zero on an analytic set M , e.g.
Dirichlet boundary conditions which prescribe values at the boundary ∂D.
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We define boundaries M ⊆ D implicitly via

M = V(I) := {m ∈ D | b(m) = 0 for all b ∈ I} ⊆ D,

where I E K is an ideal of equations. For any analytic set M ⊆ D we have
M = V(I(M)), where I(M) = {b ∈ F` | b(m) = 0 for all m ∈ M} ⊆ F is
the (closed and radical) ideal of functions vanishing at M . If I is radical (it is
automatically closed by Theorem 6, as generated by analytic functions), then
I(V(I)) = I. Hence, any set of analytic function defined on D which generates
a radical ideal parametrizes functions vanishing at its zero set. More formally:

Proposition 4. Let B′ ∈ K1×` be a row of analytic functions whose entries
generate a radical F-ideal I = B′F` ≤ F of smooth functions. Then, I is the set{
f ∈ F | f|V(I) = 0

}
of smooth functions vanishing at V(I).

Proof. The condition f|V(I) = 0 restricts the zeroth order Taylor coefficients
by homogeneous equations. All functions satisfying such restrictions are con-
tained in the closure I of I by Whitney’s Spectral Theorem 5. The F-module
parametrization I = B′F` uses analytic functions as generators, which ensures
that the ideal I is already equal to its closure I by Theorem 6. ut

We now compare constructions of rows B′ of functions in Proposition 4.

Example 11. Functions F = C∞([0, 1]d,R) with Dirichlet boundary conditions
f(∂D) = 0 at the boundary of the domain D = [0, 1]d are parametrized by

B′1 =
[∏d

i=1 xi(xi − 1)
]

(5)

over K = R{x1, . . . , xn} = R[x1, . . . , xn], by

B′2 =
[
1− exp

(
(−1)d+1 ·

∏d
i=1 xi(xi−1)

δ

)]
(6)

over K = R{exp(x21), exp(x1), x1, . . . , exp(x2d), exp(xd), xd}, or by7

B′3 =


√√√√√∏d

i=1

1 +
exp

(
−
x2
i
δ

)
−2 exp

(
−
x2
i
−xi+1

δ

)
+exp

(
− (xi−1)2

δ

)
exp(− 1

δ )−1


 (7)

for any δ > 0. See [9, Section 3] for the special case d = 2 in (5). For practical
differences of these formalizations of boundary conditions see Remark 6.

Block diagonal matrices parametrize boundaries of a vector of ` > 1 func-
tions. Also, restrictions on sets with higher codimension can be defined.

Example 12. The following three matrices
[
1− exp

(
− |x|δ

)
1− exp

(
− |y|δ

)]
,[

1− exp

(
−
√
x2+y2

δ

)]
, and

[
1− exp

(
−x

2+y2

δ

)]
parametrize functions f ∈

F = C∞(R3,R) with f(0, 0, z) = 0. The last parametrization is analytic.
7 B′3 is obtained as the product of the standard deviations obtained by conditioning d

one-dimensional squared exponential covariances to the data points (0, 0) and (1, 0).
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Fig. 2. GPs, represented by their mean function and two standard deviations. Upper
left: a GP g with mean zero and square exponential covariance function. Upper middle:
pushforward of the GP g by x · (x − 1) has a strong global influence. Upper right
resp. lower left: pushforward of the GP g by (6) resp. (7). Lower middle resp. right:
pushforward of the GP g by (8) resp. (9) set the function and its derivative to zero at
the boundary. Set δ := 1

100
.

7.2 Boundary conditions for derivatives and vectors

Boundary conditions with vanishing derivatives can be constructed using multi-
plicities in the (no longer radical) ideal. The proof of the following proposition
again follows from Theorems 5 and 6, in a similar way to Proposition 4.

Proposition 5. Let B′ ∈ K`×`′ be a matrix of analytic functions whose columns
generate an F-module M = B′F`′ ≤ F` of smooth functions. Then,{
f ∈ F`

∣∣∣∀p ∈ D ∃ai ∈ R[[x1 − pi, . . . , xd − pd]] ∀1 ≤ i ≤ ` : Tp(fi) =
∑`′

j=1 Tp(bij)aj

}
is the closed set of smooth functions sharing the same vanishing lower order
Taylor coefficients as the columns of B′.

Example 13. Functions F = C∞([0, 1]d,R) with Dirichlet boundary conditions
f(∂D) = 0 and Neumann boundary condition ∂f

∂n (∂D) = 0 for n the normal to
the boundary ∂D of the domain D = [0, 1]d are parametrized by

B′ =
[
1− exp

(
(−1)d+1 ·

∏d
i=1 x

2
i (xi−1)

2

δ

)]
, (8)

constructed by squaring the exponent from the parametrization in (6), or

B′ =

∏d
i=1

1 +
exp

(
− x

2
i
δ

)
−2 exp

(
− x

2
i−xi+1

δ

)
+exp

(
− (xi−1)2

δ

)
exp(− 1

δ )−1

 , (9)

constructed by the squaring of the parametrization (7) for any δ > 0.
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Fig. 3. The mean fields of the GP for divergence-free fields in the interior of y2 =
sin(x)4 from Example 14, which are conditioned on the data (−1, 0) at (π

2
, 0) (left) and

on (1, 0) resp. (0, 1) at (π
4
, 0) resp. (π

2
, 0). The data is plotted artificially larger in red.

The flow at the analytic boundary is zero.

Remark 6. In applications, the non-polynomial parametrizations from Exam-
ples 11 and 13 are more suitable. We demonstrate the effect by pushforward
GPs obtained from these parametrizations in Figure 2.

The polynomial pushforward from Example 11 yields the variance x2 ·(x−1)2,
which strongly varies in the input interval [0, 1]. The analytic pushforwards from
Example 11 also set the variance to zero at the boundary, but quickly return to
the original variance, and never exceed it. Even the speed of returning to the
original variance can be controlled by changing the parameter δ.

8 Examples

Now, we intersect (Theorem 4) solution sets of differential equations and analytic
boundary conditions (Sect. 7) using the algorithms from Sects. 5 and 6.

Example 14. Consider divergence-free fields in the region in R2 bounded by f :=

y2 − sin(x)4 for x ∈ [0, π]. Hence, consider A =
[
∂x ∂y

]
, B1 =

[
∂y
−∂x

]
and B2 =[

f 0
0 f

]
. The Matrix C =

 f2

∂yf
−∂xf

 from Theorem 4 yields the parametrization[
∂yf

2

−∂xf2
]

=

[
f2∂y + 4 · f · y

−f2∂x + 8 · f · sin(x)3 cos(x)

]
and the push forward covariance

k · f1 · f2 ·
[
f1f2 + 16y1y2 + 4δy · (f1y2 − f2y1) − f1f2δ

2
y (f1y1 − f1y2 + 4y1) · (δx · f2 + sc(x2))

(f2y1 − f2y2 − 4y2) · (δx · f1 + sc(x1) (sc(x1) − δx · f1) · (sc(x2) + δx · f2) − f1f2 · (2δ
2
x − 1)

]
of the squared exponential covariance function k = exp(− 1

2 ((x1 − x2)2 + (y1 −
y2)2)), where f1 = f(x1, y1), f2 = f(x2, y2), δx = x1 − x2, δy = y1 − y2, and
sc(x) = 8 sin(x)3 cos(x). For an illustration of this covariance see Figure 3.

Example 15. Consider divergence-free fields in the compact domain D bounded
by −π2 ≤ y ≤ π

2 and 3 sin(y) ≤ x ≤ 3 sin(y) + 2. Hence, consider A =
[
∂x ∂y

]
,

B1 =

[
∂y
−∂x

]
and B2 =

[
f 0
0 f

]
for f = (y− π

2 )·(y+ π
2 )·(x−3 sin(y))·(x−3 sin(y)−
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v

Fig. 4. The mean fields of the GP for divergence-free fields from Example 15, which
are conditioned on v = (0,−1) at (0, 1). The flow at the left and right boundary is zero,
at the bottom resp. top there is flow into resp. out of the region. Both data point resp.
inhomogeneous boundary conditions are plotted artificially larger in red resp. blue.

2). As the first entry in the column C is f2, such fields can be parametrized by[
∂yf

2

−∂xf2
]
. Pushing forward the squared exponential covariance function yields a

covariance too big to display.
To encode non-zero boundary conditions we use a non-zero mean. Using the

potential p := − 1
4 · (3 sin(y)− x+ 3) · (3 sin(y)− x)2 yields the divergence-free

µ :=

[
− 9

4 · cos(y) · (3 sin(y)− x+ 2) · (3 sin(y)− x)
− 3

4 · (3 sin(y)− x+ 2) · (3 sin(y)− x)

]
=

[
∂y
−∂x

]
p

satisfying the left and right boundaries and non-zero flow through at top and
bottom. The GP GP(µ, k) hence models of divergence-free fields in D with no
flow on the sinoidal boundary left or right, but flow into D from the bottom and
out of D at the top of the region. See Figure 4 for a demonstration.
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zable differential ideals. In Gebhard Böckle, Wolfram Decker, and Gunter Malle,
editors, Algorithmic and experimental methods in algebra, geometry, and number
theory, pages 443–453. Springer, 2017.

19. Markus Lange-Hegermann. Algorithmic Linearly Constrained Gaussian Processes.
In Advances in Neural Information Processing Systems. 2018.

20. Markus Lange-Hegermann. The differential counting polynomial. Foundations of
Computational Mathematics, 2018.

21. Markus Lange-Hegermann. Linearly constrained Gaussian processes with bound-
ary conditions. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2021.



On boundary conditions parametrized by analytic functions 19

22. Markus Lange-Hegermann and Daniel Robertz. Thomas decompositions of para-
metric nonlinear control systems. IFAC Proceedings Volumes, 2013.

23. Markus Lange-Hegermann and Daniel Robertz. Thomas decomposition and non-
linear control systems. In Alban Quadrat and Eva Zerz, editors, Algebraic and sym-
bolic computation methods in dynamical systems, volume 9 of Adv. Delays Dyn.,
pages 117–146. Springer, Cham, 2020.

24. Markus Lange-Hegermann, Daniel Robertz, Werner M. Seiler, and Matthias Seiß.
Singularities of algebraic differential equations. Adv. in Appl. Math., 131:Paper
No. 102266, 56, 2021.
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